首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
动物是从单细胞生物中带鞭毛的领鞭毛虫演化而来的,但是在过去的很长一段时期中,人们普遍认为动物身体内的多数细胞是不带鞭毛的,只有精子、呼吸道和输卵管的上皮细胞有能够摆动的鞭毛(称动纤毛)。在20世纪60年代,人们就发现动物细胞上不能摆动的鞭毛(称静纤毛),但是由于不知其生理功能而不被重视。在21世纪初,科学家发现,多囊肾其实是与纤毛有关的疾病,随后对纤毛的研究才进入热潮。近年来的研究表明,在脑脊液的流动和动物内脏位置左右不对称分布上动纤毛发挥关键作用。而静纤毛存在于动物的许多细胞上,含有各种感觉受体,成为动物细胞接收信号的"天线"。它们能够感知动物体内多种液体的流动情况,被动物用于监测血压、眼压、胆汁流动、尿液流动和感知骨骼负荷;动物的视觉、听觉、嗅觉、味觉、触觉、自体感觉、细胞运动也是通过静纤毛接收信号的。在动物胚胎的发育过程中,静纤毛也负责细胞的信息接收,是Hedgehog(刺猬蛋白)信号通路、Wnt信号通路、Notch信号通路等的起始处。由于纤毛在动物体内的多种功能,纤毛功能障碍会导致全身性疾病,统称纤毛病(ciliopathy),包括嗅觉丧失、听觉丧失、视网膜退化、雄性不育、脑室积水、脑发育障碍、骨骼畸形、多指、多囊肾、多囊肝、内脏位置左右颠倒等多种症状。领鞭毛虫的另一个线状结构——领毛,演变成为动物细胞上的微绒毛,像静纤毛一样,成为细胞接收信号的"天线",在视觉、听觉、嗅觉、味觉、触觉和自体感觉中发挥作用。因此鞭毛、纤毛和微绒毛一起,被认为是动物细胞上的多功能细胞器。  相似文献   

2.
动物是从单细胞生物中带鞭毛的领鞭毛虫演化而来的,但是在过去的很长一段时期中,人们普遍认为动物身体内的多数细胞是不带鞭毛的,只有精子、呼吸道和输卵管的上皮细胞有能够摆动的鞭毛(称动纤毛)。在20世纪60年代,人们就发现动物细胞上不能摆动的鞭毛(称静纤毛),但是由于不知其生理功能而不被重视。在21世纪初,科学家发现,多囊肾其实是与纤毛有关的疾病,随后对纤毛的研究才进入热潮。近年来的研究表明,在脑脊液的流动和动物内脏位置左右不对称分布上动纤毛发挥关键作用。而静纤毛存在于动物的许多细胞上,含有各种感觉受体,成为动物细胞接收信号的"天线"。它们能够感知动物体内多种液体的流动情况,被动物用于监测血压、眼压、胆汁流动、尿液流动和感知骨骼负荷;动物的视觉、听觉、嗅觉、味觉、触觉、自体感觉、细胞运动也是通过静纤毛接收信号的。在动物胚胎的发育过程中,静纤毛也负责细胞的信息接收,是Hedgehog(刺猬蛋白)信号通路、Wnt信号通路、Notch信号通路等的起始处。由于纤毛在动物体内的多种功能,纤毛功能障碍会导致全身性疾病,统称纤毛病(ciliopathy),包括嗅觉丧失、听觉丧失、视网膜退化、雄性不育、脑室积水、脑发育障碍、骨骼畸形、多指、多囊肾、多囊肝、内脏位置左右颠倒等多种症状。领鞭毛虫的另一个线状结构——领毛,演变成为动物细胞上的微绒毛,像静纤毛一样,成为细胞接收信号的"天线",在视觉、听觉、嗅觉、味觉、触觉和自体感觉中发挥作用。因此鞭毛、纤毛和微绒毛一起,被认为是动物细胞上的多功能细胞器。  相似文献   

3.
动物是从单细胞生物中带鞭毛的领鞭毛虫演化而来的,但是在过去的很长一段时期中,人们普遍认为动物身体内的多数细胞是不带鞭毛的,只有精子、呼吸道和输卵管的上皮细胞有能够摆动的鞭毛(称动纤毛)。在20世纪60年代,人们就发现动物细胞上不能摆动的鞭毛(称静纤毛),但是由于不知其生理功能而不被重视。在21世纪初,科学家发现,多囊肾其实是与纤毛有关的疾病,随后对纤毛的研究才进入热潮。近年来的研究表明,在脑脊液的流动和动物内脏位置左右不对称分布上动纤毛发挥关键作用。而静纤毛存在于动物的许多细胞上,含有各种感觉受体,成为动物细胞接收信号的"天线"。它们能够感知动物体内多种液体的流动情况,被动物用于监测血压、眼压、胆汁流动、尿液流动和感知骨骼负荷;动物的视觉、听觉、嗅觉、味觉、触觉、自体感觉、细胞运动也是通过静纤毛接收信号的。在动物胚胎的发育过程中,静纤毛也负责细胞的信息接收,是Hedgehog(刺猬蛋白)信号通路、Wnt信号通路、Notch信号通路等的起始处。由于纤毛在动物体内的多种功能,纤毛功能障碍会导致全身性疾病,统称纤毛病(ciliopathy),包括嗅觉丧失、听觉丧失、视网膜退化、雄性不育、脑室积水、脑发育障碍、骨骼畸形、多指、多囊肾、多囊肝、内脏位置左右颠倒等多种症状。领鞭毛虫的另一个线状结构——领毛,演变成为动物细胞上的微绒毛,像静纤毛一样,成为细胞接收信号的"天线",在视觉、听觉、嗅觉、味觉、触觉和自体感觉中发挥作用。因此鞭毛、纤毛和微绒毛一起,被认为是动物细胞上的多功能细胞器。  相似文献   

4.
真核细胞的纤毛(也称鞭毛)是一种突出于细胞表面的极性细胞器,纤毛不仅参与细胞运动,还参与信号传导等过程,其结构或功能异常引发的一系列人类疾病称为"纤毛相关性疾病"。纤毛相关性疾病巴德-毕德氏综合征(Bardet-Biedl syndrome,简称BBS)由BBS相关基因缺陷导致,为了研究致病基因BBS8的生理作用和功能,构建模式生物莱茵衣藻BBS8基因缺陷突变体,利用性状观测和生化分析检测突变体的表现型和生理功能。免疫荧光表明BBS8蛋白是一种鞭毛蛋白且在基体有特异性定位;bbs8突变体感光极性运动消失,并在解聚诱导实验中鞭毛解聚缓慢;鞭毛的银染和质谱结果表明突变体的鞭毛膜蛋白在鞭毛内异常积累。文中通过实验证据说明BBS8蛋白在参与鞭毛内膜蛋白运输中起到重要作用,并极可能通过介导膜蛋白反向运输发挥生理功能。  相似文献   

5.
现用的高中“生物”课本第15页上的“动物细胞亚显微结构模式图”中之7,是中心粒,但其中一个中粒的横截面显示了十一束微管,这成了鞭毛(或纤毛)的构造。中心粒是中空的短柱状小体,长约0.4μm,每一个中心粒由九束微管排成一个环,每束含有三个亚单位(细微管)。而鞭毛(长为100—200μm)或纤毛(长为3—100μm),每一根含有十一束纵行的长微管,其中九束在外围形成一环,每束含有两个亚单位,中央两束,每束不分亚单位,这种排列的公式是9+2。每一鞭毛或纤毛的基部都有基粒相  相似文献   

6.
潘俊敏 《中国科学C辑》2008,38(5):399-409
纤毛或鞭毛(两个名称在本文互为通用)是以细胞微管为核心而组装形成的一种细胞器官.运动纤毛在细胞运动中起的作用是显而易见的,比如精子的运动:近年来发现,曾被认为是退化器官的不动原生纤毛在动物发育和各种生理器官的正常生理活动中起着重要作用.原生纤毛具有调控细胞分裂,Hedgehog信号通路,非经典Wnt信号通路及钙信号传导等的作用.纤毛及其附属结构在结构或功能上的缺陷会导致多种多样的疾病,总称为“纤毛相关疾病”,包括男性不育症、呼吸道疾病(如不动纤毛综合征、肾囊肿、失明、多指(趾)症、内脏转位、肥胖症、高血压乃至精神发育迟滞等.纤毛在结构和功能上是非常保守的,我们目前对纤毛的结构与功能的认识和对“纤毛相关疾病”发生机理的了解主要来自于对各种模式生物的研究,其中包括具有研究优势的模式生物——雷氏衣藻(Chlamydomonas reinhardtii,一种单细胞绿萍).对纤毛的进一步研究将深化人们对“纤毛相关疾病”的认识、促进对它的诊断、预防和治疗.本文对衣藻、纤毛及“纤毛相关疾病”的研究进展作一简短概述.  相似文献   

7.
鞭毛是细菌主要的运动器官,细菌通过鞭毛运动实现趋化性。随着研究的不断深入,研究人员发现鞭毛具有很多其他功能。现综述细菌鞭毛在生理活动中的作用,包括鞭毛介导的运动和趋化性,鞭毛的致病性、抗原性与免疫原性,以及鞭毛与冷适应机制的关系,并结合实验室研究方向,对细菌鞭毛相关的冷适应机制做出了展望。  相似文献   

8.
高等动物体内气管、脑室管膜及输卵管等上皮组织具有一类富含运动纤毛的多纤毛细胞,通过其细胞表面运动纤毛的周期性摆动可以清洁气管、驱动脑脊液流动和受精卵运动。运动纤毛发生或功能的异常则可导致气管炎、脑积水、不孕不育等多种遗传疾病。然而,在多纤毛细胞分化过程中关于如何精确组装运动性纤毛复杂结构的分子机制仍不清楚。该研究运用蛋白组学、超高分辨率显微成像和电镜等多种技术,发现多纤毛细胞特有的亚细胞结构–纤维状颗粒物是由中心体周围基质蛋白Pcm1相分离形成的具有液体特征的无膜细胞器,不仅参与调控多纤毛细胞摇篮体的组装和空间分布,而且在其多孔状结构中大量富集了特定的基体和纤毛的结构蛋白质,并精确调控这些组分在运动纤毛发生的不同阶段定位到基体和纤毛中,阐明了纤维状颗粒物作为组织者精确调控运动纤毛组装的分子机制。  相似文献   

9.
纤毛/鞭毛是从细胞膜表面突出的真核细胞器,它能调节细胞运动及细胞周围液体流动,或者参与机体的感知功能,其异常会引发多种人类纤毛病。作为最早被发现的细胞器之一,纤毛一直是细胞生物学领域的重点研究对象,但是因结构大且复杂,其分子组装机制的揭示长期以来一直是个难题。近些年,随着冷冻电镜技术的发展,多个课题组先后报道了从衣藻到哺乳动物精子鞭毛的轴丝各部分高分辨率结构。该文综述了动纤毛的结构组成和最新的分子组装研究进展,重点描述了轴丝各个组成部分包括双联微管(DMT)、内外动力臂(IDA和ODA)、辐条结构(RS)、中央微管对(CP)和连接复合物(N-DRC)的蛋白组成和分布,为深入理解纤毛的组装过程和功能调节提供了科学依据。  相似文献   

10.
漫话纤毛     
纤毛是一种不可或缺的附属器官,纤毛摆动可产生生物电流,但它们的作用远不止此,新的研究表明,事实上,它们在发育和疾病产生过程中起着重要的作用。  相似文献   

11.
从亚细胞水平和分子生物学水平研究细胞运动(如:肌肉收缩、纤毛和鞭毛的运动、细胞质流动、染色体的分离、伪足的伸展等等)还是近一、二十年的事。我们已经知道肌肉收缩是由于肌动蛋白(actin)和肌球蛋白(myosin)相互作用的结果,七十年代以来另一种和运动有关的大分子系统越来越引起人们的关注,这就是微管蛋白(tubulin)和力蛋白(dynein~*)系统,现在已经知道纤毛和真核生物鞭毛的运动就是这两种蛋白质相互作用的结果。  相似文献   

12.
<正>纤毛(也称鞭毛)是突出于真核细胞表面的一类在进化上很保守的细胞器,由纤毛膜、轴丝及其底部的基体组成.纤毛广泛分布于原生动物及脊椎动物细胞表面,负责感受内外环境信号以及驱动细胞运动.在哺乳动物特别是人类中,纤毛结构和功能的异常能导致多囊肾,神经系统发育缺陷,听觉、嗅觉和视觉的衰退,呼吸道疾病和不育症等,这些疾病统称为纤毛病,其发病率在1/1000左右.目前还没有治疗  相似文献   

13.
大多数动物精子的尾巴是一根鞭毛,借助它的摆动进行游泳活动。虽然早在上个世纪就已经在普通的光学显微镜下发现精子的鞭毛运动,但对其运动形式及结构基础的认识却进展很慢,主要由于精子鞭毛摆动的频率很高,达到每秒钟60次,难以目测。另外,精子的鞭毛轴,即轴丝(axoneme)很纤细,其内部基本组成如微管(microtubule)的直径仅为25毫微米,远远超出光学显微镜的分辨范围,直至本世纪中  相似文献   

14.
近几年来,在微体古生物学中有一门学科正在迅速发展,这就是对化石沟鞭藻及其伴侣疑源类的研究。什么叫沟鞭藻沟鞭藻是一类单细胞(个别为群体)的原生生物,是现代海洋微体浮游生物的重要成员之一,它的数量仅次于硅藻。它归属于甲藻门横裂甲藻纲。沟鞭藻的形态各种各样,有球形、卵形、菱形和鼎形。识别它们的标志有三点:(1)具有沟。一条横沟位于藻体赤道附近,一条纵沟位于腹面,与横沟大致垂直。沟中各有一根鞭毛,靠鞭毛的摆动使藻体作旋转运动。在化石状态下不见鞭毛,但沟还常能显示;(2)  相似文献   

15.
人体内脏器官在位置及形态上呈左右不对称分布。纤毛在左右不对称发育中发挥关键作用。目前已鉴定数十个不对称发育相关的人类疾病基因,这些基因大多涉及纤毛发生、运动以及Nodal-Pitx2信号传导过程。文中主要介绍了纤毛影响Nodal-Pitx2信号通路导致人体左右不对称发育的过程。此外还简要阐述了纤毛与先天性心脏病的关系以及左右不对称发育人类遗传学研究的最新发现。这些进展将有助于我们深入了解左右不对称发育分子机制以及纤毛与人类疾病的联系。  相似文献   

16.
家蚕精母细胞内基体和鞭毛的电镜观察   总被引:1,自引:1,他引:0  
中心粒是小的圆柱状微管细胞器。它的最重要特征是具有九组三联体微管系统(DuPraw,1970;Phillip,1970;woIfe,1972)。中心粒几乎发生在所有的动物细胞内;在具有鞭毛或纤毛的细胞内,中心粒发育成基体,再从基体的远心端生长出鞭毛或纤毛来。在动物精子发生和形成过程中,也存在着从中心粒到基体,再由基体产生精子尾部的过程。  相似文献   

17.
肌动蛋白的聚合   总被引:4,自引:0,他引:4  
肌动蛋白的聚合杨亚龙(华西医科大学细胞生物学教研室,成都有610044)细胞运动是动物细胞活动的基本特征之一,白血细胞的吞噬活动、哺乳类精子的受精、肿瘤的侵蚀与扩散等都与细胞运动有关。细胞运动除一些运动性细胞器(如伪足、鞭毛和纤毛)参与外,微丝的结构...  相似文献   

18.
纤毛是以微管为核心组分、突出于细胞表面且高度保守的细胞器,具有运动、摄食、感知并传递外界信号等功能。纤毛发生是纤毛在细胞膜表面定位并装配的过程。多年来,对纤毛发生过程及其调控机制的探索始终是亚细胞结构与功能研究的热点之一。Wnt/PCP信号通路是参与胚胎及器官发育的主要信号转导途径之一。近年来大量研究显示,Wnt/PCP信号通路和纤毛发生密切相关。纤毛结构与功能的异常可造成Wnt/PCP信号通路异常,导致纤毛相关疾病的发生;同时,Wnt/PCP信号通路又决定着纤毛的形态和极性。因此,深入研究纤毛与Wnt/PCP信号通路的关系将有助于从细胞与分子生物学水平揭示纤毛发生的调控机制。  相似文献   

19.
封面故事     
正小鼠脑室管膜运动纤毛主要通过有规则的摆动,驱动脑脊液的流动,为神经细胞提供营养并带走有害代谢产物,对脑的发育至关重要。扫面电镜展示了正常小鼠脑室管膜细胞表面的运动纤毛形态,一撮撮如沐春风,栩栩如生(照片由中国科学院分子细胞科学卓越创新中心朱学良课题组冯迪提供)  相似文献   

20.
一般说来 ,人们很容易把动物和植物区别开来 ,因为动物会动 ,如虫鱼鸟兽 ;植物有叶绿素 ,能进行光合作用 ,如花草树木。可是 ,有一类生活在水体中的微小生物 ,就很难说出它们是动物还是植物。因为它们既有动物的特征 ,又具有植物的特征 ,如有鞭毛 ,能运动 ,动物学家把它们归入动物 ;同时 ,它们具叶绿素 ,能进行光合作用 ,制造有机物 ,植物学家把它们归入植物。这就是原生动物门、鞭毛纲、植鞭亚纲的动物。植鞭类原生动物全身只有 1个细胞 ,这个细胞在生理上是 1个完全独立的动物体。它要担负起运动、营养、呼吸、排泄、生殖等各种生理机能 ,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号