共查询到20条相似文献,搜索用时 0 毫秒
1.
In three experimental sites in Southern Hesse, differing in management procedures, one- to three-year-old saplings of Quercus robur, Q.pubescens, and Q.ilex were planted to study their performance under Central European climate conditions. Toward the end of the growth period (mid–late September 2011), during a very dry period, we measured JIP transients of photosystem II chlorophyll fluorescence induction curves to evaluate the effects of abiotic site factors on the photosynthetic apparatus by comparing them to data from well-watered saplings measured before the onset of senescence processes. In all three sites, Q. robur saplings in September showed the strongest deviation from the measurements in August, followed by Q. pubescens. Q. ilex, in general, was nearly unaffected by September climate conditions or performed better than plants measured in August. Differences in the behavior between species and sites could be explained by the species’ different drought susceptibility and by differential induction of early leaf senescence (in Q. robur and Q. pubescens). We conclude that measurement of the JIP transient is a feasible method in forestry to compare adverse microclimatic site effects and genetically fixed reactions of the photosynthetic apparatus in the field. 相似文献
3.
Oaks ( Quercus spp.) represent the most important broadleaf genus with respect to forest-shaping tree species in the Mediterranean. Considering future climate scenarios (increased drought conditions), the identification of drought tolerant oak species is of great importance for future forest management in this region. The objective of the study was the comparison of physiological status of three economically and ecologically valuable oak species ( Quercus ilex, Quercus frainetto and Quercus pubescens) co-existing in natural coppice stands in NE Greece, in response to seasonal drought stress. Measurements were conducted between June and September 2016, every 15–20 days until leaf falling. The parameters studied were predawn leaf water potential and fast chlorophyll fluorescence induction curves (OJIP test), chlorophyll content, and relative water content. Meteorological data from the area were also collected. Photosynthetic parameters such as performance indices (PI abs and PI tot) reacted to summer drought conditions, with Q. frainetto showing the lowest values. The discrepancy between species increased with duration of drought period. Q. frainetto revealed the lowest predawn water potential values. The results indicate that Q. frainetto is less suitable for future forestry applications in the studied climate/elevation zone than Q. pubescens and Q. ilex. 相似文献
4.
Dense shrublands constitute highly hazardous fuels in Mediterranean countries. The combination of agricultural land abandonment and fire occurrence in many Mediterranean areas has led to a landscape dominated by shrublands where resprouter species are scarce or absent. Major goals in the management of these areas are to reduce both the fuel loads and their continuity and increase the resilience of the ecosystems by introducing resprouter species. We investigated the performance of one-year-old seedlings of native resprouters, that is, Pistacia lentiscus , Quercus ilex , and Rhamnus alaternus , in a combination of vegetation clearing and mulching with brush chipping in three sites with high amount of fuel load. The planting holes inside the shrublands showed lower radiation and soil surface temperature than those in the cleared areas, whereas soil water content was higher in the mulched holes than in the unmulched ones, especially when water availability was lowest. Seedling survival of Q. ilex and R. alaternus significantly increased within the shrubland; P. lentiscus showed the opposite effect, but its survival was enhanced by the mulching treatment. The three species grew faster in the cleared plots although, unexpectedly, mulching showed a negative effect on Q. ilex relative growth rate in diameter. Our results suggest that the combination of fuel control and reforestation as techniques for shrubland management is an appropriate option, at least in the short term, to redirect vegetation dynamics toward later successional stages, improving ecosystem resilience by the introduction of woody resprouter species. 相似文献
5.
Hurricane Katrina caused large losses of bottomland hardwood forests on the Gulf Coastal Plain. Heavy‐seeded species such as oaks ( Quercus) generally require direct planting for restoration after such losses. However, evaluating the performance of various oak planting stocks using biometric data alone can be challenging due to their slow juvenile growth and belowground carbon allocation. Our study goals were to evaluate physiological parameters including photosynthesis, stomatal conductance, and water‐use efficiency (WUE) and their correlation with annual height growth to determine differences in functional performance and drought tolerance between seedling types and whether physiology can predict height growth. Monthly growing season gas exchange measurements were made on two oak species ( Quercus texana and Quercus shumardii) and three planting stocks (bare root, conventional containerized, large containerized [LC]) planted on two sites in coastal Mississippi. We found that photosynthesis decreased throughout the growing season while stomatal conductances increased leading to decreasing WUEs in all seedling types. Physiological parameters differed across planting stocks but not species. Particularly, LC seedlings exhibited greater WUEs and sensitivity to vapor pressure deficit (VPD) suggesting increased moisture stress compared with other planting stocks. Across seedling types, photosynthesis, stomatal sensitivity to VPD, and seasonal changes in intrinsic WUE measured in year one of the study were significantly correlated with year two, but not year one height growth, suggesting belowground allocation of carbon during the first growing season. In total, these results highlight the use of physiological measurements in selecting successful planting stocks for various site conditions. 相似文献
6.
This paper deals with the possibility of relating root hydraulic parameters to an ecological index describing the continentality/oceanicity of four forest trees. Root hydraulic conductance ($K_R$) of seedlings of Fagus sylvatica L., Quercus ilex L., Quercus suber L. and Quercus pubescens Willd. was measured in May, August and November 1996. $K_R$ was calculated in terms of the relation of the water flow through intact root systems in situ measured with the pressure chamber, and the pressure driving the flow. The sufficiency of the root system to supply the foliage was estimated by dividing $K_R$ by the seedlings leaf surface area ($A_L$) thus obtaining $K_RL$. In the spring, $K_RL$ was largest in F. sylvatica and smallest in Q. pubescens with intermediate values recorded in Q. ilex and Q. suber. All the species studied showed a large decline in $K_RL$ just prior to the winter rest except for Q. suber which mantained $K_RL$ approximately constant through the period of study. In most cases, $K_RL$ changed in accordance with analogous changes in the flow. When the total seedlings' leaf surface area ($A_L$) was plotted versus $K_RL$, it appeared that $K_RL$ of Q. pubescens increased with $A_L$, proportionally, while $K_RL$ of F. sylvatica was inversely related to $A_L$. This, together with the largest $K_RL$ recorded in the summer in Q. pubescens, was interpreted as advantageous to this species (which is adapted to semi-arid environments) in that: (a) roots could supply water to foliage efficiently even during the adverse season and (b) the foliage growth could be sustained even in summer.No statistically significant relation of $K_RL$ to the continentality index calculated for the four species studied on the basis of their European distribution, was found to exist. Nonetheless, our data appear to be encouraging for future research aimed at better interpreting the typical distribution areas of plant species. 相似文献
7.
We analysed the ectomycorrhizal (ECM) fungal diversity in a Mediterranean old-growth Quercus ilex forest stand from Corsica (France), where Arbutus unedo was the only other ECM host. On a 6400 m2 stand, we investigated whether oak age and host species shaped below-ground ECM diversity. Ectomycorrhizas were collected under Q. ilex individuals of various ages (1 yr seedlings; 3-10 yr saplings; old trees) and A. unedo. They were typed by ITS-RFLP analysis and identified by match to RFLP patterns of fruitbodies, or by sequencing. A diversity of 140 taxa was found among 558 ectomycorrhizas, with many rare taxa. Cenococcum geophilum dominated (35% of ECMs), as well as Russulaceae, Cortinariaceae and Thelephoraceae. Fungal species richness was comparable above and below ground, but the two levels exhibited < 20% overlap in fungal species composition. Quercus ilex age did not strongly shape ECM diversity. The two ECM hosts, A. unedo and Q. ilex, tended to share few ECM species (< 15% of the ECM diversity). Implications for oak forest dynamics are discussed. 相似文献
11.
ABSTRACT Gas exchange temperature dependence in Quercus ilex shrubs growing in the Mediterranean maquis was analysed. The gas exchange trend was monitored during the year: photosynthetic activity ( A net) reached the highest average rates in early spring and autumn (12.5 µmol m -2s -1 was the absolute maximum A net measured) and the lowest rates were monitored in the middle of June. There was a good correlation (r = 0.72) between A net and g s ( A net = 4.1246 ln g s + 4316; P < 0.01), indicating that stomatal control of CO 2 diffusion plays an important role in controlling photosynthetic activity. Leaf temperature allowing the highest photosynthetic and stomatal conductance rates of Quercus ilex were in the range 17.5 – 29°C. A net and g s dropped below half its maximum value when leaf temperatures were below 11.5°C and above 35.7°C. Transpiration rates ( E) were strongly related to leaf temperature; E increased as leaf temperature increased and the highest E rates were monitored in June, despite a 46% decrease in g s. Leaf water loss from transpiration, during the drought period, could result in leaf water stress which would exacerbate heat effects on photosynthesis. During summer, the increase in leaf temperatures decreased g s which in turn decreased A net. Consequently, stomatal control in Quercus ilex may be considered as an adaptive strategy during drought. 相似文献
12.
We present 9 years of eddy covariance measurements made over an evergreen Mediterranean forest in southern France. The goal of this study was to quantify the different components of the carbon (C) cycle, gross primary production (GPP) and ecosystem respiration ( Reco), and to assess the effects of climatic variables on these fluxes and on the net ecosystem exchange of carbon dioxide. The Puéchabon forest acted as a net C sink of ?254 g C m ?2 yr ?1, with a GPP of 1275 g C m ?2 yr ?1 and a Reco of 1021 g C m ?2 yr ?1. On average, 83% of the net annual C sink occurred between March and June. The effects of exceptional events such the insect‐induced partial canopy defoliation that occurred in spring 2005, and the spring droughts of 2005 and 2006 are discussed. A high interannual variability of ecosystem C fluxes during summer and autumn was observed but the resulting effect on the annual net C budget was moderate. Increased severity and/or duration of summer drought under climate change do not appear to have the potential to negatively impact the average C budget of this ecosystem. On the contrary, factors affecting ecosystem functioning (drought and/or defoliation) during March–June period may reduce dramatically the annual C balance of evergreen Mediterranean forests. 相似文献
13.
Mycorrhiza samples of neighbouring Quercus ilex and Erica arborea plants collected in a postcutting habitat were processed to see whether plants differing in mycorrhizal status harbour the same root endophytes. Three experiments were performed in parallel: (i) isolation, identification and molecular characterization of fungi from surface-sterilized roots of both plant species; (ii) re-inoculation of fungal isolates on axenic E. arborea and Q. ilex seedlings; (iii) direct inoculation of field-collected Q. ilex ectomycorrhizas onto E. arborea seedlings. About 70 and 150 fungal isolates were obtained from roots of Q. ilex and E. arborea, respectively. Among them, Oidiodendron species and five cultural morphotypes of sterile isolates formed typical ericoid mycorrhizas on E. arborea in vitro. Fungi with such mycorrhizal ability were derived from both host plants. Isolates belonging to one of these morphotypes (sd9) also exhibited an unusual pattern of colonization, with an additional extracellular hyphal net. Ericoid mycorrhizas were also readily obtained by direct inoculation of E. arborea seedlings with Q. ilex ectomycorrhizal tips. Polymerase chain-restriction fragment length polymorphism and random amplified polymorphic DNA analyses of the shared sterile morphotypes demonstrate, in the case of sd9, the occurrence of the same genet on the two host plants. These results indicate that ericoid mycorrhizal fungi associate with ectomycorrhizal roots, and the ecological significance of this finding is discussed. 相似文献
15.
Understanding the response of leaf respiration (R) to changes in irradiance and temperature is a prerequisite for predicting the impacts of climate change on plant function and future atmospheric CO2 concentrations. Little is known, however, about the interactive effects of irradiance and temperature on leaf R. We investigated whether growth irradiance affects the temperature response of leaf R in darkness (Rdark) and in light (Rlight) in seedlings of a broad-leaved evergreen species, Quercus ilex. Two hypotheses concerning Rdark were tested: (1) the Q10 (i.e. the proportional increase in R per 10 degrees C rise in temperature) of leaf Rdark is lower in shaded plants than in high-light-grown plants, and (2) shade-grown plants exhibit a lower degree of thermal acclimation of Rdark than plants exposed to higher growth irradiance. We also assessed whether light inhibition of Rlight differs between leaves exposed to contrasting temperatures and growth irradiances, and whether the degree of thermal acclimation of Rlight is dependent on growth irradiance. We showed that while growth irradiance did impact on photosynthesis, it had no effect on the Q10 of leaf Rdark. Growth irradiance had little impact on thermal acclimation when fully expanded, pre-existing leaves were exposed to contrasting temperatures for several weeks. When Rlight was measured at a common irradiance, Rlight/Rdark ratios were higher in shaded plants due to homeostasis of Rlight between growth irradiance treatments and to the lower Rdark in shaded leaves. We also showed that Rlight does not acclimate to the same degree as Rdark, and that Rlight/Rdark decreases with increasing measuring and growth temperatures, irrespective of the growth irradiance. Collectively, we raised the possibility that predictive carbon cycle models can assume that growth irradiance and photosynthesis do not affect the temperature sensitivity of leaf Rdark of long-lived evergreen leaves, thus simplifying incorporation of leaf R into such models. 相似文献
16.
A systematic survey of the endophytic assemblages of Quercus ilex in central Spain has been performed, with the goal of evaluating the importance of geographical and seasonal factors on these fungal communities. Four sampling sites were selected; one of them was sampled twice, in the spring and the autumn. The collected plant material consisted of bark, twigs and leaves from eight trees per site. Fungal strains were isolated with the use of a surface-sterilization method with sodium hypochlorite. A total of 2921 fungal strains grouped into 149 'species' or morphological types were recovered. The 10 dominant species, with isolation frequencies >1.5%, were Pyrenochaeta sp., Periconiella anamorph of Biscogniauxia mediterranea (De Not.) Kuntze, Pseudonectria sp., Cryptosporiopsis quercina Petrak, Alternaria alternata (Fr:) Keissl., two undetermined coelomycetes, Penicillium funiculosum Thom, Diplodia mutila Fr. apud Mont. and Ascochyta sp. Medians of fungal species per tree were significantly different among the sampled sites. The isolation frequencies of the dominant species, as well as other less frequent species, were significantly dependent on the sampling site. The degree of endophytic infection and the diversity of fungal species were significantly higher in the spring. The frequencies of all dominant species at one of the sites depended significantly on the season, except for C. quercina , Acremonium sclerotigenum (F & V Moreau ex Valenta) Gams. and D. mutila . Cluster analysis of the whole endophytic mycoflora of the sampled trees suggested that the geographical factor affects the endophytic distribution patterns more significantly than the seasonal factor. 相似文献
17.
Background: Serpentine ecosystems support different, often unique, plant communities; however, we know little about the soil organisms that associate with these ecosystems. Mycorrhizas, mutualistic symbioses between fungi and roots, are critical to nutrient cycling and energy exchange below ground. Aims: We address three hypotheses: H1, diversity of mycorrhizal fungi in serpentine soils mirrors above-ground plant diversity; H2, the morphology of mycorrhizas and fungi on serpentine soils differs from that on non-serpentine; and H3, mycorrhizal fungal communities of the same or closely related hosts differ between serpentine and non-serpentine soils. Methods: This review focuses on whether plant diversity on serpentine soils correlates with the below ground diversity of mycorrhizal fungi. Results: Studies show that plants and fungi formed abundant ectomycorrhizal and arbuscular mycorrhizal symbioses on and off serpentine soils. No serpentine-endemic fungi were identified. Molecular analyses indicate distinct serpentine isolates for Cenococcum geophilum and for Acaulospora, suggesting adaptation to serpentine soils. While fungal sporocarp assemblages on serpentine sites resembled those off serpentine, fruiting of hypogeous fungi was greatly reduced. Conclusions: Ectomycorrhizal fungal communities did not differ between soil types; however, arbuscular mycorrhizal communities differed in some cases but not others. The additive response to multiple factors, described as the serpentine syndrome, may explain part of the response by fungi. 相似文献
18.
Effects of temperature and photoperiod and their interactions on budburst and on the use of carbon reserves were examined in two Mediterranean oaks differing in wood anatomy and leaf habit. Seedlings of Quercus ilex subsp. ballota (evergreen and diffuse-porous wood) and Q. faginea (semi-deciduous and ring-porous wood) were grown under two temperatures (12 and 19 °C) and two photoperiods (10 and 16 h) in a factorial experiment. In the 16 h photoperiod at 19 °C, photosynthesis was suppressed in half of the seedlings by covering leaves with aluminium foil. The concentration of soluble sugars, starch and lipids in leaves, stems and roots was assessed before and after budburst. Under the 12 °C treatment (mean current temperature in early spring in the Iberian Peninsula), budburst in Q. faginea occurred earlier than in Q. ilex . Higher temperature promoted earlier budburst in both species, mostly under the 16 h photoperiod. This response was less pronounced in Q. faginea because its budburst was also controlled by photoperiod, and because this species needs to construct a new ring of xylem before budburst to supply its growth demands. Therefore, dates of budburst of the two species became closer to each other in the warmer treatment, which might alter competitive relations between the species with changing climate. While Q. ilex relied on carbon reserves for budburst, Q. faginea relied on both carbon reserves and current photoassimilates. The different responses of the two Quercus species to temperature and photoperiod related more to xylem structure than to the source of carbon used for budburst. 相似文献
19.
意大利威尼托大区刺叶栎(Quercusilex L.)林物种多样性指数和物种多度分布的研究表明:1.Menhinick 指数、Shannon 指数、Brillouin 指数、Sim pson 指数、Pielou 均匀度指数、Brillouin 均匀度指数、PIE的V 均匀度指数、PIE的V均匀度指数和McIntosh 均匀度指数较为适用。它们反映从加尔达湖区到FocidelTagliam ento、Bosco Nordio、ColliEuganei刺叶栎林的物种多样性指数依次降低。2. 几何分布最适用于威尼托的刺叶栎林的物种多度分布,Log-norm al分布也较适合。物种多度分布模型反映在生物多样性上,其结果与物种多样性指数一致。3. 生物多样性并非绝对随群落演替的顺向发展而增加。在演替早期,由于无明显优势种,物种的优势度较低,物种多样性指数较高。随着演替的进行和优势度的增加,多样性变小。演替的进一步进行,由于群落结构的复杂及物种的增加,多样性又将随演替发展而增加 相似文献
20.
Leaves of the monoterpene emitter Quercus ilex were exposed to a temperature ramp with 5 °C steps from 30 to 55 °C while maintained under conditions in which endogenous emission of monoterpenes was allowed or suppressed, or under fumigation with selected exogenous monoterpenes. Fumigation with monoterpenes reduced the decline of photosynthesis, photorespiration and monoterpene emission found in non-fumigated leaves exposed to high temperatures. It also substantially increased respiration when photosynthesis and photorespiration were inhibited by low O 2 and CO 2-free air. These results indicate that, as previously reported for isoprene, monoterpenes may help plants cope with heat stress. Monoterpenes may enhance membrane stability, thus providing a rather non-specific protection of photosynthetic and respiratory processes. Monoterpene emission was maximal at a temperature of 35 °C and was inhibited at higher temperatures. This is likely to be the result of the temperature dependency of the enzymes involved in monoterpene synthesis. In contrast to other monoterpenes, cis- and trans- β -ocimene did not respond to exposure to high temperatures. Cis- β -ocimene also did not respond to low O 2 or to fumigation. These results indicate that cis and trans- β -ocimene may have a different pathway of formation that probably does not involve enzymatic synthesis. 相似文献
|