首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
不同植物叶片水分利用效率对光和CO2的响应与模拟   总被引:2,自引:0,他引:2  
植物叶片水分利用效率的高低取决于气孔控制的光合作用和蒸腾作用两个相互耦合的过程,模拟水分利用效率对环境变化的响应特征和机制是理解生态系统碳循环和水循环及其耦合关系的基础.研究通过人工控制光强和CO2浓度,对叶片水分利用效率进行了研究.提出了植物水分利用效率在光强和CO2浓度共同作用下的估算模型.数据分析表明,该模型在包括C3和C4植物、草本和木本植物在内的9种植物上能很好地模拟水分利用效率对光强和CO2浓度共同作用的响应.该模型可以用于估算CO2浓度升高条件下光合速率的提高和蒸腾速率的降低对水分利用效率提高的贡献量.CO2浓度变化条件下,水分利用效率在不同植物之间有巨大差异,研究区域尺度植物的水分利用效率时至少需要将植物区分为C4植物和C3植物,其中C3植物区分为草本和木本植物3种生态功能型才能较为准确地估算植物的整体水分利用效率.应用本研究提出的水分利用效率估算模型和植物水分利用效率生态功能型分类标准,可以为建立以植物的水分利用效率为基本参数的陆地生态系统水循环模型和陆地生态系统生产力模型提供重要依据.  相似文献   

2.
大豆对臭氧、二氧化碳及其复合效应的响应   总被引:5,自引:0,他引:5  
以大豆‘中黄14'为试验材料,首次模拟研究大气中O3、CO2浓度增加,及其逐渐和持续增加O3、CO2浓度复合效应对大豆的影响.结果表明,CO2浓度增加可缓解O3对叶片的伤害程度,受害时间推迟,受害症状无实质性变化.熏气20 d测定各处理叶片生理参数发现,在本底大气环境下,叶片气孔阻力和蒸腾速率与对照差异较小,熏气时O3、CO2浓度增加诱导叶片气孔关闭,气孔阻力明显增加,蒸腾速率显著降低.与对照相比,O3浓度增加,大豆干物质积累、产量和收获指数明显降低,籽粒粗脂肪含量明显减少,粗蛋白含量显著增加;CO2浓度增加,干物质积累和产量显著提高,收获指数无明显差异,籽粒粗脂肪和粗蛋白含量均明显减少;逐渐和持续增加O3和CO2浓度复合效应处理下,大豆干物质积累、产量和收获指数差异不明显,籽粒粗蛋白含量不同程度地减少,粗脂肪含量显著增加.  相似文献   

3.
红豆草与土壤氮含量对大气二氧化碳浓度升高的响应   总被引:1,自引:0,他引:1  
在封闭的植物培养箱中,通过盆栽实验,研究了红豆草和土壤氮含量对CO2浓度增加的响应.结果表明,与正常CO2浓度(355~370 μmol·mol-1)相比,CO2浓度升高(700 μmol·mol-1),植物生物量增加25.1%(P<0.01),但植物体氮浓度降低25.3%(P<0.001),植物全氮没有显著的变化.经3个月盆栽实验后,与原始土壤相比,两种CO2浓度处理土壤全N、NO3--N和NH4+-N都有所降低,而土壤微生物氮则显著增加,这可能与植物生长有关.不同CO2浓度处理土壤NH4+-N浓度基本一致,但在高CO2浓度下,土壤NO3--N浓度显著降低,而微生物生物氮显著增加.对整个土壤-植物系统而言,盆栽实验后,整个系统全氮有少量增加,但变化不显著,特别是在高CO2浓度条件下,土壤-植物系统全氮最大,这可能与培养材料红豆草为豆科植物,而且在高CO2浓度下生物量增加,导致氮的固定量增加有关.  相似文献   

4.
大气CO2浓度升高对森林食叶昆虫的潜在影响   总被引:2,自引:0,他引:2  
评述了大气CO2浓度升高对森林食叶昆虫的影响,昆虫对森林取食为害水平的潜在变化,以及研究中的主要实验方法.大气CO2浓度升高通过引起叶片化学变化进而影响食叶昆虫个体的取食和生长;但物种对环境变化反应的特异性、植物化学对高浓度CO2的反应强度、昆虫对植物生理变化的敏感性和适应性、研究周期的长短、其它环境因子的协同效应以及不同实验中植物生长条件和研究方法的差异均将影响昆虫反应的方向和强度;CO2气体浓度增高本身可能不足以对食叶昆虫个体的新陈代谢构成影响;大气CO2浓度升高也可能影响森林食叶昆虫种群的大小.  相似文献   

5.
开放式空气CO2浓度增高对水稻生长发育影响的研究进展   总被引:12,自引:2,他引:10  
地球大气中CO2浓度不断升高已是不争的事实.CO2浓度升高势必对植物的生长发育过程产生深刻的影响.水稻是世界上最重要的作物之一,也是中国第一大作物.结合气室条件下的研究结果,从光合作用、水分关系、生育期、叶片和根系生长、物质生产与分配、化学组分以及产量和品质等方面,重点收集和整理了开放式空气中CO2浓度增高 (FACE) 对水稻生长发育影响的研究进展,并讨论了该领域有待深入研究的方向.  相似文献   

6.
乔匀周  王开远  张远彬 《生态学报》2007,27(4):1333-1342
研究了两个种植密度下,红桦 (Betula albosinensis)苗冠结构特征对CO2浓度的响应,在此基础上探讨了CO2浓度升高对植物竞争压力的影响。结果表明,冠幅、冠高、苗冠表面积和苗冠体积均受CO2浓度升高的影响而增加,但是受密度增加的影响而降低。CO2浓度升高对苗冠的促进效应在低密度条件下大于高密度处理,高密度条件下苗冠基本特征部分地受到CO2浓度升高的促进作用;升高种植密度的效应则在高CO2浓度条件下大于现行CO2浓度处理。高CO2浓度和高密度条件下,LDcpa(单位苗冠投影面积叶片数)、LDcv(单位苗冠体积叶片数) 和苗冠底部枝条的枝角均低于相应的现行CO2浓度处理和低密度处理,这主要是由于冠幅和冠高的快速生长所造成的。升高CO2浓度对枝条长度的影响与枝条在主茎上所处位置有关。总之,升高CO2浓度有利于降低增加种植密度对苗冠所带来的负效应,而增加种植密度降低了升高CO2浓度的正效应。LDcpaLDcv的降低表明,红桦在升高CO2浓度和种植密度的条件下,会作出积极的响应,从而缓解由于生长的增加所带来的竞争压力的增加。  相似文献   

7.
 为了比较C4荒漠植物猪毛菜(Salsola collina)和木本猪毛菜(S. arbuscula)的抗旱结构和适应环境的光合作用特征, 在二者混生的群落中, 选择代表性植株, 采集叶片进行叶片解剖结构分析, 在自然条件下测定了二者叶片的气体交换参数。研究结果表明:猪毛菜叶片具表皮毛, 具有更发达的薄壁贮水组织;木本猪毛菜叶片具有更厚的角质层, 表皮下有1层下皮细胞, 其栅栏组织细胞较长, 排列更紧密。猪毛菜的净光合速率明显高于木本猪毛菜, 日平均值分别为21.5和15.7 μmol CO2·m–2·s–1。猪毛菜的蒸腾速率也明显高于木本猪毛菜, 日平均值分别为14.9和10.2 mmol·m–2·s–1。猪毛菜和木本猪毛菜的水分利用效率的日平均值分别为1.39和1.53 μmol CO2·mmol–1 H2O, 特别是在14:00时分别为1.61和2.30 μmol CO2·mmol–1 H2O, 木本猪毛菜高出猪毛菜约42%。猪毛菜的光补偿点低于木本猪毛菜, 而光饱和点和光量子效率较高, 具有更低的CO2补偿点。这表明:二者的旱生结构不同, 木本猪毛菜具有更显著的荒漠植物特征;在适于二者混生的环境下, 猪毛菜比木本猪毛菜的光合能力更强, 而木本猪毛菜的水分利用效率更高。  相似文献   

8.
以番茄(Lycopersicon esculeutum)为研究对象,在人工模拟8.40 kJ·m-2的UV-B辐射和700 μmol·mol-1的CO2浓度复合处理下,研究了番茄的生长和果实品质变化.结果表明,UV-B辐射使番茄的株高、鲜重、干重、总叶绿素、叶绿素a、叶绿素b、光合速率、水分利用效率、可溶性蛋白、维生素c及番茄红素等降低,导致果实品质恶化;而CO2浓度倍增作用相反.在UV-B辐射增强和CO2浓度倍增复合作用下,番茄的上述指标与对照相比差异不明显.分析认为,CO2倍增与UV-B辐射增强复合处理下,CO2的正效应作用可以减轻甚至抵消UV-B辐射的负效应.  相似文献   

9.
 为探讨西双版纳独特地方气候背景下,热带季节雨林CO2浓度的时空变化特征和不同时间尺度上环境因素对森林CO2浓度时间分布的作用,以及 为研究热带季节雨林的碳通量、净生态系统交换量(Net ecosystem exchange, NEE)等提供支持,我们利用热带季节雨林林冠上方和林内近地层 CO2浓度连续监测资料,结合同步气象资料进行了统计分析。研究结果表明:在植被生理活动、土壤呼吸以及林内湍流的共同作用下,西双版纳 热带季节雨林CO2浓度表现出明显的日变化、季节变化和林冠上下差异。在日尺度上,林冠上方的CO2浓度时间变化曲线为“单峰型”,林内近 地层CO2浓度时间变化曲线为“双峰型”,造成林内近地层傍晚第二个峰值的主要因子是地形因子作用下形成的局地环流。在季节尺度上,林冠 上方CO2浓度主要受林冠代谢作用的影响,呈现雨季低、干季高的特点,而林内近地层的CO2浓度则主要受地表呼吸过程所控制,季节变化趋势 与林冠上方相反。林冠上方CO2浓度低于林内近地层CO2浓度,且差异较大;在日尺度上,各月(除12月外)CO2浓度的最大差值皆大于80 mg·m -3,且出现在傍晚;在季节尺度上,最大值为-62.9 mg·m-3,出现在10月,最小值为-8.4 mg·m-3,出现在12月。  相似文献   

10.
遮光处理对西葫芦幼苗形态特征及光合生理特性的影响   总被引:19,自引:4,他引:15  
研究了不同遮光处理对西葫芦幼苗形态及光合生理特性的影响.结果表明,在60%透光率条件下,西葫芦幼苗具有较高的相对生长率、净光合速率、气孔导度、蒸腾速率、单叶水分利用效率、饱和蒸汽压、表观量子效率和叶绿素含量,而胞间CO2浓度较低;西葫芦幼苗具有较高的光饱和点(1 125 μmol·m-2·s-1)、较低的光补偿点(15.2 μmol·m-2·s-1).弱光下西葫芦幼苗较耐低浓度CO2,而强光下的幼苗较耐高浓度CO2.60%透光率下西葫芦幼苗叶片丙二醛和脯氨酸含量最低,而过氧化物酶和过氧化氢酶活性则最高.  相似文献   

11.
Wang J L  Yu G R  Fang Q X  Jiang D F  Qi H  Wang Q F 《农业工程》2008,28(2):525-533
Photosynthesis coupled with transpiration determines water use efficiency (WUE) at leaf level, and the responses of WUE controlled by gas exchanges through stomata to environment are the basis of carbon and water cycles in the ecosystem. In this paper, by using Li-6400 Portable Photosynthesis System (LI-COR), WUE at leaf level was analyzed under controlled photosynthetic photons flux density (PPFD) and CO2 concentration conditions across 9 plant species including maize (Zea mays), sorghum (Sorghum vulgare), millet (Setaria italica), soybean (Glycine max), peanut (Arachis phyogaea), sweet potato (Ipomoea batatas), rice (Oryza sativa), Masson pine (Pinus massoniana) and Schima superba. We had developed a new model to estimate the water use efficiency in response to the combined effects of light and CO2 concentration. Our measured data validated that this model could simulate the changes of water use efficiency very well under combined effect of light and CO2 concentration. It could be used to estimate contribution of photosynthesis increase and transpiration decline on water use efficiency with the rising of CO2 concentration. Great differences in water use efficiency occurred in these different plant species under various CO2 concentration levels. Based on water use efficiency at regional scale, we concluded that plants should be separated into C3 plants and C4 plants, and furthermore, C3 plants should be separated into herbaceous plants and woody plants. Our separation criteria would do a great favor in modeling the evapotranspiration of terrestrial ecosystem with carbon and water balance.  相似文献   

12.
 在人工控制光照强度和CO2浓度条件下,测量了禾本科C4植物狗尾草(Setaria viridis)的光合速率(Pn),蒸腾速率(Tr),胞间CO2浓度(Ci),气孔导度(Gs)和叶面饱和水汽压亏缺(Vpdl)对不同模拟光辐射(SPR)强度与CO2浓度的响应。结果表明:Pn, Tr 及Gs均随SPR的升高而增大,增幅趋缓,最终趋于动态平衡。SPR增强的起始阶段,水分利用率(WUE)逐渐增大,在SPR为1200 μmol·m-2·s-1时达到最大值,然后逐渐降低。Ci与Vpdl则随SPR的增强而减小,SPR高于600 μmol·m-2·s-1之后,两者均达到平衡状态。CO2浓度从300增至600 μmol·mol-1的过程中,狗尾草Pn逐渐增大,从600增至1 000 μmol·mol-1过程中,其Pn逐渐降低。Ci、Vpdl和WUE随CO2浓度的升高而增大,Gs和Tr则随CO2浓度的升高而减小。即禾本科一年生C4植物的光合作用对CO2浓度升高响应不敏感,水分蒸腾消耗的减少和WUE的提高对CO2浓度升高的响应极显著。可见,CO2浓度升高对C4植物光合作用的直接促进作用有限,但是却能从提高现有水分利用效率途径促进植物的第一性生产。  相似文献   

13.
不同生境间红树科植物水分利用效率的比较研究   总被引:16,自引:0,他引:16       下载免费PDF全文
通过测定采自4个地区(海南、厦门、北海和西双版纳)的红树科6个属共9种植物,包括竹节树(Carallia brachiata)、锯叶竹节树(C. diphopetala)、山红树(Pellacalyx yunnanensis)、红树(Rhizophora apiculata)、红海榄(R. stylosa)、海莲(Bruguiera sexangula)、木榄(B. gymnorhiza)、秋茄(Kandelia candel)和角果木(Ceriops tagal)的叶片碳同位素比值(δ13C),比较了不同地区分布的红树科植物(尤其是内陆生长的和沿海生长的红树科植物之间)、同一地区分布不同种红树科植物间以及不同季节红树科植物δ13C值及其所反映的胞间CO2浓度和水分利用效率的差异。研究结果表明,红树科植物叶片的δ13C变化在-32‰~-26‰之间,大部分种类在两个生长季之间(春季和秋季)没有明显的差异,而内陆和沿海分布的红树科植物有着显著不同的δ13C值,以海水中生长的红树科植物δ13C值较高。此外,在海水中生长的红树科植物以北海地区分布的为最高,而在厦门和海南之间则较少有显著性的差异。从所取得的结果来看,植物δ13C值之间的差异可能有遗传学的基础,但环境的影响也起很大的作用。  相似文献   

14.
孙伟  王德利  王立  杨允菲 《生态学报》2003,23(4):814-819
利用人工模拟光源研究了两种 C4 光合途径禾本科植物 (虎尾草、狗尾草 )和两种 C3光合途径藜科植物 (藜、绿藜 )的光合速率 ( Pn)、蒸腾速率 ( Tr)、水分利用率 ( WUE)、气孔导度 ( Gs)、胞间 CO2 浓度 ( Ci)及叶面饱和蒸气压亏缺 ( Vpdl)随模拟光辐射 ( SPR)增强的变化规律及 Gs、Ci、Vpdl对 Tr和 WUE的影响。结果表明 :( 1 ) 4种植物的 Pn和 Tr均随 SPR增强而增大 ,两种藜科植物最大净 Pn和 Tr均高于两种禾本科植物的最大净 Pn和 Tr。 ( 2 ) WUE随 SPR增强先增大后减小 ,两种禾本科植物和两种藜科植物分别在SPR为 40 0、1 2 0 0 μmol/( m2·s)时达到最大值 ,禾本科植物的最大 WUE明显高于藜科植物。 ( 3) 4种植物的 Gs、Ci均随 SPR的增强而减小 ,两种藜科植物的 Gs和 Ci均显著高于两种禾本科植物。4种植物的 Vpdl均随 SPR增强而增大 ,禾本科植物高于藜科植物。实验表明 ,在以水分为限制因素的半干旱草原区 ,禾本科植物具有更好的保水机制和更高的水分利用效率 ,与藜科植物相比 ,在水分生态上具有一定的竞争优势。  相似文献   

15.
 采用LI—6000便携式光合分析系统对毛乌素沙区主要植物种油蒿、中间锦鸡儿、旱柳进行了不同时期光合作用,蒸腾作用日进程的测定,并同步测定有效光辐射、空气相对湿度、叶温、气温、胞间CO2浓度、气孔阻力、叶片水势及土壤水势等因子;结果表明:不同时期、不同植物种其光合、蒸腾特征各异;植物的光合、蒸腾与环境因子和植物内部因子之间有密切关系,其中有效光辐射是影响光合作用、蒸腾作用诸因子中的主导因子,而气孔阻力变化则在调节光合和蒸腾中起着重要作用;不同植物种间气孔对环境条件变化的响应程度不同,以中间锦鸡儿最为灵敏;3种植物的水分利用效率表明,中间锦鸡儿的水分利用效率较油蒿、旱柳为高。  相似文献   

16.
研究了干旱、CO2 浓度和温度升高对春小麦生育期、光合速率 (Pn)、蒸发蒸腾 (ET)及水分利用效率 (WUE)的影响 .结果表明 ,大气CO2 浓度升高 (5 5 0、70 0 μmol·mol-1)虽可延长抽穗 成熟期 ,但高温 (日平均温度高于正常日平均温度约 4 .8℃ )对生育期的影响远大于高CO2 影响 ,使得高CO2 、高温下抽穗 成熟期缩短 ,且种子提前萌发 ;CO2 浓度升高和高温共同作用使各水分处理的小麦光合增强、气孔阻力增加、叶片水平的水分利用效率 (WUEl)和群体水平的水分利用效率 (WUE)增大 ,但对蒸腾速率影响不显著 .对蒸发蒸腾的影响因不同的土壤水分而不同 ,在高 (田间持水量的 75 %~ 85 % )、中 (田间持水量的 5 5 %~6 5 % )水分条件下 ,高温和高CO2 使蒸发蒸腾增加 ,而在低水分条件 (田间持水量的 35 %~ 4 5 % )下 ,高温和高CO2 使蒸发蒸腾减少  相似文献   

17.
Plant water‐use efficiency (WUE, the carbon gained through photosynthesis per unit of water lost through transpiration) is a tracer of the plant physiological controls on the exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere. At the leaf level, rising CO2 concentrations tend to increase carbon uptake (in the absence of other limitations) and to reduce stomatal conductance, both effects leading to an increase in leaf WUE. At the ecosystem level, indirect effects (e.g. increased leaf area index, soil water savings) may amplify or dampen the direct effect of CO2. Thus, the extent to which changes in leaf WUE translate to changes at the ecosystem scale remains unclear. The differences in the magnitude of increase in leaf versus ecosystem WUE as reported by several studies are much larger than would be expected with current understanding of tree physiology and scaling, indicating unresolved issues. Moreover, current vegetation models produce inconsistent and often unrealistic magnitudes and patterns of variability in leaf and ecosystem WUE, calling for a better assessment of the underlying approaches. Here, we review the causes of variations in observed and modelled historical trends in WUE over the continuum of scales from leaf to ecosystem, including methodological issues, with the aim of elucidating the reasons for discrepancies observed within and across spatial scales. We emphasize that even though physiological responses to changing environmental drivers should be interpreted differently depending on the observational scale, there are large uncertainties in each data set which are often underestimated. Assumptions made by the vegetation models about the main processes influencing WUE strongly impact the modelled historical trends. We provide recommendations for improving long‐term observation‐based estimates of WUE that will better inform the representation of WUE in vegetation models.  相似文献   

18.
冬小麦对有限水分高效利用的生理机制   总被引:18,自引:3,他引:15  
通过对不同土壤供水条件下的孕穗开花期的冬小麦叶片CO2/H2O气体交换参数的系统测定,研究了光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、细胞间隙CO2浓度(Ci)、叶温(Tl)与水分利用效率(WUE)间的关系。结果表明,WUE并不随Pn的增长直线增长,而是呈现出二次曲线的变化趋势;只有当蒸腾达到一定程度时,Tr才对WUE产生影响,而Tr过大时WUE则有下降的趋势;WUE与Ci呈负相关,随Ci的增加WUE呈递减趋势;叶温升高对光合和蒸腾都有促进作用,当超过了某种限度则表现为抑制作用,表明在一定温度范围内,Tl升高对水分利用不利;随Gs的增大,WUE增大到一定程度则不再增加,甚至出现一种回落趋势.  相似文献   

19.
Wind increases leaf water use efficiency   总被引:1,自引:0,他引:1       下载免费PDF全文
A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf‐scale analysis suggests that the observed global decrease in near‐surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long‐term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re‐evaluation of the role of wind in plant water relations and potential re‐interpretation of temporal and geographic trends in leaf sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号