首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The effects of dietary phytochemicals on P-glycoprotein function were investigated using human multidrug-resistant carcinoma KB-C2 cells and the fluorescent P-glycoprotein substrates daunorubicin and rhodamine 123. The effects of natural chemopreventive compounds, capsaicin found in chilli peppers, curcumin in turmeric, [6]-gingerol in ginger, resveratrol in grapes, sulforaphane in broccoli, 6-methylsulfinyl hexyl isothiocyanate (6-HITC) in Japanese horseradish wasabi, indole-3-carbinol (I3C) in cabbage, and diallyl sulfide and diallyl trisulfide in garlic, were examined. The accumulation of daunorubicin in KB-C2 cells increased in the presence of capsaicin, curcumin, [6]-gingerol, and resveratrol in a concentration-dependent manner. The accumulation of rhodamine 123 in KB-C2 cells was also increased, and the efflux of rhodamine 123 from KB-C2 cells was decreased by these phytochemicals. Sulforaphane, 6-HITC, I3C, and diallyl sulfide and diallyl trisulfide had no effect. These results suggest that dietary phytochemicals, such as capsaicin, curcumin, [6]-gingerol, and resveratrol, have inhibitory effects on P-glycoprotein and potencies to cause drug-food interactions.  相似文献   

2.
Many studies have been performed with the aim of developing effective resistance modulators to overcome the multidrug resistance (MDR) of human cancers. Potent MDR modulators are being investigated in clinical trials. Many current studies are focused on dietary herbs due to the fact that these have been used for centuries without producing any harmful side effects. In this study, the effect of tetrahydrocurcumin (THC) on three ABC drug transporter proteins, P-glycoprotein (P-gp or ABCB1), mitoxantrone resistance protein (MXR or ABCG2) and multidrug resistance protein 1 (MRP1 or ABCC1) was investigated, to assess whether an ultimate metabolite form of curcuminoids (THC) is able to modulate MDR in cancer cells. Two different types of cell lines were used for P-gp study, human cervical carcinoma KB-3-1 (wild type) and KB-V-1 and human breast cancer MCF-7 (wild type) and MCF-7 MDR, whereas, pcDNA3.1 and pcDNA3.1-MRP1 transfected HEK 293 and MXR overexpressing MCF7AdrVp3000 or MCF7FL1000 and its parental MCF-7 were used for MRP1 and MXR study, respectively. We report here for the first time that THC is able to inhibit the function of P-gp, MXR and MRP1. The results of flow cytometry assay indicated that THC is able to inhibit the function of P-gp and thereby significantly increase the accumulation of rhodamine and calcein AM in KB-V-1 cells. The result was confirmed by the effect of THC on [3H]-vinblastine accumulation and efflux in MCF-7 and MCF-7MDR. THC significantly increased the accumulation and inhibited the efflux of [3H]-vinblastine in MCF-7 MDR in a concentration-dependent manner. This effect was not found in wild type MCF-7 cell line. The interaction of THC with the P-gp molecule was clearly indicated by ATPase assay and photoaffinity labeling of P-gp with transport substrate. THC stimulated P-gp ATPase activity and inhibited the incorporation of [125I]-iodoarylazidoprazosin (IAAP) into P-gp in a concentration-dependent manner. The binding of [125I]-IAAP to MXR was also inhibited by THC suggesting that THC interacted with drug binding site of the transporter. THC dose dependently inhibited the efflux of mitoxantrone and pheophorbide A from MXR expressing cells (MCF7AdrVp3000 and MCF7FL1000). Similarly with MRP1, the efflux of a fluorescent substrate calcein AM was inhibited effectively by THC thereby the accumulation of calcein was increased in MRP1-HEK 293 and not its parental pcDNA3.1-HEK 293 cells. The MDR reversing properties of THC on P-gp, MRP1, and MXR were determined by MTT assay. THC significantly increased the sensitivity of vinblastine, mitoxantrone and etoposide in drug resistance KB-V-1, MCF7AdrVp3000 and MRP1-HEK 293 cells, respectively. This effect was not found in respective drug sensitive parental cell lines. Taken together, this study clearly showed that THC inhibits the efflux function of P-gp, MXR and MRP1 and it is able to extend the MDR reversing activity of curcuminoids in vivo.  相似文献   

3.
Overexpression of drug efflux transporters is commonly associated with multidrug-resistance in cancer therapy. Here for the first time, we investigated the ability of diindolylmethane (DIM), a dietary bioactive rich in cruciferous vegetables, in enhancing the efficacy of Centchroman (CC) by modulating the drug efflux transporters in human breast cancer cells. CC is a selective estrogen receptor modulator, having promising therapeutic efficacy against breast cancer. The combination of DIM and CC synergistically inhibited cell proliferation and induced apoptosis in breast cancer cells. This novel combination has also hindered the stemness of human breast cancer cells. Molecular docking analysis revealed that DIM had shown a strong binding affinity with the substrate-binding sites of ABCB1 (P-gp) and ABCC1 (MRP1) drug-efflux transporters. DIM has increased the intracellular accumulation of Hoechst and Calcein, the substrates of P-gp and MRP1, respectively, in breast cancer cells. Further, DIM stimulates P-gp ATPase activity, which indicates that DIM binds at the substrate-binding domain of P-gp, and thereby inhibits its efflux activity. Intriguingly, DIM enhanced the intracellular concentration of CC by inhibiting the P-gp and MRP1 expression as well as activity. The intracellular retaining of CC has increased its efficacy against breast cancer. Overall, DIM, a dietary bioactive, enhances the anticancer efficiency of CC through modulation of drug efflux ABC-transporters in breast cancer cells. Therefore, DIM-based nutraceuticals and functional foods can be developed as adjuvant therapy against human breast cancer.  相似文献   

4.
Hematopoietic stem cells show reduced staining with a mitochondrial fluorescent dye, rhodamine 123 (Rh-123), which was supposed to indicate decreased mitochondrial activity in these cells. Rh123 and several other fluorescent dyes are substrates for transport mediated by P-glycoprotein (P-gp), an efflux pump responsible for multidrug resistance in tumor cells. We have found that staining of human bone marrow cells with fluorescent dyes is potentiated by P-gp inhibitors and inversely correlated with P-gp expression. P-gp is expressed in practically all hematopoietic progenitor cells, including long-term culture-initiating cells. The highest levels of P-gp among the progenitors are associated with cells displaying characteristics of pluripotent stem cells. These results have implications for stem cell purification and bone marrow resistance to cancer chemotherapy.  相似文献   

5.
The (−)- and (+)-clausenamide (CLA) enantiomers have different pharmacokinetic effects in animals, but their association with putative stereoselective regulation of P-glycoprotein (P-gp) remains unclear. Using three cells expressing P-gp—Caco-2, KBv and rat brain microvessel endothelial cells(RBMEC), this study investigated the association of CLA enantiomers with P-gp. The results showed that the rhodamine 123 (Rh123) accumulation, an indicator of P-gp activity, in Caco-2, KBv and RBMECs was increased by (−)CLA (1 or 5 μmol/L) at 8.2%–28.5%, but reduced by (+)CLA at 11.7%–25.9%, showing stereoselectivity in their regulation of P-gp activity. Following co-treatment of these cells with each CLA enantiomer and verapamil as a P-gp inhibitor, the (+)-isomer clearly antagonized the inhibitory effects of verapamil on P-gp efflux, whereas the (−)-isomer had slightly synergistic or additive effects. When higher concentrations (5 or 10 μmol/L) of CLA enantiomers were added, the stimulatory effects of the (+)-isomer were converted into inhibitory ones, leading to an enhanced intracellular uptake of Rh123 by 24.5%–58.2%; but (−)-isomer kept its inhibition to P-gp activity, causing 30.0%–63.0% increase in the Rh123 uptake. The biphasic effects of (+)CLA were confirmed by CLA uptake in the Caco-2 cells. (+)CLA at 1 μmol/L had significantly lower intracellular uptake than (−)CLA with a ratio[(−)/(+)] of 2.593, which was decreased to 2.167 and 1.893 after CLA concentrations increased to 2.5 and 5 μmol/L. Besides, in the non-induced KB cells, (+)CLA(5 μmol/L) upregulated P-gp expression at 54.5% relative to vehicle control, and decreased Rh123 accumulation by 28.2%, while (−)CLA(5 μmol/L) downregulated P-gp expression at 15.9% and increased Rh123 accumulation by 18.0%. These results suggested that (−)CLA could be a P-gp inhibitor and (+)CLA could be a modulator with concentration-dependent biphasic effects on P-gp activity, which may result in drug—drug interactions when combined with other P-gp substrate drugs.  相似文献   

6.
《Phytomedicine》2014,21(8-9):1110-1119
The overexpression of ABC transporters is a common reason for multidrug resistance (MDR) in cancer cells. In this study, we found that the isoquinoline alkaloids tetrandrine and fangchinoline from Stephania tetrandra showed a significant synergistic cytotoxic effect in MDR Caco-2 and CEM/ADR5000 cancer cells in combination with doxorubicin, a common cancer chemotherapeutic agent. Furthermore, tetrandrine and fangchinoline increased the intracellular accumulation of the fluorescent P-glycoprotein (P-gp) substrate rhodamine 123 (Rho123) and inhibited its efflux in Caco-2 and CEM/ADR5000 cells. In addition, tetrandrine and fangchinoline significantly reduced P-gp expression in a concentration-dependent manner. These results suggest that tetrandrine and fangchinoline can reverse MDR by increasing the intracellular concentration of anticancer drugs, and thus they could serve as a lead for developing new drugs to overcome P-gp mediated drug resistance in clinic cancer therapy.  相似文献   

7.
白血病耐药细胞系U937/ADR的建立及其生物学性状   总被引:1,自引:0,他引:1  
目的:建立白血病耐药细胞系U937/ADR模型,并检测其多药耐药相关基因及其生物学性状的改变。方法:以大剂量阿霉素(IC50浓度),短时间(2h)暴露法诱导人白血病细胞系U937细胞的阿霉素耐药性。检测细胞的生长曲线,计算阿霉素耐药倍数,流式细胞术分析细胞周期分布;罗丹明123检测药物外排功能;荧光定量PCR(FQ-PCR)检测MDR1、MRP1、NF-Κb、Bcl-2、Bax mRNA水平变化;Western blot 检测Akt、p-Akt、P65、P-gp、MRP1和Bcl-2蛋白水平变化。结果:成功构建耐阿霉素U937/ADR细胞系,对阿霉素耐药指数为亲代U937细胞的11倍,U937/ADR群体倍增时间为43.6h,高于亲代细胞8.9h;流式细胞分析显示与U937细胞相比,U937/ADR的G0/G1期细胞增多,而G2/M期细胞减少。并对多种化疗药物产生交叉耐药性。罗丹明123外排试验显示,U937/ADR细胞外排明显增加。U937/ADR细胞MDR1、NF-Κb、Bcl-2 mRNA表达水平明显增加,P-gp及p-Akt、P65表达水平增加。结论:成功构建的U937/ADR细胞系其生物学特性明显不同与亲代U937细胞,对多种化疗药物产生多药耐药,高表达多药耐药蛋白P-gp,同时激活p-Akt及NF-Kb。  相似文献   

8.
Characterization of rhodamine 123 as functional assay for MDR has been primarily focused on P-glycoprotein-mediated MDR. Several studies have suggested that Rh123 is also a substrate for MRP1. However, no quantitative studies of the MRP1-mediated efflux of rhodamines have, up to now, been performed. Measurement of the kinetic characteristics of substrate transport is a powerful approach to enhancing our understanding of their function and mechanism. In the present study, we have used a continuous fluorescence assay with four rhodamine dyes (rhodamine 6G, tetramethylrosamine, tetramethylrhodamine ethyl ester, and tetramethylrhodamine methyl ester) to quantify drug transport by MRP1 in living GLC4/ADR cells. The formation of a substrate concentration gradient was observed. MRP1-mediated transport of rhodamine was glutathione-dependent. The kinetics parameter, k(a) = V(M)/k(m), was very similar for the four rhodamine analogs but approximately 10-fold less than the values of the same parameter determined previously for the MRP1-mediated efflux of anthracycline. The findings presented here are the first to show quantitative information about the kinetics parameters for MRP1-mediated efflux of rhodamine dyes.  相似文献   

9.
Lapatinib, a tyrosine kinase inhibitor, is used in the treatment of advanced or metastatic breast cancer overexpressing human epidermal receptor 2 (HER2). Lapatinib can modulate the function of ATP-binding cassette (ABC) transporters (ABCB1 and ABCG2), which are the major mechanism responsible for multidrug resistance (MDR) in cancer. In this study, we investigated the effect of lapatinib on multidrug resistance–associated protein 1 (MRP1 [ABCC1]), MRP2 (ABCC2), MRP4 (ABCC4) and lung relative resistance protein (LRP) drug efflux pumps. We demonstrated that lapatinib could enhance the efficacy of conventional chemotherapeutic agents in MRP1-overexpressing cells in vitro and in vivo, but no effect in MRP2-, MPR4- and LRP-overexpressing cells. Furthermore, lapatinib significantly increased the accumulation of rhodamine 123 (Rho123) and doxorubicin (DOX) in MRP1-overexpressing cells. However, lapatinib did not alter the protein or mRNA expression levels of MRP1. Further studies showed that the level of phosphorylation of AKT and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) were not altered at the indicated concentrations of lapatinib. In conclusion, lapatinib enhanced the efficacy of conventional chemotherapeutic agents in MRP1-overexpressing cells by inhibiting MRP1 transport function without altering the level of AKT or ERK1/2 phosphorylation. These findings will encourage the clinical research of lapatinib combined with conventional chemotherapeutic drugs in MRP1-overexpressing cancer patients.  相似文献   

10.
Multidrug resistance (MDR), which is a significant impediment to the success of cancer chemotherapy, is attributable to the overexpression of membrane transport proteins, such as P-glycoprotein (P-gp), resulting in an increased drug efflux. In this study, we show that the histone deacetylase (HDAC) inhibitor apicidin leads to resistance of HeLa cells to paclitaxel through the induction of P-gp expression. Furthermore, apicidin dramatically increases the release of a fluorescent P-gp substrate, rhodamine 123, from cells. In parallel, apicidin resistance to the apoptotic potential of paclitaxel is associated with induction of P-gp expression in HeLa cells, as evidenced by specific inhibition of P-gp function using either the pharmacological inhibitor verapamil or RNA silencing. We also demonstrate the contribution of apicidin-induced functional P-gp expression to drug resistance using KB cells. Failure of P-gp induction by apicidin does not reverse paclitaxel-induced cytotoxicity in the cells. Although HDAC inhibitors are widely appreciated as a new class of anti-tumor agent, our findings clearly demonstrate that apicidin treatment may lead to P-gp-mediated resistance to other anti-tumor agents, suggesting a need for careful design of clinical applications using HDAC inhibitors.  相似文献   

11.
12.
Overexpression of P-glycoprotein (P-gp) is one of the major obstacles to successful cancer chemotherapy. In this study, we examined the ability of 4-chloro-N-(3-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)phenyl)benzamide (C-4) to reverse multidrug resistance (MDR) in P-gp expressing KBV20C cells. Treatment of KBV20C cells with C-4 led to a dramatic increase in paclitaxel- or vincristine-induced cytotoxicity without any cytotoxicity by itself. In parallel, C-4 treatment caused an increase in apoptotic cell death by paclitaxel or vincristine. Furthermore, C-4 treatment significantly increases in intracellular accumulation of fluorescent P-gp substrate rhodamine 123, indicating that C-4 treatment leads to reversal of the MDR phenotype resulting from an increased accumulation of anticancer drugs by inhibiting drug efflux function of P-gp. This notion is further supported by the observation that C-4 treatment potentiates paclitaxel-induced G(2)/M arrest of the cell cycle. In addition, the drug efflux function of P-gp was reversibly inhibited by C-4 treatment, while the expression level of P-gp was not affected. Collectively, our results describe the potential of C-4 to reverse the P-gp-mediated MDR phenotype through reversible inhibition of P-gp function, which may make it an attractive new agent for the chemosensitization of cancer cells.  相似文献   

13.
Several fluorescent probes have been used in functional studies to analyze drug transport in multidrug-resistant cells by fluorescent microscopy. Because many of these molecules have some drawbacks, such as toxicity, nonspecific background, or accumulation in mitochondria, new fluorescent compounds have been proposed as more useful tools. Among these substances, Bodipy-FL-Verapamil, a fluorescent conjugate of the drug efflux blocker verapamil, has been used to study P-glycoprotein activity in different cell types. In this study we tested by fluorescent microscopy the accumulation of Bodipy-FL-Verapamil in cell lines that overexpress either P-glycoprotein (P-gp) or multidrug resistance-related protein 1 (MRP1). Expression of P-gp and MRP1 was evaluated at the mRNA level by RT-PCR technique and at the protein level by flow cytometric analysis using C219 and MRP-m6 monoclonal antibodies. Results indicate that Bodipy-FL-Verapamil is actually a substrate for both proteins. As a consequence, any conclusion about P-gp activity obtained by the use of Bodipy-FL-Verapamil as fluorescent tracer should be interpreted with caution.  相似文献   

14.
Euphorbia factor L1 (EFL1) belongs to diterpenoids of genus Euphorbia. In this article, its reversal activity against ABCB1-mediated MDR in KBv200 and MCF-7/adr cells was reported. However, EFL1 did not alter the sensitivity of KB and MCF-7 cells to chemotherapeutic agents. Meanwhile, EFL1 significantly increased accumulation of doxorubicin and rhodamine 123 in KBv200 and MCF-7/adr cells, showing no significant influence on that of KB and MCF-7 cells. Furthermore, EFL1 could enhance the ATP hydrolysis activity of ABCB1 stimulated by verapamil. At the same time, EFL1 inhibited the efflux of ABCB1 in KBv200 and MCF-7/adr cells. In addition, EFL1 did not downregulate expression of ABCB1 in KBv200 and MCF-7/adr cells either in mRNA or protein level.  相似文献   

15.
P-glycoprotein (P-gp) is a transmembrane protein that mediates the efflux of innumerous structurally unrelated compounds. It was initially found over-expressed in tumor cells, associated to a multidrug resistance phenotype (MDR). Then, P-gp was found constitutively expressed in excretory cells/tissues and in circulating cells, such as lymphocytes. Considering the importance of this transporter in the establishment of therapeutic protocols and the existence of contradictory results, this study aimed at evaluating the influence of aging in the expression and function of P-gp in human lymphocytes, comparing two different methodologies to assess both parameters. P-gp activity and expression were evaluated in lymphocytes isolated from whole blood samples of 65 healthy caucasian male donors, divided into two groups according to age (group 1: under 30-years old; group 2: above 60-years old). P-gp expression was assessed using the anti-P-gp monoclonal antibody, UIC2, in the presence and in absence of vinblastine (Vbl). P-gp activity was evaluated measuring the efflux rate of the fluorescent P-gp substrate rhodamine 123 (Rho 123) and also using UIC2 shift assay. Flow cytometric analysis was performed to assess all the proceedings. Furthermore, P-gp expression and each of the P-gp activity determination methods were compared, through correlation analysis and linear regression models. We observed a significant age-dependent increase in mean P-gp expression (p = 0.029), which was not reflected in the transporter's activity (p > 0.050). Statistical analysis allowed selection of UIC2 shift assay over Rho 123 efflux assay as a more selective method to assess P-gp activity. Despite the significant correlation between P-gp expression and P-gp activity found in lymphocytes (Gp1(group 1)-r = 0.609, p < 0.001; Gp2-r = 0.461, p = 0.012), using UIC2 shift assay, these data reinforce the need for P-gp activity assessment, rather than P-gp expression determination alone, when starting new therapeutic regimens with P-gp substrates, especially in men older than 60 years of age.  相似文献   

16.
P-glycoprotein (P-gp) is thought to mediate the transport of anti-cancer drugs and to be responsible for the multidrug-resistant (MDR) phenotype in tumor cells. However, the function of P-gp in normal tissues is still not well understood. We present evidence indicating that the active efflux of several structurally unrelated organic compounds is mediated by P-gp in multidrug-resistant KB (KB-C2) cells and that these compounds interact with P-gp in the kidney and adrenal gland. The photoactive radioactive calcium channel blocker [3H]azidopine labels a protein of approximately 140 kDa in crude membrane fractions from human kidney and adrenal gland and a 130-kDa protein from bovine adrenal gland. These photolabeled proteins are immunoprecipitated with an anti-P-gp antibody. Photolabeling is inhibited by vinblastine, reserpine, and several other organic chemicals. These data indicate that the kidney and adrenal gland express P-gp (or a protein closely related to P-gp) that can interact with several organic compounds and that the P-gp expressed in these tissues has a drug-binding site similar to that of P-gp in KB-C2 cells. Our findings thus strongly support the hypothesis that P-gp can transport a wide variety of organic chemicals as well as anti-cancer drugs and that one of the physiological functions of P-gp is the excretion of certain classes of organic compounds.  相似文献   

17.
BackgroundP-glycoprotein (P-gp) over-expression plays a vital role in not only systemic drug bioavailability but also cancer multi-drug resistance (MDR). Develop functional inhibitors of P-gp can conquer both problems.Purpose and study designThe aim of the present study was to research the P-gp modulating effects and MDR reversing ability of a novel flavonoid from Fissistigma cupreonitens, the underlying inhibitory mechanisms were further elucidated as well.MethodsCalcein-AM, rhodamine 123, and doxorubicin were fluorescent substrates for the evaluation of P-gp inhibitory function and detailed drug binding modes. Docking simulation was performed to reveal the in silico molecular bonding. ATPase assay and MDR1 shift assay were adopted to reveal the ATP consumption and conformational change of P-gp. The MDR reversing effects were demonstrated through cytotoxicity, cell cycle, and apoptosis analyses.Results5‑hydroxy‑7,8‑dimethoxyflavanone inhibited the efflux of rhodamine 123 and doxorubicin in a competitive manner, and increased the intracellular fluorescence of calcein at a concentration as low as 2.5 μg/ml. 5‑hydroxy‑7,8‑dimethoxyflavanone slightly changed P-gp's conformation and only stimulated ATPase at very high concentration (100 μg/ml). The docking results showed that 5‑hydroxy‑7,8‑dimethoxyflavanone and verapamil exhibited similar binding affinity to P-gp. The MDR reversing effects were prominent in the vincristine group, the reversal folds were 23.01 and 13.03 when combined with 10 μg/ml 5‑hydroxy‑7,8‑dimethoxyflavanone in the P-gp over-expressing cell line (ABCB1/Flp-In™-293) and MDR cancer cell line (KB/VIN), respectively.ConclusionThe present study demonstrated that 5‑hydroxy‑7,8‑dimethoxyflavanone was a novel effective flavonoid in the P-gp efflux inhibition and in vitro cancer MDR reversion.  相似文献   

18.
Multidrug resistance (MDR) is a major factor in the failure of chemotherapy in cancer patients. Resistance to chemotherapy has been correlated to the overexpression of ABC drug transporters including P-glycoprotein (P-gp) that actively efflux chemotherapeutic drugs from cancer cells. Our previous study showed that bitter melon (Momordica charantia) leaf extract (BMLE) was able to reverse the MDR phenotype by increasing the intracellular accumulation of chemotherapeutic drugs. In the present study, bioguided fractionation was used to identify the active component(s) of BMLE that is able to modulate the function of P-gp and the MDR phenotype in a human cervical carcinoma cell line (KB-V1). We found that kuguacin J, one of the active components in BMLE, increased sensitivity to vinblastine and paclitaxel in KB-V1 cells. A flow cytometry assay indicated that kuguacin J inhibits the transport function of P-gp and thereby significantly increases the accumulation of rhodamine 123 and calcein AM in the cells. These results were confirmed by [3H]-vinblastine transport assay. Kuguacin J significantly increases intracellular [3H]-vinblastine accumulation and decreased the [3H]-vinblastine efflux in the cells. Kuguacin J also inhibited the incorporation of [125I]-iodoarylazidoprazosin into P-gp in a concentration-dependent manner, indicating that kuguacin J directly interacts with the drug-substrate-binding site on P-gp. These results indicate that kuguacin J modulates the function of P-gp by directly interacting at the drug-substrate-binding site, and it appears to be an effective inhibitor of P-gp activity in vitro and thus could be developed as an effective chemosensitizer to treat multidrug-resistant cancers.  相似文献   

19.
Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of these transporters. Genistein (GNT) is a phytoestrogen abundant in soybean that exerts its genomic effects through Estrogen-Receptors and Pregnane-X-Receptor (PXR), which are involved in the regulation of the above-mentioned transporters. We evaluated the effect of GNT on the expression and activity of P-gp, MRP2, MRP3 and BCRP in HCC-derived HepG2 cells. GNT (at 1.0 and 10 μM) increased P-gp and MRP2 protein expression and activity, correlating well with an increased resistance to sorafenib cytotoxicity as detected by the methylthiazole tetrazolium (MTT) assay. GNT induced P-gp and MRP2 mRNA expression at 10 but not at 1.0 μM concentration suggesting a different pattern of regulation depending on the concentration. Induction of both transporters by 1.0 μM GNT was prevented by cycloheximide, suggesting translational regulation. Downregulation of expression of the miR-379 by GNT could be associated with translational regulation of MRP2. Silencing of PXR abolished P-gp induction by GNT (at 1.0 and 10 μM) and MRP2 induction by GNT (only at 10 μM), suggesting partial mediation of GNT effects by PXR. Taken together, the data suggest the possibility of nutrient-drug interactions leading to enhanced chemoresistance in HCC when GNT is ingested with soy rich diets or dietary supplements.  相似文献   

20.
The objective of this study was to examine effects of interleukin-6 (IL-6) on the expression and activity of the drug resistance transporters (MDR1 and MRP) in human hepatoma cell lines. Expression and activity of MDR1 and MRP transporters were examined in IL-6-treated and control HuH 7 and HepG2 cells using semi-quantitative RT-PCR analysis and by rhodamine 123 and 5-carboxyfluorescin efflux assays. Results from RT-PCR demonstrated expression of MRP3, MRP6, and MDR1 in HuH 7 cells and expression of MRP1, MRP2, MRP3, MRP6, and MDR1 in HepG2 cells. Compared with controls, treatment of HuH 7 cells with IL-6 (10 ng/mL, 24 h) resulted in a 1.8-fold increase in MRP-mediated efflux of 5-CF with a corresponding 1.5-fold induction of MRP3 mRNA levels (p < 0.05). Similarly, in HepG2 cells, a 2-fold increase in MRP functional activity and a 1.8-fold induction of MRP1 mRNA levels were seen in the IL-6 treated cells (p < 0.05). Treatment of cells with IL-6 was also found to cause significant reductions in the expression and activity of MDR1 in HuH 7 cells, but not in HepG2 cells. Our data suggest that IL-6 induces MRP expression and activity in human hepatoma cell lines. Suppressive effects of IL-6 on MDR1 expression and activity were also observed in HuH 7 cells. This underscores the importance of examining the regulation of multiple drug resistance proteins as these proteins may have opposing regulatory mechanisms in malignant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号