首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigated the effects of plant growth regulators [6-benzyladenine (BA), kinetin (Kin), 6-γ,γ-dimethylallylaminopurine (2iP), thidiazuron (TDZ) and α-naphthaleneacetic acid (NAA)], modified Murashige and Skoog (MS) medium containing 10 mM NH4 + and 5 mM NO3 and supplemented with 2iP, BA, Kin and NAA (MSM medium), and two elicitors [jasmonic acid (JA), and salicylic acid (SA)], on plant growth and accumulation of hypericins (hypericin and pseudohypericin) and hyperforin in shoot cultures of Hypericum hirsutum and H. maculatum. Our data suggested that culture of shoots on MS medium supplemented with BA (0.4 mg l−1) or Kin (0.4 mg l−1) enhanced production of hypericins in H. maculatum and hyperforin in H. hirsutum. Hypericins and hyperforin concentrations decreased in both species when TDZ (0.4 mg l−1) was added to the MS medium. Also, TDZ induced hyperhydric malformations and necrosis of regenerated shoots. Cultivation of H. maculatum on MSM medium resulted in approximately twofold increased production of hypericins compared to controls, and the growth of H. hirsutum shoots on the same medium led to a 6.16-fold increase in hyperforin production. Of the two elicitors, SA was more effective in stimulating the accumulation of hypericins. At 50 μM, SA enhanced the production of hypericin (7.98-fold) and pseudohypericin (13.58-fold) in H. hirsutum, and, at 200 μM, enhanced the production of hypericin (2.2-fold) and pseudohypericin (3.94-fold) in H. maculatum.  相似文献   

2.
An altered ploidy level was observed in plants regenerated by adventitious shoot formation from seedlings of Hypericum prformatum L. (2n = 4x = 32). Among the somaclones of the Ro generation, the presence of diploids (2n = 2x = 16), triraploids (2n = 3x = 24), tetraploids (2n = 4x = 32) and mixoploids was detected. Cytogenetic analyses of the R1 and R2 progenies showed that the chromosomal instability of the Ro somaclones was transferred onto the next generation. While almost all the seed progeny of diploids (100% in R1 and 94% in R2) progenies showed that the chromosomal instability of the Ro somaclones was transferred onto the next generations. While almost all the seed progeny of diploids (100% in R1 and 94% in R2) and more than 60% of tetraploids (61% in R1 and 73% in R2) retained their chromosome number, cytogenetic diversity was observed in the progeny of triploids, mixoploids and some tetraploids. Somaclones and their offspring were analyzed for hypericin content. Statistical evaluation showed a correlation between hypericin content and ploidy during a two-year cultivation of R0 somaclones and in their R1 and R2 progenies.  相似文献   

3.
Hypericum perforatum L. (St. John’s wort) and Hypericum sampsonii Hance are medicinal plants used in China in the treatment of viruses and other disorders. In the current study, we investigated the effects of cytokinins 6-benzylaminopurin (BA), zeatin (ZT) and thidiazuron (TDZ) on plant growth and production of hypericins (pseudohypericin and hypericin) and hyperforin. Our data suggested that culture of H. perforatum in modified MS (Murashige and Skoog) medium, with a 50% reduction in ammonium nitrate and potassium nitrate, and supplemented with BA (0.44 μM) and indolebutyric acid (IBA, 0.049 μM), resulted in increased production of hypericins. Similar results were noted with H. sampsonii with minor changes to the medium (0.46 μM ZT and 0.049 μM IBA). There were approximately 2.95-, 2.62-fold increases in H. perforatum pseudohypericin and hypericin production by TDZ (0.45 μM) induction compared to the controls. No enhancement of hypericins and hyperforin production was elicited by TDZ in H. sampsonii. The elicitor methyl jasmonate (MJA, 50 μM) and its analog, 2,3-dihydroxypropyl jasmonate (DHPJA, 50 μM), were also used in H. perforatum and H. sampsonii shoot culture to increase secondary metabolite production, eliciting an increase in the production of hypericins and hyperforin. While leaf senescence and biomass inhibition were observed in cultures induced by MJA, no such effects were observed with DHPJA.  相似文献   

4.
Four precursors (l-phenylalanine, l-tryptophan, cinnamic acid and emodin) and one signal elicitor (methyl jasmonate, MeJA) were added to liquid cultures of Hypericum perforatum L. to study their effect on production of hyperforin and hypericins (pseudohypericin and hypericin). The addition of l-phenylalanine (75 to 100 mg l−1) enhanced production of hypericins, but hyperforin levels were decreased. Hypericin, pseudohypericin and hyperforin concentrations were all decreased when l-tryptophan (25 to 100 mg l−1) was added to the medium. However, addition of l-tryptophan (50 mg l−1) with MeJA (100 μM) stimulated hyperforin production significantly (1.81-fold) and resulted in an increased biomass. Cinnamic acid (25, 50 mg l−1) and emodin (1.0 to 10.0 mg l−1) each enhanced hyperforin accumulation in H. perforatum, but did not affect accumulation of hypericins.  相似文献   

5.
Theflavonoid 3′,5′-hydroxylase (F3′,5′H) gene, derived from petunia, was introduced into chrysanthemum tissues by Agrobacterium-mediated genetic transformation. Cotyledon expiants were co-cultured withA. tumefaciens LBA 4404 harboring the vector pMBP that carriesF3′,5′H under the control of the CaMV 35S promoter andnptll as a selectable marker gene. After 72 h of co-cultivation, the expiants were placed on an MS medium supplemented with 4 mg L-1 BA, 0.1 mg L-1 NAA, 400 mg L-1 carbenicillin, and 100 mg L-1; kanamycin. After 4 weeks, kanamycin-resistant adventitious shoots had developed at a frequency of 6.3%. These shoots were then rooted and acclimatized in potting soil. Integration ofF3′,5′H into the plant genome was confirmed by Southern blot analysis. Flower buds that had red petals did not differ between the transgenic and the wild-type plants. However, petal color did change from red to bright orange to yellow when the buds developed into fully opened flowers on the transgenics. Spectrometric analysis revealed that the content of flavonoid compounds was more rapidly reduced in the transgenic petals as floral development proceeded. RT-PCR analysis showed thatF3′,5′H andflavonoid 3′hydroxylase (F3′H) were expressed simultaneously in the transgenic plants. Therefore, we suggest that this more rapid change in petal color results from 1) competition between levels of transgenicF3′,5′H and endogenousF3′H, each of which uses the same substrate in the flavonoid biosynthetic pathway and 2) the intrinsic substrate specificity of chrysanthemumDFR (dihydroflavonol 4-reductase).  相似文献   

6.
Expression of a transgene is rarely analysed in the androgenetic progenies of the transgenic plants. Here, we report differential transgene expression in androgenetic haploid and doubled haploid (DH) tobacco plants as compared to the diploid parental lines, thus demonstrating a gene dosage effect. Using Agrobacterium-mediated transformation, and bacterial reporter genes encoding neomycin phosphotransferase (nptII) and β-glucuronidase (uidA/ GUS), driven respectively by the mas 1′ and mas 2′ promoters, we have generated more than 150 independent transgenic (R0) Nicotiana tabacum plants containing one or more T-DNA copies. Transgene analyses of these R0, their selfed R1 lines and their corresponding haploid progenies showed an obvious position effect (site of T-DNA insertion on chromosome) on uidA expression. However, transgene (GUS) expression levels were not proportional to transgene copy number. More than 150 haploids and doubled haploids, induced by treatment with colchicine, were produced from 20 independent transgenic R0 plants containing single and multiple copies of the uidA gene. We observed that homozygous DH plants expressed GUS at approximately 2.9-fold the level of the corresponding parental haploid plants. This increase in transgene expression may be attributed mainly to the increase (2-fold) in chromosome number. Based on this observation, we suggest a strong link between chromosome number (ploidy dosage effect) and transgene expression. In particular, we demonstrate the effect on its expression level of converting the transgene from the heterozygous (in R0 plants) to the homozygous (DH) state: e.g. an increase of 50% was observed in the homozygous DH as compared to the original heterozygous diploid plants. We propose that ploidy coupled with homozygosity can result in a new type of gene activation, creating differences in gene expression patterns. Received: 27 April 1998 / Accepted: 12 August 1998  相似文献   

7.
Grain yield is the most important and complex trait in maize. In this study, a total of 258 F9 recombinant inbred lines (RIL), derived from a cross between dent corn inbred Dan232 and popcorn inbred N04, were evaluated for eight grain yield components under four environments. Quantitative trait loci (QTL) and their epistatic interactions were detected for all traits under each environment and in combined analysis. Meta-analysis was used to integrate genetic maps and detected QTL across three generations (RIL, F2:3 and BC2F2) derived from the same cross. In total, 103 QTL, 42 pairs of epistatic interactions and 16 meta-QTL (mQTL) were detected. Twelve out of 13 QTL with contributions (R 2) over 15% were consistently detected in 3–4 environments (or in combined analysis) and integrated in mQTL. Only q100GW-7-1 was detected in all four environments and in combined analysis. 100qGW-1-1 had the largest R 2 (19.3–24.6%) in three environments and in combined analysis. In contrast, 35 QTL for 6 grain yield components were detected in the BC2F2 and F2:3 generations, no common QTL across three generations were located in the same marker intervals. Only 100 grain weight (100GW) QTL on chromosome 5 were located in adjacent marker intervals. Four common QTL were detected across the RIL and F2:3 generations, and two between the RIL and BC2F2 generations. Each of five important mQTL (mQTL7-1, mQTL10-2, mQTL4-1, mQTL5-1 and mQTL1-3) included 7–12 QTL associated with 2–6 traits. In conclusion, we found evidence of strong influence of genetic structure and environment on QTL detection, high consistency of major QTL across environments and generations, and remarkable QTL co-location for grain yield components. Fine mapping for five major QTL (q100GW-1-1, q100GW-7-1, qGWP-4-1, qERN-4-1 and qKR-4-1) and construction of single chromosome segment lines for genetic regions of five mQTL merit further studies and could be put into use in marker-assisted breeding.  相似文献   

8.
The characterization of T. vulgaris plant material for quality control purposes was performed by NMR-based methods. Direct extraction of 141 T. vulgaris samples with DMSO-d 6 enabled the obtainment of crude extracts with a representative composition in terms of both volatile and non-volatile constituents. The acquisition of 600 MHz 1H NMR spectra resulted in a dataset which was analyzed by a combination of metabolic profiling and target analysis approaches. Preliminary analysis of the 1H NMR spectra was performed by principal component analysis, which revealed sample discrimination on a chemotype basis (thymol, carvacrol and linalool chemotypes). Further minor discriminative constituents were identified as p-cymene, γ-terpinene, rosmarinic acid, and 3,4,3′,4′-tetrahydroxy-5,5′-diisopropyl-2,2′-dimethylbiphenyl. Metabolite identification was accomplished by 1D and 2D NMR techniques and supported by spiking experiments. Fast dereplication of constituents not available as reference compounds was performed by HPLC–SPE–NMR experiments. A targeted approach based on qHNMR was validated for quantification of the identified secondary metabolites. Validation was performed in terms of precision (intra-day RSD ≤ 4.51%, inter-day RSD ≤ 4.18%), repeatability (RSD ≤ 2.30%), accuracy (recovery rates within 93.4 and 103.4%), linearity (correlation coefficients ≥ 0.9990), robustness, and stability. The amount of the dominant monoterpene in thymol, carvacrol, and linalool chemotypes was respectively found to be within 0.4–2.6, 0.7–2.3, and 1.1–3.6% (w/w). Variable amounts of the precursors p-cymene and γ-terpinene were found in thymol and carvacrol chemotypes. The highest amount of rosmarinic acid and 3,4,3′,4′-tetrahydroxy-5,5′-diisopropyl-2,2′-dimethylbiphenyl in the analyzed samples was respectively 4.6 and 0.4% (w/w). Since quantification is performed on a weight basis, the essential oil content can be estimated based on the sum of the quantified monoterpenes. The NMR-based analysis of T. vulgaris represents a more comprehensive approach in comparison to traditional chromatographic methods such as GC and LC, respectively employed for the analysis of volatile and non-volatile constituents. Further advantages lie in the simple sample preparation, rapidity and reproducibility of the NMR analysis.  相似文献   

9.
DNA polymorphism of the cellular lines of wheat resistant to the culture filtrate of G. graminis var. tritici and the plant-regenerants that were induced from them has been studied with the use of the method of ISSR-analysis. Specific changes in DNA sequences were detected in resistant calluses. It was found that all resistant cell lines were different from the initial callus and from the callus, which was not exposed to the selective factor. This difference was based on the presence of the specific 2347 bp (5′-TCTCTCTCTCTCTCTCG-3′ primer) and 1745 bp (5′-AGAGAGAGAGAGAGAGTC-3′ primer) amplicons and on the absence of the 1108 bp amplicon (5′-ACACACACACACACACC-3′ primer). These changes were also found in the plant-regenerants and in the R1 plants.  相似文献   

10.
Plants were regenerated from embryogenic and organogenic cultures derived from immature embryos of nine soybean (Glycine max L. Merr.) genotypes and extensive qualitative variation was noted in different regenerated families. Three lethal sectoral albinos were seen in the regenerated plants (R0). Variants observed in later selfed generations included twin seeds, multiple shoots, dwarfs, abnormal leaf morphology, abnormal leaflet number, wrinkled leaves, chlorophyll deficiency, partial sterility and complete sterility. The frequency of possible mutations ranged from 0 to 4% in R plants as determined by studies of corresponding R1, R2, R3 and R4 families. No significant differences were seen in the frequencies of possible mutations for embryogenic as compared to organogenic culture derived plants. Chlorophyll deficiency, sterility and wrinkled leaf traits were followed in two or more generations and showed that these traits were inherited stably. The known traits of this nature are controlled by single recessive nuclear genes. Other traits occurred more randomly and not in all generations. The genetic basis of the random variation is not known at the present time. This study indicates that heritable somaclonal variation does occur in tissue culture derived plants of soybean.Abbreviations R0 Original regenerated plant - R1 Selfed seeds of R0 plants - R2 Selfed seeds of R1 plants - R3 Selfed seeds of R2 plants This research was supported by funds from the Illinois Agricultural Experiment Station and Agrigenetics Inc.  相似文献   

11.
Five independent tobacco regenerant clones obtained after transformation withAgrobdcterium rhizogenes strain TR101 (four clones of the T phenotype, clone 5 a mixture of plants of the T and T′ phenotypes) and untransformed plants cultivatedin vitro were gradually acclimated to the atmosphere and transferred to the soil substrate in pots. During 28 d after transplanting the increase of the leaf area was in T phenotype plants greater than in untransformed plants, but 14 d later no significant differences were observed between T phenotype and untransformed plants in leaf area and dry matter. T′phenotype plants, however, had significantly lower values in all growth parameters than T phenotype and control plants. Abaxial net photosynthetic CO2 uptake (PN) was in both T (clones 1–4) and T′ plants significantly lower than that in control and clone 5T plants. Nevertheless, due to the relatively higher adaxial PN in T plants, the total PN through both leaf surfaces was significantly lower only in clone 4 and clone 5′ plants. The tendency to higher transpiration rates (E) in clones 1 – 4 in comparison with the control resulted in significant differences in water use efficiency (W.U.E.). Relatively higher E in T plants of clones 1 – 4 was connected most probably with their more developed root system (greater root dry-matter) than in untransformed plants, because no influence of the differences in stornata density on E was found.  相似文献   

12.
The effect of light intensity and root nitrogen supply on the levels of leaf hypericins was examined for St. John’s wort (Hypericum perforatum L.) grown in a sand culture system with artificial lighting. Increasing the light intensity illuminating St. John’s wort plants from 106 to 402 μmol·m–2·s–1 resulted in a continuous increase in the level of leaf hypericins. Using a leaf dissection approach, the association of hypericins with the dark glands on the leaves was shown, and it was found that increasing light intensity resulted in a parallel increase in the number of dark glands. In this respect, a linear relationship was observed between leaf gland number and the level of leaf hypericins (R = 0.901). While a decrease in nitrogen supply to St. John’s wort plants also yielded an increase in the level of leaf hypericins, this response occurred in a discontinuous manner over the range of nitrogen levels tested and no significant effect upon the number of dark leaf glands was observed. Overall, these effects of increased light intensity and decreased nitrogen supply on leaf hypericins appear to be independent and additive, and may reflect differences in the sites and processes where these environmental parameters impact production of these phytochemicals.  相似文献   

13.
Morphological and functional characteristics of Plantago media L. leaves were compared for plants growing at different light regimes on limestone outcrops in Southern Timan (62°45′N, 55°49′E). The plants grown in open areas under exposure to full sunlight had small leaves with low pigment content and high specific leaf weight; these leaves exhibited high photosynthetic capacity and elevated water use efficiency at high irradiance. The maximum photochemical activity of photosystem II (F v/F m) in leaves of sun plants remained at the level of about 0.8 throughout the day. The photosynthetic apparatus of sun plants was resistant to excess photosynthetically active radiation, mostly due to non-photochemical quenching of chlorophyll fluorescence (qN). This quenching was promoted by elevated deepoxiation of violaxanthin cycle pigments. Accumulation of zeaxanthin, a photoprotective pigment in sun plant leaves was observed already in the morning hours. The plant leaves grown in the shade of dense herbage were significantly larger than the sun leaves, with pigment content 1.5–2.0 times greater than in sun leaves; these leaves had low qN values and did not need extensive deepoxidation of violaxanthin cycle pigments. The data reveal the morphophysiological plasticity of plantain plants in relation to lighting regime. Environmental conditions can facilitate the formation of the ecotype with photosynthetic apparatus resistant to photoinhibition. Owing to this adjustment, hoary plantain plants are capable of surviving in ecotopes with high insolation.  相似文献   

14.
In this study we analyse several aspects of cytoplasmic RNA silencing by agroinfiltration of DNA constructs encoding single- and double-stranded RNAs derived from a GFP transgene and from the endogenous Virp1 gene. Both types of inductors resulted after 2–4 days in much higher concentration of siRNAs in the agroinfiltrated zone than normally seen during systemic silencing. More specifically, infiltration of two transgene hairpin constructs resulted in elevated levels of siRNAs. However, differences between the two constructs were observed: the antisense–sense arrangement was more effective than the sense–antisense order. For both double-stranded forms, we observed a relative increase of the 24-mer size class of siRNAs. When a comparable hairpin construct of the endogenous Virp1 gene was assayed, the portion of the 24-mer siRNA class remained low as observed for all kinds of single-stranded inducers. The lack of increase of Virp1-derived 24-mers was independent of the expression level, as demonstrated by agroinfiltration into a transgenic plant that overexpressed Virp1 and showed the same pattern. Using transducer constructs, we could detect within a week transitive silencing from GFP to GUS sequences in the infiltrated zone and in either direction 5′–3′ and 3′–5′. Conversely, for the endogenous Virp1 gene neither transitive silencing nor the induction of systemic silencing could be observed. These results are discussed in view of the current models of RNA silencing.  相似文献   

15.
We have previously reported the graft transmission of target specificity for RNA silencing using transgenic Nicotiana benthamiana plants expressing the coat protein gene (CP, including the 3′ non-translated region) of Sweet potato feathery mottle virus. Transgenic plants carrying the 5′ 200 and 400 bp regions of CP were newly produced. From these plants, two silenced and two non-silenced lines were selected to investigate the manifestation of transitive RNA silencing by graft experiments. Non-silenced scions carrying the entire transgene were grafted onto either 5′ or 3′ silencing inducer rootstocks. When non-silenced scions were grafted onto 5′ silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions and spread toward the 3′ region of the transgene mRNA. Similarly, when non-silenced scions were grafted onto 3′ silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions, but was restricted to the 3′ region of the transgene and did not spread to the 5′ region. In addition, results from crossing experiments, involving non-silenced and 3′ silencing inducer plants, confirmed the above finding. This indicates that RNA silencing spreads in the 5′–3′ direction, not in the 3′–5′ direction, along the transgene mRNA.  相似文献   

16.
Simultaneous measurements of chlorophyll (Chl) fluorescence and CO2 assimilation (A) in Vicia faba leaves were taken during the first weeks of growth to evaluate the protective effect of 24-epibrassinolide (EBR) against damage caused by the application of the herbicide terbutryn (Terb) at pre-emergence. V. faba seeds were incubated for 24 h in EBR solutions (2 × 10−6 or 2 × 10−5 mM) and immediately sown. Terb was applied at recommended doses (1.47 or 1.96 kg ha−1) at pre-emergence. The highest dose of Terb strongly decreased CO2 assimilation, the maximum quantum yield of PSII photochemistry in the dark-adapted state (F V/F M), the nonphotochemical quenching (NPQ), and the effective quantum yield (ΔF/FM) during the first 3–4 weeks after plant emergence. Moreover, Terb increased the basal quantum yield of nonphotochemical processes (F 0/F M), the degree of reaction center closure (1 − q p), and the fraction of light absorbed in PSII antennae that was dissipated via thermal energy dissipation in the antennae (1 − FV/FM). The herbicide also significantly reduced plant growth at the end of the experiment as well as plant length, dry weight, and number of leaves. The application of EBR to V. faba seeds before sowing strongly diminished the effect of Terb on fluorescence parameters and CO2 assimilation, which recovered 13 days after plant emergence and showed values similar to those of control plants. The protective effect of EBR on CO2 assimilation was detected at a photosynthetic photon flux density (PFD) of 650 μmol m−2 s−1 and the effect on ΔF/FM and photosynthetic electron transport (J) was detected under actinic lightings up to 1750 μmol m−2 s−1. The highest dose of EBR also counteracted the decrease in plant growth caused by Terb, and plants registered the same growth values as controls.  相似文献   

17.
Sulfite-oxidizing enzyme activities were analyzed in cell-free extracts of aerobically grown cells of Acidianus ambivalens, an extremely thermophilic and chemolithoautotrophic archaeon. In the membrane and cytoplasmic fractions, two distinct enzyme activities were found. In the membrane fraction, a sulfite:acceptor oxidoreductase activity was found [530 mU (mg protein)–1; apparent K m for sulfite, 3.6 mM]. In the cytoplasmic fraction the following enzyme activities were found and are indicative of an oxidative adenylylsulfate pathway: adenylylsulfate reductase [138 mU (mg protein)–1], adenylylsulfate:phosphate adenyltransferase [“ADP sulfurylase”; 86 mU (mg protein)–1], adenylate kinase [650 mU (mg protein)–1], and rhodanese [thiosulfate sulfur transferase, 9.2 mU (mg protein)–1]. In addition, 5′,5′′′-P1,P4-di(adenosine-5′) tetraphosphate (Ap4A) synthase and Ap4A pyrophosphohydrolase activities were detected. Received: 17 August 1998 / Accepted: 29 April 1999  相似文献   

18.
A Gram-staining-negative, motile, non-spore-forming and rod-shaped bacterial strain, 20-23RT, was isolated from intestine of bensasi goatfish, Upeneus bensasi, and its taxonomic position was investigated by using a polyphasic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 20-23RT belonged to the genus Shewanella. Strain 20-23RT exhibited 16S rRNA gene sequence similarity values of 99.5, 99.2, and 97.5% to Shewanella algae ATCC 51192T, Shewanella haliotis DW01T, and Shewanella chilikensis JC5T, respectively. Strain 20-23RT exhibited 93.1–96.0% 16S rRNA gene sequence similarity to the other Shewanella species. It also exhibited 98.3–98.4% gyrB sequence similarity to the type strains of S. algae and S. haliotis. Strain 20-23RT contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-8 and Q-7. The fatty acid profiles of strain 20–23RT, S. algae KCTC 22552T and S. haliotis KCTC 12896T were similar; major components were iso-C15:0, C16:0, C16:1 ω7c and/or iso-C15:0 2-OH and C17:1 ω8c. The DNA G+C content of strain 20-23RT was 53.9 mol%. Differential phenotypic properties and genetic distinctiveness of strain 20–23RT, together with the phylogenetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain 20-23RT represents a novel species of the genus Shewanella, for which the name Shewanella upenei sp. nov. is proposed. The type strain is 20–23RT (=KCTC 22806T =CCUG 58400T).  相似文献   

19.
Nitraria retusa and Atriplex halimus (xero-halophytes) plants were grown in the range 0–800 mM NaCl while Medicago arborea (glycophyte) in 0–300 mM NaCl. Salt stress caused a marked decrease in osmotic potential and a significant accumulation of Na+ and Cl in leaves of both species. Moderate salinity had a stimulating effect on growth rate, net CO2 assimilation, transpiration and stomatal conductance for the xero-halophytic species. At higher salinities, these physiological parameters decreased significantly, and their percentages of reduction were higher in A. halimus than in N. retusa whereas, in M. arborea they decreased linearly with salinity. Nitraria retusa PSII photochemistry and carotenoid content were unaffected by salinity, but a reduction in chlorophyll content was observed at 800 mM NaCl. Similar results were found in A. halimus, but with a decrease in the efficiency of PSII (F′v/F′m) occurred at 800 mM. Conversely, in M. arborea plants we observed a significant reduction in pigment concentrations and chlorophyll fluorescence parameters. The marked toxic effect of Na+ and/or Cl observed in M. arborea indicates that salt damage effect could be attributed to ions’ toxicity, and that the reduction in photosynthesis is most probably due to damages in the photosynthetic apparatus rather than factors affecting stomatal closure. For the two halophyte species, it appears that there is occurrence of co-limitation of photosynthesis by stomatal and non-stomatal factors. Our results suggest that both N. retusa and A. halimus show high tolerance to both high salinity and photoinhibition while M. arborea was considered as a slightly salt tolerant species.  相似文献   

20.
T-DNA integration and stability were assessed in Agrobacterium-derived transgenic lettuce lines carrying a chimaeric CaMV 35S promoter-driven gus-intron gene and a chimaeric nos.nptII.nos gene. T-DNA integration was predominantly complex in transgenic plants derived from an A. tumefaciens strain carrying the supervirulent plasmid ToK47. Truncation of the right side of the T-DNA was observed in first seed generation R1 plants from one line. Complex T-DNA integration patterns did not always correlate with low transgene expression. Despite a high T-DNA copy number, ca. 30% of the lines analysed showed high transgene expression in the R1 generation. High transgene expression was stable at least to the R4 seed generation in selected high-expressing lines. Transgene expression was lost in the R2 generation in a low expressing line, while complete, heritable transgene silencing from the R0 to R2 generations was also observed in another line. A 50-fold variation in -glucuronidase (GUS) activity and a 16-fold variation in NPTII protein content were observed between R1 plants derived from different R0 parents. Reactivation of transgene expression with 5-azacytidine in partially silenced lines indicated that low expression was associated with DNA methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号