首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
We compared the developmental patterns of mean heart rate in Larus crassirostris and L. schistisagus embryos and chicks with other avian species of different hatchling developmental modes. We proposed that, since mean heart rate is inversely related to fresh egg mass in all birds, larger species reached a higher fraction of their hatchling mean heart rate by the end of the early phase of incubation and that heart rate contributions to supplying the increasing metabolic demands during mid and late incubation phases were less important than in smaller avian species. Mean heart rate was essentially independent of age throughout the mid-incubation phase (33% of normalised incubation until pipping), but increased with time during early (L. schistisagus only investigated) and late-incubation phases in both species. The O2 pulse of L. schistisagus embryos and chicks increased linearly with yolk-free body mass (log-log) after the early-phase of incubation until shortly before pipping, but was independent of body mass in the periods before and after. We conclude that a high heart rate in this first period is probably more important for increasing the circulation of nutrients to the embryo at a stage when extra-embryonic circulation to the yolk sac is limited by the size of the growing area vaculosa. Furthermore, large increases in mean heart rate during the late-incubation phase are probably important for increasing the cardiac output to hatching levels with onset of endothermy. However, mean heart rate is stable over the mid-incubation while O2 pulse increases, suggesting that increases in stroke volume and other circulatory adjustments may be entirely responsible for the largest increases in O2 transport during incubation of large avian species. Accepted: 18 May 2000  相似文献   

2.
Ventilation frequency, opercular pressure amplitude, heart rate, dorsal aortic pressure, arterial pH, arterial O2 tension, and plasma catecholamine levels were recorded in rainbow trout, Oncorhynchus mykiss, during normoxia (19.7 kPa, 148 mmHg) or hyperoxia (51.2 kPa, 384 mmHg) after injection of various concentrations of catecholamines. In normoxic fish, adrenaline injection resulted in a depression of arterial O2 tension, hypoventilation due to a drop in ventilation frequency, and a drop in heart rate, while dorsal aortic pressure increased. Noradrenaline depressed ventilation frequency, but opercular pressure amplitude increased to a far greater extent, and dorsal aortic pressure increased. During hyperoxia, adrenaline injection lowered ventilation frequency, opercular amplitude and heart rate, but dorsal aortic pressure increased. The stimulatory effects of noradrenaline on ventilation were abolished during hyperoxia, but the cardiac responses were similar to those seen during normoxia. These results indicate that catecholamines can modify the ventilatory output from the respiratory centre, and modification of ventilation frequency can occur independently of opercular pressure amplitude.Abbreviations f g ventilation frequency - HPLC high performance liquid chromatography - P op opercular pressure amplitude - f h heart rate - P DA dorsal aortic pressure - pHa arterial pH - P aO2 arterial oxygen tension - PO2 oxygen tension  相似文献   

3.
Oxygen consumption and ATP content are reported for the planktonic marine copepod Pontella mediterranea during normal and diapause embryonic development. In subitaneous embryos that hatched without delay within 48 h, O2 uptake increased linearly after spawning to reach maximum levels about 25 h later. By contrast, ATP levels were initially very high but decreased rapidly within the next 5 h to reach stable values thereafter. In diapause embryos, O2 consumption followed the typical U-shaped curve described for insect diapause. An initial period of prediapause, which lasted for about 25 days, was characterized by elevated O2 uptake. This was followed by a period of diapause in which O2 consumption dropped to 25% of the values recorded during prediapause. This protracted period of dormancy, which lasted about 4 to 5 months, was followed by a period of high O2 consumption possibly due to the breaking of diapause and resumption in development. ATP content during the pre-diapause period showed a similar trend as in subitaneous embryos with high initial levels that decreased with time for the first 20 days and remained stable afterwards.Abbreviations E embryo - EDTA ethylenediamine-tetraacetic acid - PCA perchloric acid - SW sea water - TEM transmission electron microscopy  相似文献   

4.
Summary This study determined how structural features of the eggshells of coots (Fulica americana) laid at 4150 m in the Peruvian Andes differed from those at sea level in Peru and California and how these features affected exchange of water vapor, O2, and CO2. While barometric pressure at 4150 m was reduced to 60% of that at sea level, the conductance to water vapor, corrected to 760 torr, of montane eggs was 107% of the corresponding lowland value. When the effect of low barometric pressure on the diffusion coefficient of gases was considered, the effective conductance of the montane eggs at altitude was 177% of that at sea level. As a result, daily water loss from the montane eggs was substantially greater than that from lowland ones. The oxygen consumption of montane embryos was lower than that of lowland embryos of all sizes, particularly at larger embryonic masses. Just before pipping, the oxygen consumption of montane embryos was about 60% of the corresponding value for lowland individuals. Air cell oxygen tensions in montane eggs varied between about 65 and 38 torr; these values were about 60–70 torr below those in lowland eggs at equivalent embryonic masses. Just before pipping, the air cell CO2 tension of montane eggs was about 20 torr below levels in sea level eggs. The eggshell conductance to gases of montane eggs appears to have been selected to promote oxygen delivery at the cost of increased losses of water vapor and CO2.  相似文献   

5.
Oxygen consumption, air cell gases, hematology, blood gases and pH of Puna teal (Anas versicolor puna) embryos were measured at the altitude at which the eggs were laid (4150 m) in the Peruvian Andes. In contrast to the metabolic depression described by other studies on avian embryos incubated above 3700 m, O2 consumption of Puna teal embryos was higher than even that of some lowland avian embryos at equivalent body masses. Air cell O2 tensions dropped from about 80 toor in eggs with small embryos to about 45 toor in eggs containing a 14-g embryo; simultaneously air cell CO2 tension rose from virtually negligible amounts to around 26 torr. Arterial and venous O2 tensions (32–38 and 10–12 toor, respectively, in 12- to 14-g embryos) were lower than described previously in similarly-sized lowland wild avian embryos or chicken embryos incubated in shells with restricted gas exchange. The difference between air cell and arterial O2 tensions dropped significantly during incubation to a minimum of 11 torr, the lowest value recorded in any avian egg. Blood pH (mean 7.49) did not vary significantly during incubation. Hemoglobin concentration and hematocrits rose steadily throughout incubation to 11.5 g · 100 ml-1 and 39.9%, respectively, in 14-g embryos.Abbreviations PO2 partial pressure gradient of O2 - BM body mass - D diffusion coefficient - G gas conductance (cm3·s-1·torr-1) - conductance to water vapor - IP internal pipping of embryos - P ACO2 partial pressure of carbon dioxide in air cell - P AO2 partial pressure of oxygen in air cell - P aCO2 partial pressure of carbon dioxide in arterial blood - P aCO2 partial pressure of oxygen in arteries - P H barometric pressure (torr) - PCO2 partial pressure of carbon dioxide - P IO2 partial pressure in ambiant air - PO2 partial pressure of oxygen - P VCO2 venous carbon dioxide partial pressure - P VO2 mixed venous oxygen partial pressure - SE standard error - VO 2 oxygen consumption  相似文献   

6.
Summary Responses to acute hypoxia were measured in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) (1–3 kg body weight). Fish were prevented from making swimming movements by a spinal injection of lidocaine and were placed in front of a seawater delivery pipe to provide ram ventilation of the gills. Fish could set their own ventilation volumes by adjusting mouth gape. Heart rate, dorsal and ventral aortic blood pressures, and cardiac output were continuously monitored during normoxia (inhalant water (PO 2>150 mmHg) and three levels of hypoxia (inhalant water PO 2130, 90, and 50 mmHg). Water and blood samples were taken for oxygen measurements in fluids afferent and efferent to the gills. From these data, various measures of the effectiveness of oxygen transfer, and branchial and systemic vascular resistance were calculated. Despite high ventilation volumes (4–71·min-1·kg-1), tunas extract approximately 50% of the oxygen from the inhalant water, in part because high cardiac outputs (115–132 ml·min-1·kg-1) result in ventilation/perfusion conductance ratios (0.75–1.1) close to the theoretically ideal value of 1.0. Therefore, tunas have oxygen transfer factors (ml O2·min-1·mmHg-1·kg-1) that are 10–50 times greater than those of other fishes. The efficiency of oxygen transfer from water in tunas (65%) matches that measured in teleosts with ventilation volumes and order of magnitude lower. The high oxygen transfer factors of tunas are made possible, in part, by a large gill surface area; however, this appears to carry a considerable osmoregulatory cost as the metabolic rate of gills may account for up 70% of the total metabolism in spinally blocked (i.e., non-swimming) fish. During hypoxia, skipjack and yellowfin tunas show a decrease in heart rate and increase in ventilation volume, as do other teleosts. However, in tunas hypoxic bradycardia is not accompanied by equivalent increases, in stroke volume, and cardiac output falls as HR decreases. In both tuna species, oxygen consumption eventually must be maintained by drawing on substantial venous oxygen reserves. This occurs at a higher inhalant water PO2 (between 130 and 90 mmHg) in skipjack tuna than in yellowfin tuna (between 90 and 50 mmHg). The need to draw on venous oxygen reserves would make it difficult to meet the oxygen demand of increasing swimming speed, which is a common response to hypoxia in both species. Because yellowfin tuna can maintain oxygen consumption at a seawater oxygen tension of 90 mmHg without drawing on venous oxygen reserves, they could probably survive for extended periods at this level of hypoxia.Abbreviations BPda, BPva dorsal, ventral aortic blood pressure - C aO2, C vO2 oxygen content of arterial, venous blood - DO2 diffusion capacity - Eb, Ew effectiveness of O2 uptake by blood, and from water, respectively - Hct hematocrit - HR heart rate - PCO2 carbon dioxide tension - P aCO2, P vCO2 carbon dioxide tension of arterial and venous blood, respectively - PO2 oxygen tension - P aO2, P vO2, P iO2, P cO2 oxygen tension of arterial blood, venous blood, and inspired and expired water, respectively - pHa, pHv pH of arterial and venous blood, respectively - Pw—b effective water to blood oxygen partial pressure difference - Pg partial pressure (tension) gradient - cardiac output - R vascular resistance - SV stroke volume - SEM standard error of mean - TO2 transfer factor - U utilization - g ventilation volume - O2 oxygen consumption  相似文献   

7.
A. Yokota  S. Kitaoka  K. Miura  A. Wadano 《Planta》1985,165(1):59-67
The nonenzymatic reaction of glyoxylate and H2O2 was measured under physiological conditions of the pH and concentrations of reactants. The reaction of glyoxylate and H2O2 was secondorder, with a rate constant of 2.27 l mol-1 s-1 at pH 8.0 and 25° C. The rate constant increased by 4.4 times in the presence of Zn2+ and doubled at 35°C. We propose a mechanism for the reaction between glyoxylate and H2O2. From a comparison of the rates of H2O2 decomposition by catalase and the reaction with glyoxylate, we conclude that H2O2 produced during glycolate oxidation in peroxisomes is decomposed by catalase but not by the reaction with glyoxylate, and that photorespiratory CO2 originates from glycine, but not from glyoxylate, in C3 plants. Simulation using the above rate constant and reported kinetic parameters leads to the same conclusion, and also makes it clear that alanine is a satisfactory amino donor in the conversion of glyoxylate to glycine. Some serine might be decomposed to give glycine and methylene-tetrahydrofolate; the latter is ultimately oxidized to CO2. In the simulation of the glycolate pathway of Euglena, the rate constant was high enough to ensure the decarboxylation of glyoxylate by H2O2 to produce photorespiratory CO2 during the glycolate metabolism of this organism.Abbreviations Chl chlorophyll - GGT glutamate: glyoxylate aminotransferase (EC 2.6.1.4) - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - SGT serine: glyoxylate aminotransferase (EC 2.6.1.45) This is the ninth in a series on the metabolism of glycolate in Euglena gracilis. The eighth is Yokota et al. (1982)  相似文献   

8.
Both photogeneration and quenching of singlet oxygen by monomeric and aggregated (dimeric and oligomeric) molecules of bacteriochlorophyll (BChl) d have been studied in solution and in chlorosomes isolated from the green photosynthetic bacterium Chlorobium vibrioforme f. thiosulfatophilum. The yield of singlet-oxygen photogeneration by pigment dimers was about 6 times less than for monomers. Singlet oxygen formation was not observed in oligomer-containing solutions or in chlorosomes. To estimate the efficiency of singlet oxygen quenching an effective rate constant for 1O2 quenching by BChl molecules (kq M) was determined using the Stern-Volmer equation and the total concentration of BChl d in the samples. In solutions containing only monomeric BChl, the kq M values coincide with the real values for 1O2 quenching rate constants by BChl molecules. Aggregation weakly influenced the kq M values in pigment solutions. In chlorosomes (which contain both BChl and carotenoids) the kq M value was less than in solutions of BChl alone and much less than in acetone extracts from chlorosomes. Thus 1O2 quenching by BChl and carotenoids is much less efficient in chlorosomes than in solution and is likely caused primarily by BChl molecules which are close to the surface of the large chlorosome particles. The data allow a general conclusion that monomeric and dimeric chlorophyll molecules are the most likely sources of 1O2 formation in photosynthetic systems and excitation energy trapping by the long wavelength aggregates as well as 1O2 physical quenching by monomeric and aggregated chlorophyll can be considered as parts of the protective system against singlet oxygen formation.Abbreviations BChl bacteriochlorophyll - MBpd methyl bacteriopheophorbide - Chl chlorophyll - TPP meso-tetraphenylporphyrin - TPPS meso-tetra (p-sulfophenyl) porphyrin  相似文献   

9.
Spatial and temporal distribution of seabird transiting and foraging at sea is an important consideration for marine conservation planning. Using at‐sea observations of seabirds (n = 317), collected during the breeding season from 2012 to 2016, we built boosted regression tree (BRT) models to identify relationships between numerically dominant seabird species (red‐footed booby, brown noddy, white tern, and wedge‐tailed shearwater), geomorphology, oceanographic variability, and climate oscillation in the Chagos Archipelago. We documented positive relationships between red‐footed booby and wedge‐tailed shearwater abundance with the strength in the Indian Ocean Dipole, as represented by the Dipole Mode Index (6.7% and 23.7% contribution, respectively). The abundance of red‐footed boobies, brown noddies, and white terns declined abruptly with greater distance to island (17.6%, 34.1%, and 41.1% contribution, respectively). We further quantified the effects of proximity to rat‐free and rat‐invaded islands on seabird distribution at sea and identified breaking point distribution thresholds. We detected areas of increased abundance at sea and habitat use‐age under a scenario where rats are eradicated from invaded nearby islands and recolonized by seabirds. Following rat eradication, abundance at sea of red‐footed booby, brown noddy, and white terns increased by 14%, 17%, and 3%, respectively, with no important increase detected for shearwaters. Our results have implication for seabird conservation and island restoration. Climate oscillations may cause shifts in seabird distribution, possibly through changes in regional productivity and prey distribution. Invasive species eradications and subsequent island recolonization can lead to greater access for seabirds to areas at sea, due to increased foraging or transiting through, potentially leading to distribution gains and increased competition. Our approach predicting distribution after successful eradications enables anticipatory threat mitigation in these areas, minimizing competition between colonies and thereby maximizing the risk of success and the conservation impact of eradication programs.  相似文献   

10.
Eggs with pip-holes of the black-footed (Diomedea nigripes) and Laysan (Diomedea immutabilis) albatrosses were exposed to various air temperatures in the range 20–35°C in order to detect signs of incipient endothermy in late embryos. No evidence of endothermy was found. In contrast, the O2 consumption of most hatchlings increased in response to cooling, the O2 consumption at an air temperature of 25° C exceeding that between 34 and 35°C by 40%. In a minority of hatchlings this response was not seen. It was suggested that endothermy may develop at some time during the 24 h after hatching.Abbreviations bm body mass - C total total thermal conductance of tissues and plumage - f respiratory frequency - FEO 2 fractional concentration of oxygen in air leaving chamber - FIO 2 fractional concentration of oxygen in air entering chamber - T a an temperature - T b deep-body temperature - V air-flow rate - VO2 oxygen consumption  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号