首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The cDNA clone RXF12, which encodes a xylanase (EC 3.2.1.8), was isolated from Arabidopsis thaliana. The C-terminal half of the amino acid sequence of the deduced protein, named AtXyn1, showed similarity with the catalytic domain of barley xylanase X-1. The N-terminal half of AtXyn1 also contained three regions with sequences similar to cellulose-binding domains (CBDs). A xylanase assay revealed that transgenic A. thaliana plants expressing exogenous AtXyn1 fused with enhanced green fluorescent protein (EGFP) possessed approximately twice as much xylanase activity as wild-type plants. Observation by fluorescence microscopy of transgenic A. thaliana plants expressing a fusion protein of AtXyn1 and EGFP suggested that AtXyn1 is a cell wall protein. Analysis of the localization of beta-glucuronidase (GUS) activity in transgenic A. thaliana plants containing a chimeric gene with the upstream sequence of the AtXyn1 gene and the GUS gene demonstrated that the AtXyn1 gene is predominantly expressed in vascular bundles, but not in vessel cells. These data suggest that AtXyn1 is involved in the secondary cell wall metabolism of vascular bundle cells. A database search revealed that four putative xylanase genes exist in the A. thaliana genome, besides the AtXyn1 gene. Of these, two also contain several regions with sequences similar to CBDs in their N-terminal regions. Comparison of the amino acid sequences of the five xylanases suggests a possible process for their molecular evolution.  相似文献   

3.
4.
5.
NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida   总被引:2,自引:0,他引:2  
To study the molecular regulation of nectary development, we cloned NEC1, a gene predominantly expressed in the nectaries of Petunia hybrida, by using the differential display RT-PCR technique. The secondary structure of the putative NEC1 protein is reminiscent of a transmembrane protein, indicating that the protein is incorporated into the cell membrane or the cytoplast membrane. Immunolocalization revealed that NEC1 protein is present in the nectaries. Northern blot analyses showed that NEC1 is highly expressed in nectary tissue and weakly in the stamen. GUS expression driven by the NEC1 promoter revealed GUS activity in the outer nectary parenchyma cells, the upper part of the filament and the anther stomium. The same expression pattern was observed in Brassica napus. GUS expression was observed as blue spots on the surface of very young nectaries that do not secrete nectar and do accumulate starch. GUS expression was highest in open flowers in which active secretion of nectar and starch hydrolysis had taken place. Ectopic expression of NEC1 resulted in transgenic plants that displayed a phenotype with leaves having 3-4 times more phloem bundles in mid-veins than the wild-type Petunia. The possible role of NEC1 gene in sugar metabolism and nectar secretion is discussed.  相似文献   

6.
7.
8.
9.
10.
A cDNA clone, named XF41, that encodes an RNA-binding protein was isolated from Arabidopsis thaliana. The deduced protein, named AtRBP1, contains two conserved consensus sequence-type RNA-binding domains (CS-RBDs) in the N-terminal half, a putative PY motif (a target of a WW domain) in the center, and uncharacterized C-terminal domain. A binding assay demonstrated that the AtRBP1 can bind to single-stranded nucleic acids in vitro. Analysis of localization of the GUS activity of transgenic Arabidopsis thaliana plants that have the chimeric gene containing the upstream sequence of the AtRBP1 gene and GUS gene demonstrated that the AtRBP1 gene is expressed in meristematic tissues such as the vegetative shoot apex and root tips, developing organs such as floral buds and pistils of young flowers, abscission layers of immature siliques and junctions of pedicels. Considering the specificity of the expression, AtRBP1 may be required in the progress of cell proliferation.  相似文献   

11.
Abstract Clostridium perfringens alpha-toxin was produced in a protein-hyperproducing strain, Bacillus brevis 47, by cloning the gene into the constructed expression-secretion vector which has the multiple promoters and the signal peptide coding region of an outer cell wall protein gene. The amount of alpha-toxin produced by the B. brevis 47 transformant carrying the gene was approximately 10 times greater than that produced by a B. subtilis transformant carrying the toxin gene. Biological activities and the N-terminal amino acid sequence of the toxin secreted by the B. brevis 47 transformant were identical to those of wild-type alpha-toxin.  相似文献   

12.
Screening of 10 000 Arabidopsis transgenic lines carrying a gene-trap (GUS) construct has been undertaken to identify markers of seed germination. One of these lines showed GUS activity restricted to the endosperm, at the micropylar end of the germinating seed. The genomic DNA flanking the T-DNA insert was cloned by walking PCR and the insertion was shown to be located 70 bp upstream of a 2285 bp open reading frame (AtEPR1) sharing strong similarities with extensins. The AtEPR1 open reading frame consists of 40 proline-rich repeats and is expressed in both wild-type and mutant lines. The expression of the AtEPR1 gene appears to be under positive control of gibberellic acid, but is not downregulated by abscisic acid during seed germination. No expression was detected in organs other than endosperm during seed germination. The putative role of AtEPR1 is discussed in the light of its specific expression in relation to seed germination.  相似文献   

13.
From a T-DNA tagged Arabidopsis population, a line, M-57 showing GUS (beta-glucuronidase) expression in the vascular regions of young roots was identified. Southern analysis revealed presence of a single T-DNA insert. Using inverse PCR, the plant sequence flanking the T-DNA insertion was cloned. The insertion was identified to be in the intergenic area between loci At4G13940 and At4G13930, coding for SAHH (S-Adenosyl-l-Homocysteine Hydrolase) and SHMT (Serine Hydroxy Methyl Transferase) genes, respectively. A 452-bp fragment immediately upstream of the T-DNA insertion when cloned and mobilized as a GUS fusion was capable of driving a similar root-specific expression of reporter gene in transgenic Arabidopsis plants and their progenies. This cryptic promoter element does not show the presence of any known root-specific promoter element.  相似文献   

14.
15.
16.
17.
18.
植物中,UDP-L-鼠李糖是细胞壁骨架的主要成分,由鼠李糖合成酶催化底物UDP-α<,-D->葡萄糖合成.本实验从拟南芥基因组中分离了鼠李糖合成酶基因AtRHM1 1058bp的启动子序列并对启动子5'端进行了不同长度的缺失.将全长启动子及不同缺失启动子与GUS报告基因进行融合后转化野生型拟南芥,获得了一系列转基因植株.启动子缺失分析结果表明,AtRHM1基因在转录水平上受葡萄糖的诱导,参与葡萄糖应答反应的顺式调控元件位于启动子的-931 bp~-752bp区域.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号