首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermodynamic parameters of the interaction between Ni(II) (M) and 5'-AMP in aqueous solution were determined calorimetrically (I = 0.1 tetramethylammonium bromide, 25 degrees C) at physiological pH. The experimental conditions were carefully selected to avoid the polynuclear complex formation. From the Ni(5'AMP)-complex-formation constant (logK1 = 2.55), the Ni(5'AMP)2(2-)-complex-formation constant and the Ni(5'AMP) (ML) and Ni(5'AMP)2(2-) (ML2) complex-formation enthalpies were determined (logK2 = 2.34, delta H1 = -10.0 kJ/mol and delta H2 = 21.6 kJ/mol). These results confirm the formation of the ML2 complex in solution and agree very well with the hypothesis of the 'stacking' between the purine rings, promoted for metal ions.  相似文献   

2.
The complexation of trivalent lanthanides with aliphatic dicarboxylic acids (malonic, succinic, glutaric and adipic) were studied at 25°C and 0.1 M (NaClO4) ionic strength by luminescence and absorption spectroscopy and luminescence lifetime measurements. The luminescence spectra and decay constants indicate that ML and ML2 complexes were formed. The stability constants of Eu(III) complexes with the dicarboxylic acids were calculated from the changes of the 5D07F0 excitation spectra of Eu(III). For the four dicarboxylic acids studied, both the stability constant and the number of water molecules released from the inner sphere of Eu(III) upon complexation decrease from malonate to adipate for both the ML and ML2 complexes. The results are interpreted as reflecting an increasing tendency from chelation to monodentation as the carbon chain length increases between carboxylate groups. The trend in the oscillator strength in the hypersensitive transition of the Nd(III)and Ho(III) complexes is the same as that in the ligand basicity.  相似文献   

3.
Dithiothreitol (threo-2,3-dihydroxy-1,4-dithiobutane = DTT) has recently been used to activate 5-aminolevulinic acid dehydratase in kinetic studies for the inhibition of this zinc enzyme by lead. Since the DTT molecule contains donor groups capable of forming metal ion complexes, its presence in the experimental medium used for this kind of assay may largely influence the concentration of lead available for the active sites of the enzyme. Before any quantitative investigation of this phenomenon can be contemplated, all possible complexes formed by lead with DTT must first be identified and their stabilities determined. Accordingly, formation equilibria of DTT complexes with lead(II) have been investigated under physiological conditions (37 degrees C, NaCl, 0.15 mol. dm-3 using glass electrode potentiometry. Corresponding stability constants were refined with MINIQUAD and ESTA computer programs. DTT log protonation constants have been found equal to 9.811 +/- 0.002 and 18.672 +/- 0.002. The following lead-dithiothreitol complexes have been characterized: ML (12.243 +/- 0.063), MLH-1 (2.391 +/- 0.061), M2LH-1 (13.285 +/- 0.059), and M4L3 (51.668 +/- 0.157). Appropriate computer simulations show that the interactions of the two reactants are indeed most significant under the pH and concentration conditions used in the above mentioned biological investigations. In particular, the influence of lead(II)-DTT equilibria on the free concentration of lead available for the active sites of the enzyme is described.  相似文献   

4.
The stability constants of La(3+), Sm(3+) and Ho(3+) complexes with 13- and 14-membered macrocycles having methylcarboxylate (trita and teta) or methylphosphonate (tritp and tetp) arms were determined. All the ligands were labelled with (153)Sm and (166)Ho in order to evaluate the effect of the macrocyclic cavity size and type of appended arms on their in vitro and in vivo behaviour. The radiolabelling efficiency was found to be higher than 98% for all the complexes, except for those of tetp. All radiocomplexes studied are hydrophilic with an overall negative charge and low plasmatic protein binding. Good in vitro stability in physiological media and human serum was found for all complexes, except the (153)Sm/(166)Ho-teta, which are unstable in phosphate buffer (pH 7.4). In vitro hydroxyapatite (HA) adsorption studies indicated that (153)Sm/(166)Ho-tritp complexes bind to HA having the (166)Ho complex the highest degree of adsorption (>80%, 10 mg). Biodistribution studies in mice demonstrated that (153)Sm/(166)Ho-trita complexes have a fast tissue clearance with more than 95% of the injected activity excreted after 2 h, value that is comparable to the corresponding dota complexes. In contrast, the (153)Sm-teta complex has a significantly lower total excretion. (153)Sm/(166)Ho-tritp complexes are retained by the bone, particularly (166)Ho-tritp that has 5-6% (% I.D./g) bone uptake and also a high rate of total excretion. Thus, these studies support the potential interest of (153)Sm/(166)Ho-trita complexes for therapy when conjugated to a biomolecule and the potential usefulness of the (166)Ho-tritp complex in bone pain palliation.  相似文献   

5.
The novel methylphosphonic acid monoethylester (H4dotpOEt) has been synthesized and characterized and their complexes with Sm(III) and Ho(III) ions were studied. Dissociation constants of the ligand are lower than those of H4dota. The stability constants of the Ln(III)-H4dotpOEt complexes are surprisingly much lower that those of H4dota (H4dota = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) probably due to a lower coordination ability of the phosphonate monoester groups. Acid-assisted decomplexation studies have shown that both complexes are less kinetically inert than the H4dota complexes, but still much more inert than complexes of open-chain ligands. Nevertheless, the synthesis of 153Sm and 166Ho complexes with this ligand led to stable complexes both in vitro and in vivo. A very low binding of these complexes to hydroxyapatite (HA) and calcified tissues was observed confirming the assumption that a fully ionized phosphonate group(s) is necessary for a strong bone affinity. Both complexes show similar behaviour in vivo and, in general, follow the biodistribution trend of the H4dota complexes with the same metals.  相似文献   

6.
Vitamin D3 (LH) complexes with manganese(II), iron(II), iron(III) and zinc(II) were identified in water-ethanol medium (30/70). Their stability constants were determined at 298 K and at a constant ionic strength of 0.100 M using potentiometric methods. The computerisation of the experimental data showed the presence of ML (M = metal, L = deprotonated vitamin D3) and ML2 species in all cases; in addition, the ML3 iron(III) complex was detected. The calculated overall stability constants beta for MnIIL, FeIIL, FeIIIL and ZnIIL are, respectively, in logarithms, 12.4, 16.5, 28.5 and 16.5. Under the experimental conditions, the only protonated species MLH detected was with iron(III).  相似文献   

7.
A set of tetraaza macrocycles containing pyridine and methylcarboxylate (ac3py14) or methylphosphonate (MeP2py14 and P3py14) pendant arms were prepared and their stability constants with La3+, Sm3+, Gd3+ and Ho3+ determined by potentiometry at 25 °C and 0.10 M ionic strength in NMe4NO3. The metal:ligand ratio for 153Sm and 166Ho and for ac3py14, MeP2py14 and P3py14, as well as the pH of the reaction mixtures, were optimized to achieve a chelation efficiency higher than 98%. These radiocomplexes are hydrophilic and have a significant plasmatic protein binding. In vitro stability was studied in physiological solutions and in human serum. All complexes are stable in saline and PBS, but 20% of radiochemical impurities were detected after 24 h of incubation in serum. Biodistribution studies in mice indicated a slow rate of clearance from blood and muscle, a high and rapid liver uptake and a very slow rate of total radioactivity excretion. Some bone uptake was observed for complexes with MeP2py14 and P3py14, which was enhanced with time and the number of methylphosphonate groups. This biological profile supports the in vitro instability found in serum and is consistent with the thermodynamic stability constants found for these complexes.  相似文献   

8.
The binary complexes of 5-amino-3,5-dideoxy-D-glycero-D-galactononulosic acid (NANA), commonly called N-acetyl neuraminic acid, formed with biological metal ions such as Co(II) and Cu(II) and toxic metal ions such as Cd(II) and Pb(II) were investigated in aqueous solution by means of potentiometry, UV and NMR spectroscopy. The corresponding ternary systems with 2,2'-bipyridine were studied in aqueous solution by potentiometry and UV spectroscopy. NANA co-ordinates all metal ions, in both binary and ternary systems through the carboxylic group (protonated or deprotonated according to pH), pyranosidic ring oxygen and glycerol chain alcoholic hydroxy groups. The prevailing species in the pH range 2-7 are of [M(NANA)(2)] type, and their stability constants are greater than those of simple carboxylate complexes. Above pH 7, the species [M(NANA)(2)OH](-) are also formed, but they do not prevent the precipitation of metal hydroxides. This work provides information on the solution state chemistry of NANA in the presence of bivalent metal ions; its great affinity for the toxic metals Cd(II) and Pb(II), near physiological conditions, and the relatively high stability of the complex species found may also account for the mechanism of toxicity.  相似文献   

9.
The antioxidant activity of floranol (3,5,7,2'-tetrahydroxy-6-methoxy-8-prenylflavanone), a new flavonoid isolated from the roots of Dioclea grandiflora, was evaluated by the inhibition of human low-density lipoprotein (LDL) oxidation. Floranol increased its oxidation lag-phase significantly in a dose-dependent manner. As the antioxidant mechanism may involve metal coordination, we have undertaken a detailed study of floranol interactions with Cu(II) and Fe(III) by combination of UV-visible (UV-Vis) and mass spectrometries and cyclic voltammetry. The acidity constants of the ligand as well as the stability constants of the metal complexes were calculated. The pKa values of 6.58, 11.97 and 13.87 were determined and the following acidity order is proposed 7-OH>5-OH>2'-OH. The best fit between experimental and calculated spectra was obtained assuming the formation of two Cu(II) complexes: [CuL] logbeta=19.34+/-0.05 and [CuL(2)](2-) logbeta=26.4+/-0.10 and three Fe(III) complexes: [FeL(3)](3-) logbeta=44.72+/-0.09, [FeL(2)](-) logbeta=35.32+/-0.08 and [FeL](+) logbeta=19.51+/-0.04. In addition, copper and iron reduction is less favorable in the presence of floranol. These results indicate that floranol can efficiently bind Cu(II) and Fe(III) ions thus preventing their effect on LDL oxidation.  相似文献   

10.
A new ligand, 6-hydroxy chromone-3-carbaldehyde-(2'-hydroxy) benzoyl hydrazone (L), was prepared by condensation of 6-hydroxy-3-carbaldehyde chromone (CDC) with 2-hydroxy benzoyl hydrazine. Its four rare earth complexes have been synthesized and characterized on the basis of elemental analyses, molar conductivities, mass spectra, 1H NMR, thermogravimetry/differential thermal analysis (TG-DTA), UV-vis spectra, fluorescence spectra, and IR spectra. The general formula of the complexes is [LnL2.(NO3)2].NO3 [Ln=La(1), Sm(2), Dy(3), Eu(4)]. Spectrometric titration, ethidium bromide displacement experiments, and viscosity measurements indicate that Eu(III) complex and ligand, especially the Eu(III) complex, strongly bind with calf-thymus DNA, presumably via an intercalation mechanism. The intrinsic binding constants of Eu(III) complex and ligand with DNA were 3.55 x 10(6) and 1.33 x 10(6)M(-1) through fluorescence titration data, respectively. In addition, the suppression ratio for O2-* and OH* of the ligand and its complexes was studied by spectrophotometric methods. The experimental results show that La (1), Sm (2), and Eu (4) complexes are better effective inhibitor for OH* than that of mannitol. It indicates that the complexes have the activity to suppress O2-* and OH* and exhibit more effective antioxidants than ligand alone.  相似文献   

11.
Complexes of the uranyl cation [UO(2)(2+)] with histidine (His), N-acetyl-histidine (NAH), tyrosine (Tyr), and N-acetyl-tyrosine (NAT) were studied by UV-visible and NMR spectroscopy, and by potentiometric titration. Protonation constants for each ligand are reported, as are cumulative formation constants for uranyl-amino acid complexes. Coupling constant data (J(CH)) for uranyl-histidine complexes indicate that inner-sphere solution interactions between histidine and uranyl cation are solely at the carboxylate site. At 25 degrees C the major uranyl-histidine complex has a cumulative formation constant of logbeta(110)=8.53, and a proposed formula of [UO(2)HisH(2)(OH)(2)](+); the stepwise formation constant, logK(UL), is estimated to be 5.6 ( approximately 8.53-(-6.1)-(-6.1)-15.15). Outer-sphere interactions, H-bonding or electrostatic interactions, are proposed as contributing a significant portion of the stability to the ternary uranyl-hydroxo-amino acid complexes. The temperature dependent protonation constants of histidine and formation constants between uranyl cation and histidine are reported from 10 to 35 degrees C; at 25 degrees C, DeltaG=-43.3 kJ/mol.  相似文献   

12.
The protonation constants and complex formation constants of ionomycin have been determined in 80% methanol/water (w/w) at 25.0 degrees C and mu = 0.050 (tetraethylammonium perchlorate). Potentiometric and spectrometric titration techniques give the following values for the mixed-mode protonation constants of ionomycin: log KH1 = 11.94 +/- 0.02 and log KH2 = 6.80 +/- 0.03. Comparison of these values with those for model compounds indicates that KH1 and KH2 refer to equilibria involving the beta-diketone and carboxylic acid moieties, respectively. Titrations of ionomycin with metal ion at fixed values of pH produced changes in the UV-visual absorbance spectra which were analyzed to give conditional complex formation constants, KMI'. The pH dependence of the values of KMI' indicated that 1:1 divalent metal ion-ionomycin (MI) complexes and protonated MHI+ complexes were formed in the pH range studied. The values of log KMI ranged from 5.30 +/- 0.11 for Sr2+ to 10.25 +/- 0.03 for Ni2+. The selectivity pattern and relative affinities (in parentheses) for the formation of the species MI are as follows: Ni2+ (2000) greater than Zn2+ (600) greater than CO2+ (440) greater than Mn2+ (47) greater than Mg2+ (1.00) greater than Ca2+ (0.21) greater than Sr2+ (0.022). Logarithmic values of KMHI, for the reaction MI + H+ in equilibrium MHI+, ranged from 5.9 (Ni2+) to 8.4 (Sr2+). Calculations using the values of the equilibrium constants determined indicate that an appreciable fraction of the complexed ionophore exists as the protonated complex, MHI+, in the pH range of 6.5-8.5.  相似文献   

13.
Y Liu  K Zhang  Y Wu  J Zhao  J Liu 《Chemistry & biodiversity》2012,9(8):1533-1544
8-Hydroxyquinoline-7-carboxaldehyde (8-HQ-7-CA), Schiff-base ligand 8-hydroxyquinoline-7-carboxaldehyde benzoylhydrazone, and binuclear complexes [LnL(NO(3) )(H(2) O)(2) ](2) were prepared from the ligand and equivalent molar amounts of Ln(NO(3) )?6 H(2) O (Ln=La(3+) , Nd(3+) , Sm(3+) , Eu(3+) , Gd(3+) , Dy(3+) , Ho(3+) , Er(3+) , Yb(3+) , resp.). Ligand acts as dibasic tetradentates, binding to Ln(III) through the phenolate O-atom, N-atom of quinolinato unit, and C?N and ?O?C?N? groups of the benzoylhydrazine side chain. Dimerization of this monomeric unit occurs through the phenolate O-atoms leading to a central four-membered (LnO)(2) ring. Ligand and all of the Ln(III) complexes can strongly bind to CT-DNA through intercalation with the binding constants at 10(5) -10(6) M(-1) . Moreover, ligand and all of the Ln(III) complexes have strong abilities of scavenging effects for hydroxyl (HO(.) ) radicals. Both the antioxidation and DNA-binding properties of Ln(III) complexes are much better than that of ligand.  相似文献   

14.
The formation and stability of Mg(2+) and Ca(2+)-phytate complexes was studied potentiometrically using an ISE-H(+) electrode. Measurements were performed at 10 degrees C and 25 degrees C in NaCl(aq) in the ionic strength range 0.1< or =I< or =0.75 mol L(-1). For both magnesium and calcium systems, the formation of ten M(i)PhyH(j)((12-2i-j)-) species was observed in the range 3< or =pH< or =7 with i=1, 2, 3 and j=3, 4, 5 (and i=3, j=2). These species are quite stable; here we report for example some quantitative data for the species Ca(i)PhyH(3)((9-2i)-), i=1, 2, 3 (equilibrium iCa(2+)+H(j)Phy((12-j)-)=Ca(i)PhyH(j)((12-j-2i)-): K(ij)) at I=0.25 mol L(-1) and t=25 degrees C: logK(13)=3.42, logK(23)=6.47 and logK(33)=9.41. The speciation of the Ca(2+)-phytate system was also checked by ISE-Ca(2+) measurements. Dependence on ionic strength was modeled using a simple Debye-Hückel type equation and formation constants were calculated at infinite dilution. The stability constants of complexes formed at pH>7 were estimated using an empirical predictive equation. The sequestering ability of phytate towards Mg(2+) and Ca(2+) was calculated in different experimental conditions and compared with those of other chelating agents.  相似文献   

15.
A comparative study of thermodynamic and kinetic aspects of Cu(II) and Ni(II) binding at the N-terminal binding site of human and bovine serum albumins (HSA and BSA, respectively) and short peptide analogues was performed using potentiometry and spectroscopic techniques. It was found that while qualitative aspects of interaction (spectra and structures of complexes, order of reactions) could be reproduced, the quantitative parameters (stability and rate constants) could not. The N-terminal site in HSA is much more similar to BSA than to short peptides reproducing the HSA sequence. A very strong influence of phosphate ions on the kinetics of Ni(II) interaction was found. This study demonstrates the limitations of short peptide modelling of Cu(II) and Ni(II) transport by albumins.  相似文献   

16.
The kinetics and mechanisms of the reactions of a number of pyrogallol-based ligands with iron(III) have been investigated in aqueous solution at 25 degrees C and ionic strength 0.5 M NaClO(4). Mechanisms have been proposed which account satisfactorily for the kinetic data. These are generally consistent with a mechanism in which the 1:1 complex that is formed initially when the metal reacts with the ligand subsequently decays through an electron transfer reaction. There was also some evidence for the formation of a 1:2 ligand-to-metal complex at higher pH values. The kinetics of complex formation were investigated with either the ligand or metal in pseudo-first-order excess. Rate constants for k(1) of 2.83(+/-0.09)x10(3), 1.75(+/-0.045)x10(3) and 3300(+/-200) M(-1) s(-1) and k(-1) of 20(+/-6.0), 35(+/-13) and 25+/-7.6 M(-1) s(-1) have been evaluated for the reaction of Fe(OH)(2+) with gallic acid, gallic acid methyl ester and catechin, respectively. The stability constant of each [Fe(L)](+) complex has been calculated from the kinetic data. The iron(III) assisted decomposition of the initial iron(III) complex formed was investigated. Analysis of the kinetic data yielded both the equilibrium constants for protonation of the iron(III) complexes initially formed together with the rate constants for the intramolecular electron transfers for gallic acid and gallic acid methyl ester. All of the suggested mechanisms and calculated rate constants are supported by calculations carried out using global analysis of time-dependent spectra.  相似文献   

17.
A novel 6-hydroxy chromone-3-carbaldehyde benzoyl hydrazone ligand (L) and its Ln(III) complexes, [Ln=La(1) and Sm(2)], have been prepared and characterized. The crystal and molecular structures of complexes 1 and 2 were determined by single-crystal X-ray diffraction. Antioxidative activity tests in vitro showed that L and its complexes have significant antioxidative activity against hydroxyl free radicals from the Fenton reaction and also oxygen free radicals, and that the effect of the La(III) complex 1 is stronger than that of mannitol and the other compounds. The compounds were tested against tumor cell lines including HL-60 and A-549. The data shows that the suppression rate of complexes 1 and 2 against the tested tumor cells are superior to the free ligand (L). The interactions of complexes 1 and 2, and L, with calf thymus DNA were investigated by UV-visible (UV-vis), fluorescence, denaturation experiments and viscosity measurements. Experimental results indicated that complexes 1 and 2, and L can bind to DNA via the intercalation mode, and that the binding affinity of complex 1 is higher than that of complex 2 and of free ligand (L). The intrinsic binding constants of complexes 1 and 2, and L were (7.62+/-0.56)x10(6), (3.70+/-0.47)x10(6) and (2.41+/-0.46)x10(6)M(-1), respectively.  相似文献   

18.
Some arsenic compounds were the first antimicrobial agents specifically synthesized for the treatment of infectious diseases such as syphilis and trypanosomiasis. More recently, arsenic trioxide has been shown to be efficient in the treatment of acute promyelocytic leukemia. The exact mechanism of action has not been elucidated yet, but it seems to be related to arsenic binding to vicinal thiol groups of regulatory proteins. Glutathione is the major intracellular thiol and plays important roles in the cellular defense and metabolism. This paper reports on a study of the interactions between arsenic(III) and either cysteine or glutathione in aqueous solution. The behavior observed for the As(III)-glutathione system is very similar to that of As(III)-cysteine. In both cases, the formation of two complexes in aqueous solution was evidenced by NMR and electronic spectroscopies and by potentiometry. The formation constants of the cysteine complexes [As(H(-1)Cys)(3)], log K = 29.84(6), and [As(H(-2)Cys)(OH)(2)](-), log K = 12.01(9), and of the glutathione complexes [As(H(-2)GS)(3)](3-), log K = 32.0(6), and [As(H(-3)GS)(OH)(2)](2-), log K = 10(3) were calculated from potentiometric and spectroscopic data. In both cases, the [As(HL)(3)] species, in which the amine groups are protonated, predominate from acidic to neutral media, and the [As(L)(OH)(2)] species appear in basic medium (the charges were omitted for the sake of simplicity). Spectroscopic data clearly show that the arsenite-binding site in both complexes is the sulfur atom of cysteine. In the [As(L)(OH)(2)] species, the coordination sphere is completed by two hydroxyl groups. In both cases, arsenic probably adopts a trigonal pyramidal geometry. Above pH 10, the formation of [As(OH)(2)O](-) excludes the thiolates from arsenic coordination sites. At physiological pH, almost 80% of the ligand is present as [As(HL)(3)].  相似文献   

19.
In a quest for more effective radiopharmaceuticals for pain palliation of metastatic bone cancer, this paper relates results obtained with 166Ho and 153Sm complexed to the bone seeking phosphonate, N,N-dimethylenephosphonate-1-hydroxy-4-aminopropylidenediphosphonate (APDDMP). APDDMP is synthesised from the known bone cancer pain palliation agent 1-hydroxy-3-aminopropylidenediphosphonate (APD) and was complexed to lanthanide trivalent metal ions. This work is performed to utilise the idea that the energetic beta-particle emitter, 166 Ho, coupled with phosphonate ligands such as APD and APDDMP could afford a highly effective radiopharmaceutical in the treatment of bone cancer. Complex-formation constants of APDDMP with the important blood plasma metal-ions, Ca2+, Mg2+, and Zn2+ and the trivalent lanthanides Ho3+ and Sm3+ were measured by glass electrode potentiometry at 37 degrees C and I = 150 mM. Blood plasma models were constructed using the computer code ECCLES and the results compared with those gathered from animal tests. The 166Ho-APDDMP complex was found to have little liver or bone uptake while 153Sm-APDDMP had a moderate bone uptake. This was primarily due to the high affinity of APDDMP for Ca(II). Clinical observations could be explained by the blood plasma modelling.  相似文献   

20.
The complexes formed in the dimethylthallium(III) (Me2Tl+), glutathionate (EGC3−) and hydrogen ion system in aqueous solution at 37 °C and I = 150 mmol dm−3 (NaCl) have been characterised by means of glass-electrode potentiometry. Glutathione protonation constants were found to be 9.123 ± 0.007, 17.42 ± 0.01, 20.78 ± 0.02, and 22.93 ± 0.02. Formation constants for the complexes [(Me2Tl)EGCH] and [(·Me2Tl) EGC]2− were found to be 11.19 ± 0.03 and 2.39 ± 0.02, respectively. Particular attention has been paid to the evaluation of the effect of possible systematic errors on the constant values determined. Reliable standard deviation estimations have been made by applying a Monte Carlo calculation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号