首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of patients diagnosed as schizophrenic with antipsychotic drugs (neuroleptics) is known to cause occasional unexplained depletion of white blood cells, especially neutrophil granulocytes. It has been known for many years that neuroleptics can interfere with the mitochondrial respiratory chain in vitro. Because there has been a growing interest recently in mitochondrial targeting of drugs, and since a quantitative structure-activity relationship (QSAR) model that predicts mitochondrial accumulation of neuroleptics has been published, we investigated the effects of neuroleptics on white blood cell mitochondria. Venous blood samples were collected from both patients undergoing treatment with neuroleptics and healthy volunteers. The samples were processed for transmission electron microscopy. The resulting images of white blood cells were analyzed using stereology to compare quantitatively mitochondrial morphology in the patient and control groups. We found that in patients, but not in controls, there was swelling of mitochondria and fragmentation of the mitochondrial cristae. There also were fewer mitochondria in patients than in controls, although due to the swelling of the organelles, the volume density of mitochondria in the two groups was not significantly different. Such changes are typical of a toxic insult. Consequently, it seems plausible that, since schizophrenia is not a disease considered to affect white blood cells per se, these changes probably are due to the medication.  相似文献   

2.
Treatment of patients diagnosed as schizophrenic with antipsychotic drugs (neuroleptics) is known to cause occasional unexplained depletion of white blood cells, especially neutrophil granulocytes. It has been known for many years that neuroleptics can interfere with the mitochondrial respiratory chain in vitro. Because there has been a growing interest recently in mitochondrial targeting of drugs, and since a quantitative structure-activity relationship (QSAR) model that predicts mitochondrial accumulation of neuroleptics has been published, we investigated the effects of neuroleptics on white blood cell mitochondria. Venous blood samples were collected from both patients undergoing treatment with neuroleptics and healthy volunteers. The samples were processed for transmission electron microscopy. The resulting images of white blood cells were analyzed using stereology to compare quantitatively mitochondrial morphology in the patient and control groups. We found that in patients, but not in controls, there was swelling of mitochondria and fragmentation of the mitochondrial cristae. There also were fewer mitochondria in patients than in controls, although due to the swelling of the organelles, the volume density of mitochondria in the two groups was not significantly different. Such changes are typical of a toxic insult. Consequently, it seems plausible that, since schizophrenia is not a disease considered to affect white blood cells per se, these changes probably are due to the medication.  相似文献   

3.
During etoposide-induced apoptosis in HL-60 cells, cytochrome c release was associated with mitochondrial swelling caused by increased mitochondrial potassium uptake. The mitochondrial permeability transition was also observed; however, it was not the primary cause of mitochondrial swelling. Potassium uptake and swelling of mitochondria were blocked by bcl-2 overexpression. As a result, cytochrome c release was reduced, and apoptosis delayed. Residual cytochrome c release in the absence of swelling in bcl-2 expressing cells could be due to observed Bax translocation into mitochondria. This study suggests several novel aspects of apoptotic signaling: (1) potassium related swelling of mitochondria; (2) inhibition of mitochondrial potassium uptake by bcl-2; (3) co-existence within one system of multiple mechanisms of cytochrome c release: mitochondrial swelling and swelling-independent permeabilization of the outer mitochondrial membrane.  相似文献   

4.
The role of mitochondrial swelling in the unmasking of GDP-binding sites on brown adipose tissue mitochondria has been examined in mice. Acute cold exposure (6 degrees C for 1 h) led to increases in GDP binding without changes in the concentration of uncoupling protein, indicating that an unmasking of binding sites had occurred. Measurements of mitochondrial matrix volume suggested that an acute unmasking of GDP-binding sites took place without swelling of the mitochondria. In addition, the induction of a rapid preswelling of the mitochondria by incubation in KCl in the presence of valinomycin did not affect the cold-induced unmasking of GDP-binding sites. It is concluded that the acute unmasking of GDP-binding sites on uncoupling protein in brown adipose tissue is not due simply to mitochondrial swelling.  相似文献   

5.
Streptolysins S and O from hemolytic streptococci were found to induce mitochondrial swelling and the release of malic dehydrogenase from mitochondria; no other streptococcal products were as active. Mg++, cyanide, dinitrophenol, bovine serum albumin, and antimycin all inhibited streptolysin-induced mitochondrial swelling; only the latter two agents prevented release of malic dehydrogenase from the particles. The streptolysins also solubilized beta-glucuronidase from the less numerous lysosomes of mitochondrial fractions. Vitamin A induced swelling of mitochondria with release of malic dehydrogenase and, at higher concentrations, release of beta-glucuronidase. In these effects, streptolysin S and vitamin A resembled cysteine and ascorbate, which induced swelling and lysis of mitochondria together with solubilization of enzymes. In contrast, mitochondrial swelling induced by such agents as phosphate, thyroxine, or substrates was not accompanied by release of enzymes. The release of enzymes from particles is suggested as a criterion for distinguishing "lytic" agents from those which induce mitochondrial swelling dependent upon electron transport. It was possible to dissociate effects on mitochondria and lysosomes in these experiments; less streptolysin was necessary to damage lysosomes than mitochondria; the converse was found with vitamin A. Injury to mitochondria resulted from the direct action of these agents, since the lysosomal enzymes released as a consequence of their action were not capable of inducing mitochondrial swelling or release of enzymes under the conditions studied.  相似文献   

6.
A possible role of palmitic acid/Ca2+ (PA/Ca2+) complexes in the cyclosporin-insensitive permeability transition in mitochondria has been studied. It has been shown that in the presence of Ca2+, PA induces a swelling of mitochondria, which is not inhibited by cyclosporin A. The swelling is accompanied by a drop in membrane potential, which cannot be explained only by a work of the Ca2+ uniporter. With time, the potential is restored. Evidence has been obtained indicating that the specific content of mitochondrial lipids would favor the PA/Ca2+ -induced permeabilization of the membrane. In experiments with liposomes, the PA/Ca2+ -induced membrane permeabilization was larger for liposomes formed from the mitochondrial lipids, as compared to the azolectin liposomes. Additionally, it has been found that in mitochondria of the TNF (tumor necrosis factor)-sensitive cells (WEHI-164 line), the content of PA is larger than in mitochondria of the TNF-insensitive cells (C6 line), with this difference being mainly provided by PA incorporated in phosphatidylethanolamine and especially, cardiolipin. The PA/Ca2+ -dependent mechanism of permeability transition in mitochondria might be related to some pathologies, e.g. myocardial ischemia. The heaviness of myocardial infarction of ischemic patients has been demonstrated to correlate directly with the content of PA in the human blood serum.  相似文献   

7.
Lipid rafts and mitochondria are promising targets in cancer therapy. The synthetic antitumor alkyl-lysophospholipid analog edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) has been reported to target lipid rafts. Here, we have found that edelfosine induced loss of mitochondrial membrane potential and apoptosis in human cervical carcinoma HeLa cells, both responses being abrogated by Bcl-xL overexpression. We synthesized a number of new fluorescent edelfosine analogs, which preserved the proapoptotic activity of the parent drug, and colocalized with mitochondria in HeLa cells. Edelfosine induced swelling in isolated mitochondria, indicating an increase in mitochondrial membrane permeability. This mitochondrial swelling was independent of reactive oxygen species generation. A structurally related inactive analog was unable to promote mitochondrial swelling, highlighting the importance of edelfosine molecular structure in its effect on mitochondria. Raft disruption inhibited mitochondrial localization of the drug in cells and edelfosine-induced swelling in isolated mitochondria. Edelfosine promoted a redistribution of lipid rafts from the plasma membrane to mitochondria, suggesting a raft-mediated link between plasma membrane and mitochondria. Our data suggest that direct interaction of edelfosine with mitochondria eventually leads to mitochondrial dysfunction and apoptosis. These observations unveil a new framework in cancer chemotherapy that involves a link between lipid rafts and mitochondria in the mechanism of action of an antitumor drug, thus opening new avenues for cancer treatment.  相似文献   

8.
The MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is most commonly caused by the 3243A→G mutation in mitochondrial DNA, resulting in impaired mitochondrial protein synthesis and decreased activities of the respiratory chain complexes. These defects may cause a reduced capacity for ATP synthesis and an increased rate of production of reactive oxygen species. Myoblasts cultured from controls and patients carrying the 3243A→G mutation were used to measure ATP, ADP, catalase and superoxide dismutase, which was also measured from blood samples. ATP and ADP concentrations were decreased in myoblasts with the 3243A→G mutation, but the ATP/ADP ratio remained constant, suggesting a decrease in the adenylate pool. The superoxide dismutase and catalase activities were higher than in control cells, and superoxide dismutase activity was slightly, but not significantly higher in the blood of patients with the mutation than in controls. We conclude that impairment of mitochondrial ATP production in myoblasts carrying the 3243A→G mutation results in adenylate catabolism, causing a decrease in the total adenylate pool. The increase in superoxide dismutase and catalase activities could be an adaptive response to increased production of reactive oxygen species due to dysfunction of the mitochondrial respiratory chain.  相似文献   

9.
3-Nitropropionic acid (3NP) functions as an irreversible inhibitor of succinic acid dehydrogenase (complex II) and induces neuronal disorders in rats similar to those in patients with Huntington's disease. It is well known that L-carnitine (LC), a carrier of long chain fatty acid into the mitochondrial matrix, attenuates the neuronal degeneration in 3NP-treated rats. From these findings it has been suggested that 3NP induces certain neuronal cell death through mitochondrial dysfunction and that LC preserves the neurons against the dysfunction of mitochondria caused by 3NP. However, the detailed mechanism of cell death by 3NP and the protective actions of LC against the mitochondrial dysfunction have not been fully elucidated yet. Thus, we studied the molecular mechanism of the effects of 3NP and LC on isolated rat liver mitochondria. 3NP inhibited succinate respiration and the decreased respiratory control ratio of isolated mitochondria without affecting oxidative phosphorylation. 3NP induced a membrane permeability transition (MPT), which plays an important role in the mechanism of apoptotic cell death. 3NP stimulated Ca2+ release from mitochondria, decreased membrane potential, induced mitochondrial swelling, and stimulated cytochrome c release from mitochondria. 3NP-induced swelling was suppressed by bovine serum albumin, inhibitors of phospholipase A(2) and by an inhibitor of classic MPT, cyclosporin A. Furthermore, LC suppressed the changes brought about by 3NP in mitochondrial functions in the presence of ATP. These results suggest that MPT underlies the mechanism of 3NP-induced cell death, and that LC attenuates mitochondrial MPT by decreasing long chain fatty acids generated by phospholipase A(2).  相似文献   

10.
The ability of alpha-adrenergic agonists and vasopressin to increase the mitochondrial volume in hepatocytes is dependent on the presence of extracellular Ca2+. Addition of Ca2+ to hormone-treated cells incubated in the absence of Ca2+ initiates mitochondrial swelling. In the presence of extracellular Ca2+, A23187 (7.5 microM) induces mitochondrial swelling and stimulates gluconeogenesis from L-lactate. Isolated liver mitochondria incubated in KCl medium in the presence of 2.5 mM-phosphate undergo energy-dependent swelling, which is associated with electrogenic K+ uptake and reaches an equilibrium when the volume has increased to about 1.3-1.5 microliter/mg of protein. This K+-dependent swelling is stimulated by the presence of 0.3-1.0 microM-Ca2+, leading to an increase in matrix volume at equilibrium that is dependent on [Ca2+]. Ca2+-activated K+-dependent swelling requires phosphate and shows a strong preference for K+ over Na+, Li+ or choline. It is not associated with either uncoupling of mitochondria or any non-specific permeability changes and cannot be produced by Ba2+, Mn2+ or Sr2+. Ca2+-activated K+-dependent swelling is not prevented by any known inhibitors of plasma-membrane ion-transport systems, nor by inhibitors of mitochondrial phospholipase A2. Swelling is inhibited by 65% and 35% by 1 mM-ATP and 100 microM-quinine respectively. The effect of Ca2+ is blocked by Ruthenium Red (5 micrograms/ml) at low [Ca2+]. Spermine (0.25 mM) enhanced the swelling seen on addition of Ca2+, correlating with its ability to increase Ca2+ uptake into the mitochondria as measured by using Arsenazo-III. Mitochondria derived from rats treated with glucagon showed less swelling than did control mitochondria. In the presence of Ruthenium Red and higher [Ca2+], the mitochondria from hormone-treated animals showed greater swelling than did control mitochondria. These data imply that an increase in intramitochondrial [Ca2+] can increase the electrogenic flux of K+ into mitochondria by an unknown mechanism and thereby cause swelling. It is proposed that this is the mechanism by which alpha-agonists and vasopressin cause an increase in mitochondrial volume in situ.  相似文献   

11.
Metabolically-induced (spontaneous) high amplitude swelling of mitochondria has been shown to be due to a serial disruption of the mitochondrial membranes [D. Sambasivarao & V. Sitaramam (1985), Biochim Biophys Acta, 806, 195-209]. Phosphate- and arsenate-induced swelling was investigated in mitochondria to evaluate the role of phosphate transport in the instability created in the mitochondrial membranes. Phosphate-induced swelling in respiring mitochondria was similar to spontaneous swelling. Both represent essentially colloidal swelling due to the variable porosity induced in the inner membrane to polyols by respiration. Swelling of non-respiring mitochondria at high ammonium phosphate concentrations was, on the other hand, primarily due to high permeability to phosphate. This membrane instability created by phosphate transport in the surrounding lipid involves neither the endogenous nor the exogenous Ca2+.  相似文献   

12.
Mitochondria have emerged as an intriguing target for anti-cancer drugs, inherent to vast majority if not all types of tumours. Drugs that target mitochondria and exert anti-cancer activity have become a focus of recent research due to their great clinical potential (which has not been harnessed thus far). The exceptional potential of mitochondria as a target for anti-cancer agents has been reinforced by the discouraging finding that even tumours of the same type from individual patients differ in a number of mutations. This is consistent with the idea of personalised therapy, an elusive goal at this stage, in line with the notion that tumours are unlikely to be treated by agents that target only a single gene or a single pathway. This endows mitochondria, an invariant target present in all tumours, with an exceptional momentum. This train of thoughts inspired us to define a class of anti-cancer drugs acting by way of mitochondrial ‘destabilisation’, termed ‘mitocans’. In this communication, we define mitocans (many of which have been known for a long time) and classify them into several classes based on their molecular mode of action. We chose the targets that are of major importance from the point of view of their role in mitochondrial destabilisation by small compounds, some of which are now trialled as anti-cancer agents. The classification starts with targets at the surface of mitochondria and ending up with those in the mitochondrial matrix. The purpose of this review is to present in a concise manner the classification of compounds that hold a considerable promise as potential anti-cancer drugs.  相似文献   

13.
《Free radical research》2013,47(2):161-169
Mitochondrial dysfunction contributes to cell damage in a number of human diseases. One significant mechanism by which mitochondria damage cells is by producing reactive oxygen species from the respiratory chain. In this study we measured the production of reactive oxygen species by leukocyte mitochondria in blood from rheumatoid arthritis patients. To do this we used the chemiluminescence of lucigenin, which is accumulated by mitochondria within cells and reacts with superoxide to form a chemiluminescent product. By using specific inhibitors we could distinguish between the production of reactive oxygen species by mitochondria and by NADPH oxidase. There was a five-fold increase in mitochondrial reactive oxygen species production in whole blood and monocytes from patients with rheumatoid arthritis, when compared to healthy subjects or patients with non-rheumatic diseases. There was no increase in mitochondrial reactive oxygen species production by neutrophils from rheumatoid arthritis patients. The enhanced mitochondrial radical production in rheumatoid arthritis patients correlated significantly with increased levels of tumor necrosis factor alpha in plasma (p<0.0001). As tumor necrosis factor alpha is known to increase mitochondrial reactive oxygen species production the elevated mitochondrial radical formation seen in rheumatoid arthritis patients may be due to activation of the mitochondrial radical production. These data suggest that elevated mitochondrial oxidative stress contributes to the pathology of rheumatoid arthritis.  相似文献   

14.
Ethidium bromide, in addition to combination with mitochondrial nucleic acids, is a phosphorylation inhibitor during glutamate and succinate respiration by mitochondria. Exhaustive washing of ethidium bromide-treated mitochondria did not relieve the inhibition nor significantly decrease the amount of bound dye. Dialysis against a cation exchange resin at 3 degrees for 17 hr removed about 97% of bound dye. This restored phosphorylating capacity to that of untreated mitochondria which had also been dialyzed against the resin. Since state 3 respiration was diminished and state 4 was unaffected by the presence of the acridine dye, and since neither swelling of mitochondria nor release of latent ATPase was observed, then ethidium bromide was not an electron transport inhibitor nor an uncoupler of oxidative phosphorylation. Inhibition of metabolic processes by ethidium bromide may be due in part to depressed generation of mitochondrial ATP.  相似文献   

15.
Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.  相似文献   

16.
Liver cirrhosis is often preceded by overt signs of hepatitis, including parenchymal cell inflammation and infiltration of polymorphonuclear (PMN) leukocytes. Activated PMNs release both reactive oxygen species and reactive halogen species, including hypochlorous acid (HOCl), which are known to be significantly cytotoxic due to their oxidizing potential. Because the role of mitochondria in the hepatotoxicity attributed to HOCl has not been elucidated, we investigated the effects of HOCl on mitochondrial function in the human hepatoma HepG2 cell line, human fetal liver cells, and isolated rat liver mitochondria. We show here that HOCl induced mitochondrial dysfunction, and apoptosis was dependent on the induction of the mitochondrial permeability transition (MPT), because HOCl induced mitochondrial swelling and collapse of the mitochondrial membrane potential with the concomitant release of cytochrome c. These biochemical events were inhibited by the classical MPT inhibitor cyclosporin A (CSA). Cell death induced by HOCl exhibited several classical hallmarks of apoptosis, including annexin V labeling, caspase activation, chromatin condensation, and cell body shrinkage. The induction of apoptosis by HOCl was further supported by the finding that CSA and caspase inhibitors prevented cell death. For the first time, these results show that HOCl activates the MPT, which leads to the induction of apoptosis and provides a novel insight into the mechanisms of HOCl-mediated cell death at sites of chronic inflammation.  相似文献   

17.
A reduce uptake and retention of the mitochondria-specific membrane potential probe rhodamine 123 by feline sarcoma virus (FeSV)-transformed mink fibroblasts (64F3) has been detected. The decreased accumulation of rhodamine 123 by 64F3 mitochondria is not due to abnormal plasma membrane dye permeability, since after microinjection of the dye these cells are still unable to retain the dye at levels comparable to the untransformed parental cells, CCL 64. Nigericin, an ionophore that mediates an electrically neutral exchange of protons for potassium ions resulting the elimination of the pH gradient across the mitochondrial membrane and a compensatory increase in mitochondrial membrane potential with continued respiration, increases both the dye uptake and the retention time in transformed 64F3 cells. These results suggest that mitochondria in FeSV-transformed mink cells may have an abnormally low mitochondrial membrane potential accompanied by a relatively high pH gradient. Since anioic metabolites such as pyruvate and glutamate are accumulated by mitochondria in proportion to the delta pH across the mitochondrial membrane, the abnormal mitochondria described here may contribute to the abnormal metabolic state of FeSV-transformed cells.  相似文献   

18.
Summary It is well known that mitochondria are only partly an autonomous system since they are subjected to nuclear control. For this reason, in studying mitochondrial genes one has to consider constantly the integration of mitochondrial and nuclear genetic systems. This fact makes experimental approaches still more sophisticated, especially, when one turns from individual genetic structures to mitochondrial heredity on the level of cells and multicellular organisms. Here we shall discuss some theoretical aspects of mitochondrial heredity that have been comparatively rarely dealt with in the literature.  相似文献   

19.
Cytochrome c release from mitochondria is central to apoptosis, but the events leading up to it are disputed. The mitochondrial membrane potential has been reported to decrease, increase or remain unchanged during cytochrome c release. We measured mitochondrial membrane potential in Jurkat cells undergoing apoptosis by the uptake of the radiolabelled lipophilic cation TPMP, enabling small changes in potential to be determined. The ATP/ADP ratio, mitochondrial and cell volumes, plasma membrane potential and the mitochondrial membrane potential in permeabilised cells were also measured. Before cytochrome c release the mitochondrial membrane potential increased, followed by a decrease in potential associated with mitochondrial swelling and the release of cytochrome c and DDP-1, an intermembrane space house keeping protein. Mitochondrial swelling and cytochrome c release were both blocked by bongkrekic acid, an inhibitor of the permeability transition. We conclude that during apoptosis mitochondria undergo an initial priming phase associated with hyperpolarisation which leads to an effector phase, during which mitochondria swell and release cytochrome c.  相似文献   

20.
Alkylphosphocholines are a new class of anticancer agents. The mechanisms by which these drugs display their antitumor activities are not known. In this work, we show that erucylphosphohomocholine, a new antineoplastic compound, significantly decreased ATP synthesis in isolated rat liver mitochondria at a concentration of 50 microm or higher via permeabilization of the inner membrane. At a concentration of 25 microm, it induced a moderate swelling of mitochondria, a slight decrease of the inner membrane potential, and an increase in state 4 respiration without an essential influence on state 3 respiration or the outer membrane permeability to cytochrome c. We found that cyclosporin A did not prevent mitochondrial swelling induced by 25-100 microm erucylphosphohomocholine. Moreover, cyclosporin A induced a fast drop of the inner membrane potential in the presence of 25-50 microm erucylphosphohomocholine that seems to be due to a strong synergistic inhibition of the respiratory activity. The ratio of uncoupled to state 3 respiration rates increased from 1.3 +/- 0.1 with 25 microm erucylphosphohomocholine and from 1.5 +/- 0.1 with 1 microm cyclosporin A to 4.5 +/- 0.3 in the presence of both drugs. On the other hand, oligomycin or cyclosporin A protected certain cancer cell lines against erucylphosphohomocholine-induced apoptosis. This protection might be related to a prevention of cellular ATP hydrolysis by permeabilized mitochondria and to the inhibition of the classical permeability transition pore, respectively. Our findings provide new insight into the mechanisms by which these unusual alterations of mitochondria might be involved in anticancer activity of alkylphosphocholines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号