首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Infection of C57BL/6 mice with Toxoplasma gondii leads to chronic encephalitis characterized by infiltration into the brain of T cells that produce IFN-gamma and mediate resistance to the parasite. Our studies revealed that expression of B7.1 and B7.2 was up-regulated in brains of mice with toxoplasmic encephalitis (TE). Because CD28/B7-mediated costimulation is important for T cell activation, we assessed the contribution of this interaction to the production of IFN-gamma by T cells from brains and spleens of mice with TE. Stimulation of splenocytes with Toxoplasma Ag or anti-CD3 mAb resulted in production of IFN-gamma, which was inhibited by 90% in the presence of CTLA4-Ig, an antagonist of B7 stimulation. However, production of IFN-gamma by T cells from the brains of these mice was only slightly reduced (20%) by the addition of CTLA4-Ig. To address the role of the CD28/B7 interaction during TE, we compared the development of disease in C57BL/6 wild-type (wt) and CD28-/- mice. Although the parasite burden was similar in wt and CD28-/- mice, CD28-/- mice developed less severe encephalitis and survived longer than wt mice. Ex vivo recall responses revealed that mononuclear cells isolated from the brains of chronically infected CD28-/- mice produced less IFN-gamma than wt cells, and this correlated with reduced numbers of intracerebral CD4+ T cells in CD28-/- mice compared with wt mice. Taken together, our data show that resistance to T. gondii in the brain is independent of CD28 and suggest a role for CD28 in development of immune-mediated pathology during TE.  相似文献   

2.
Toxoplasma gondii is an important cause of disease of the central nervous system in patients with AIDS. Among the variety of immunologic disorders encountered by AIDS patients is a depletion of CD4+ subpopulation of lymphocytes. In order to determine the role of this population of T lymphocytes in the generation of toxoplasmic encephalitis, mice chronically infected with T. gondii were treated with mAb GK1.5 directed against the cell surface glycoprotein L3T4 (CD4) of T lymphocytes. Histopathologic sections of brains of control and treated animals were examined at regular intervals during and after completion of treatment. The results demonstrated significantly less inflammation in brains of mice during treatment with GK1.5 mAb. In addition, recrudescence of the inflammatory process occurred after discontinuation of treatment. Similar results were observed in experiments in which different strains of mice and T. gondii were used.  相似文献   

3.
The role of B cells in resistance against Toxoplasma gondii was studied using B cell-deficient (muMT) mice. Following peroral infection with 10 cysts of the ME49 strain, all muMT mice survived the acute stage of the infection but died between 3 and 4 wk after infection. In contrast, all control mice were alive at 8 wk after infection. At the stage during which muMT animals succumbed to the infection, parasite replication and pathology were most evident in their brains; small numbers of tachyzoites were also detectable in their lungs. Significantly greater numbers of T. gondii cysts and areas of inflammation associated with tachyzoites were observed in brains of muMT than in control mice. Large areas of necrosis associated with numerous tachyzoites were observed only in brains of muMT mice. Anti-T. gondii IgG Abs were detected only in sera of control mice, whereas similar levels of IFN-gamma were detected in sera of both strains of mice. Amounts of mRNA for IFN-gamma, IL-10, and inducible NO synthase in the brain did not differ between infected muMT and control mice. Expression of mRNA for TNF-alpha was increased in brains of muMT mice. Administration of polyclonal rabbit anti-T. gondii IgG Ab prevented early mortality and pathology associated with tachyzoites in the brain in the infected muMT mice. These results indicate that B cells play an important role, most likely through their production of specific Abs, in resistance to persistent active (tachyzoite) infection with T. gondii in mice, especially in the brain and lung.  相似文献   

4.
Following infection with Toxoplasma gondii, certain strains of mice, such as BALB/c, are genetically resistant to development of toxoplasmic encephalitis (TE) and establish a latent chronic infection as do humans. Thus, these animals appear to be a suitable model to analyze the mechanism of resistance to TE. Since the mechanism for their genetic resistance is unknown, we examined the role of interferon-gamma (IFN-gamma) tumor necrosis factor-alpha (TNF-alpha) and inducible nitric oxide synthase (iNOS) in the resistance using BALB/c-background IFN-gamma-deficient (IFN-gamma(-/-)) mice. IFN-gamma(-/-) and control mice were infected with the ME49 strain of T. gondii and treated with sulfadiazine to establish chronic infection. After discontinuing sulfadiazine, the IFN-gamma(-/-) mice all died, whereas the control mice all survived. Histological studies revealed remarkable inflammatory changes associated with large numbers of tachyzoites in brains of the IFN-gamma(-/-) mice but not in the control mice after discontinuation of sulfadiazine. Large amounts of mRNA for tachyzoite-specific SAG1 were detected in brains of only the IFN-gamma(-/-) mice. IFN-gamma mRNA was detected in brains of only the control mice, whereas mRNA for TNF-alpha and iNOS were detected in brains of both strains of mice. The amounts of the mRNA for TNF-alpha and iNOS did not differ between these mice. Treatment of IFN-gamma(-/-) mice with recombinant IFN-gamma prevented development of TE. These results demonstrate that IFN-gamma is crucial for genetic resistance of BALB/c mice against TE and that TNF-alpha and iNOS are insufficient to prevent TE in the absence of IFN-gamma.  相似文献   

5.
C57BL/6 mice chronically infected with an avirulent strain (ME-49) of Toxoplasma gondii were used to study the mechanisms by which T lymphocytes and IFN-gamma prevent reactivation of latent infection. Infected animals were treated with mAb, either anti-CD8, anti-CD4, anti-CD4 plus anti-CD8, anti-IFN-gamma, or anti-CD4 plus anti-IFN-gamma and the mice followed for survival, histopathology, cyst numbers, and spleen cell cytokine responses. In agreement with previously published findings, treatment with anti-IFN-gamma antibodies fully reactivated the asymptomatic infection, inducing massive necrotic areas in the brain with the appearance of free tachyzoites and death of all animals within 2 wk. Mice treated with the combination of anti-CD4 plus anti-CD8 antibodies showed augmented pathology and mortality nearly identical to the anti-IFN-gamma- treated animals. In contrast, treatment with anti-CD4 or anti-CD8 mAb alone failed to result in significantly enhanced brain pathology or mortality. In additional experiments, full reactivation of infection was observed in mice treated with anti-CD4 plus anti-IFN-gamma indicating that CD4+ lymphocytes are not required for the pathology resulting from IFN-gamma neutralization. Cytokine measurements on parasite Ag-stimulated spleen cells from mAb-treated mice indicated that both CD4+ and CD8+ cells produce IFN-gamma whereas only CD4+ cells contribute to parasite Ag-induced IL-2 synthesis. Together, these results suggest that CD4+ and CD8+ lymphocytes act additively or synergistically to prevent reactivation of chronic T. gondii infection probably through the production of IFN-gamma.  相似文献   

6.
We have identified a novel 529bp fragment that is repeated 200- to 300-fold in the genome of Toxoplasma gondii. This 529bp fragment was utilised for the development of a very sensitive and specific PCR for diagnostic purposes, and a quantitative competitive-PCR for the evaluation of cyst numbers in the brains of chronically infected mice. The 529bp fragment was found in all 60 strains of T. gondii tested, and it discriminates DNA of T. gondii from that of other parasites. Toxoplasma gondii DNA was detected in amniotic fluid of patients, as well as in various tissues from infected mice. Polymerase chain reaction with the 529bp fragment was more sensitive than with the 35-copy B1 gene. For the quantitative competitive-PCR, a 410-bp competitor molecule was co-amplified with similar efficiency as the 529bp fragment. Quantitative competitive-PCR produced a linear relationship between the relative amounts of PCR product and the number of tachyzoites in the range of 10(2)-10(4) tachyzoites and 100-3000 tissue cysts. A highly significant correlation between visual counting of brain cysts and quantitative competitive-PCR was obtained in mice chronically infected with Toxoplasma. Thus, quantitative competitive-PCR with the 529bp fragment can be used as an alternative for the tedious visual counting of brain cysts in experimental animals. With the quantitative competitive-PCR, furthermore, we could confirm the copy number of the 529bp fragment in tachyzoites and estimate the number of bradyzoites per cyst.  相似文献   

7.
We previously reported the requirement of interferon-gamma (IFN-gamma) expression by cells other than T and natural killer (NK) cells in the brain, in addition to T cells, for prevention of toxoplasmic encephalitis following infection with Toxoplasma gondii. In the present study, we analysed the identity of the IFN-gamma-producing non-T, non-NK cells in the brain using infected athymic nude and SCID mice that lack T cells but express IFN-gamma in their brains. Intracellular staining for IFN-gamma followed by flow cytometry revealed that approximately 45-60% of the cells expressing IFN-gamma in their brains were positive for CD11b or F4/80 on their surfaces. Smaller portions of the cells were positive for pan-NK marker. Further smaller portions were positive for CD11c, and these cells were less than 5% of the IFN-gamma-expressing cells in brains of infected SCID mice. In addition to IFN-gamma proteins, large amounts of mRNA for IFN-gamma were detected in CD11b+ cells purified from brains of infected mice, but it was not the case in the cells obtained from uninfected animals. In infected SCID mice depleted of NK cells by treatment with anti-asialo-GM1 antibody, cells expressing IFN-gamma in their brains were all positive for CD11b, and the IFN-gamma-producing cells were detected in both CD45low and CD45high populations. These results suggest that CD11b+ CD45low microglia and CD11b+ CD45high blood-derived macrophages are the major non-T, non-NK cells which express IFN-gamma in the brain of mice infected with T. gondii.  相似文献   

8.
Toxoplasma gondii is an intra-cellular parasite that infects humans through vertical and horizontal transmission. The cysts remain dormant in the brain of infected humans and can reactivate in immunocompromised hosts resulting in acute toxoplasmic encephalitis which may be fatal. We determined the onset and progression of brain cysts generation in a mouse model following acute toxoplasmosis as well as the ability of brain cysts to reactivate in vitro. Male Balb/c mice, (uninfected control group, n = 10) were infected orally (study group, n = 50) with 1000 tachyzoites of T. gondii (ME49 strain) and euthanized at 1, 2, 4, 8 and 16 weeks post infection. Brain tissue was harvested, homogenized, stained and the number of brain cysts counted. Aliquots of brain homogenate with cysts were cultured in vitro with confluent Vero cells and the number of cysts and tachyzoites counted after 1 week. Brain cysts but not tachyzoites were detected at week 2 post infection and reached a plateau by week 4. In vitro Vero cells culture showed similar pattern for cysts and tachyzoites and reactivation of cyst in vitro was not influenced by the age of the brain cysts.  相似文献   

9.
The peroxidase anti-peroxidase immunocytochemical staining method was used to identify Toxoplasma antigen in paraffin embedded sections of the brains of 22 mice congenitally infected with the parasite. Intact Toxoplasma tissue cysts were readily demonstrated in the brain in all cases. In 4 of the 22 infected mice there was evidence of rupture of the cyst wall and/or presence of extra-cystic Toxoplasma antigen. Further support for the extra-cystic location of Toxoplasma antigen was obtained by electron microscopy of reprocessed tissue which revealed endozoites in the area immediately surrounding a ruptured cyst. The possible implications of these findings in relation to the pathogenesis of congenital toxoplasmic meningo-encephalitis are discussed.  相似文献   

10.
Toxoplasma gondii forms different life stages, fast-replicating tachyzoites and slow-growing bradyzoites, in mammalian hosts. CD8 T cells are of crucial importance in toxoplasmosis, but it is unknown which parasite stage is recognized by CD8 T cells. To analyze stage-specific CD8 T cell responses, we generated various recombinant Toxoplasma gondii expressing the heterologous Ag beta-galactosidase (beta-gal) and studied whether 1) secreted or cytoplasmic Ags and 2) tachyzoites or bradyzoites, which persist intracerebrally, induce CD8 T cells. We monitored the frequencies and kinetics of beta-gal-specific CD8 T cells in infected mice by MHC class I tetramer staining. Upon oral infection of B6C (H-2(bxd)) mice, only beta-gal-secreting tachyzoites induced beta-gal-specific CD8 T cells. However, upon secondary infection of mice that had received a primary infection with tachyzoites secreting beta-gal, beta-gal-secreting tachyzoites and bradyzoites transiently increased the frequency of intracerebral beta-gal-specific CD8 T cells. Frequencies of splenic and cerebral beta-gal-specific CD8 T cells peaked at day 23 after infection, thereafter persisting at high levels in the brain but declining in the spleen. Splenic and cerebral beta-gal-specific CD8 T cells produced IFN-gamma and were cytolytic upon specific restimulation. Thus, compartmentalization and stage specificity of an Ag determine the induction of CD8 T cells in toxoplasmosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号