首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Type-I DNA restriction–modification (R/M) systems are important agents in limiting the transmission of mobile genetic elements responsible for spreading bacterial resistance to antibiotics. EcoKI, a Type I R/M enzyme from Escherichia coli, acts by methylation- and sequence-specific recognition, leading to either methylation of DNA or translocation and cutting at a random site, often hundreds of base pairs away. Consisting of one specificity subunit, two modification subunits, and two DNA translocase/endonuclease subunits, EcoKI is inhibited by the T7 phage antirestriction protein ocr, a DNA mimic. We present a 3D density map generated by negative-stain electron microscopy and single particle analysis of the central core of the restriction complex, the M.EcoKI M2S1 methyltransferase, bound to ocr. We also present complete atomic models of M.EcoKI in complex with ocr and its cognate DNA giving a clear picture of the overall clamp-like operation of the enzyme. The model is consistent with a large body of experimental data on EcoKI published over 40 years.  相似文献   

2.
Phosphorylation of Type I restriction-modification (R-M) enzymes EcoKI, EcoAI, and EcoR124I - representatives of IA, IB, and IC families, respectively - was analysed in vivo by immunoblotting of endogenous phosphoproteins isolated from Escherichia coli strains harbouring the corresponding hsd genes, and in vitro by a phosphorylation assay using protein kinase present in subcellular fractions of E. coli. From all three R-M enzymes, the HsdR subunit of EcoKI system was the only subunit that was phosphorylated. Further, evidence is presented that HsdR is phosphorylated in vivo only when coproduced with HsdM and HsdS subunits - as part of assembled EcoKI restriction endonuclease, while the individually produced HsdR subunit is not phosphorylated. In vitro phosphorylation of the HsdR subunit of purified EcoKI endonuclease occurs on Thr, and is strictly dependent on the addition of a catalytic amount of cytoplasmic fraction isolated from E. coli. So far this is the first case of phosphorylation of a Type I R-M enzyme reported.  相似文献   

3.
Although the DNA cleavage mechanism of Type I restriction–modification enzymes has been extensively studied, the mode of cleavage remains elusive. In this work, DNA ends produced by EcoKI, EcoAI and EcoR124I, members of the Type IA, IB and IC families, respectively, have been characterized by cloning and sequencing restriction products from the reactions with a plasmid DNA substrate containing a single recognition site for each enzyme. Here, we show that all three enzymes cut this substrate randomly with no preference for a particular base composition surrounding the cleavage site, producing both 5′- and 3′-overhangs of varying lengths. EcoAI preferentially generated 3′-overhangs of 2–3 nt, whereas EcoKI and EcoR124I displayed some preference for the formation of 5′-overhangs of a length of ~6–7 and 3–5 nt, respectively. A mutant EcoAI endonuclease assembled from wild-type and nuclease-deficient restriction subunits generated a high proportion of nicked circular DNA, whereas the wild-type enzyme catalyzed efficient cleavage of both DNA strands. We conclude that Type I restriction enzymes require two restriction subunits to introduce DNA double-strand breaks, each providing one catalytic center for phosphodiester bond hydrolysis. Possible models for DNA cleavage are discussed.  相似文献   

4.
Type I restriction-modification (RM) systems are comprised of two multi-subunit enzymes, the methyltransferase (~160 kDa), responsible for methylation of DNA, and the restriction endonuclease (~400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits. An engineered RM system, EcoR124I(NT), based on the N-terminal domain of the specificity subunit of EcoR124I was constructed that recognises the symmetrical sequence GAAN(7)TTC and is active as a methyltransferase. Here, we investigate the restriction endonuclease activity of R. EcoR124I(NT)in vitro and the subunit assembly of the multi-subunit enzyme. Finally, using small-angle neutron scattering and selective deuteration, we present a low-resolution structural model of the endonuclease and locate the motor subunits within the multi-subunit enzyme. We show that the covalent linkage between the two target recognition domains of the specificity subunit is not required for subunit assembly or enzyme activity, and discuss the implications for the evolution of Type I enzymes.  相似文献   

5.
Type I DNA restriction/modification systems are oligomeric enzymes capable of switching between a methyltransferase function on hemimethylated host DNA and an endonuclease function on unmethylated foreign DNA. They have long been believed to not turnover as endonucleases with the enzyme becoming inactive after cleavage. Cleavage is preceded and followed by extensive ATP hydrolysis and DNA translocation. A role for dissociation of subunits to allow their reuse has been proposed for the EcoR124I enzyme. The EcoKI enzyme is a stable assembly in the absence of DNA, so recycling was thought impossible. Here, we demonstrate that EcoKI becomes unstable on long unmethylated DNA; reuse of the methyltransferase subunits is possible so that restriction proceeds until the restriction subunits have been depleted. We observed that RecBCD exonuclease halts restriction and does not assist recycling. We examined the DNA structure required to initiate ATP hydrolysis by EcoKI and find that a 21-bp duplex with single-stranded extensions of 12 bases on either side of the target sequence is sufficient to support hydrolysis. Lastly, we discuss whether turnover is an evolutionary requirement for restriction, show that the ATP hydrolysis is not deleterious to the host cell and discuss how foreign DNA occasionally becomes fully methylated by these systems.  相似文献   

6.
The methyltransferase component of type I DNA restriction and modification systems comprises three subunits, one DNA sequence specificity subunit and two DNA modification subunits. Limited proteolysis of the EcoKI methyltransferase shows that a 55-kDa N-terminal fragment of the 59-kDa modification subunit is resistant to degradation. We have purified this fragment and determined by mass spectrometry that proteolysis removes 43 or 44 amino acids from the C-terminus. The fragment fails to interact with the other subunits even though it still possesses secondary and tertiary structure and the ability to bind the S-adenosylmethionine cofactor. We conclude that the C-terminal region of the modification subunit of EcoKI is essential for the assembly of the EcoKI methyltransferase.  相似文献   

7.
Although DNA-recognition sequences are among the most important characteristics of restriction enzymes and their corresponding methylases, determination of the recognition sequence of a Type-I restriction enzyme is a complicated procedure. To facilitate this process we have previously developed plasmid R-M tests and the computer program RM search. To specifically identify Type-I isoschizomers, we engineered a pUC19 derivative plasmid, pTypeI, which contains all of the 27 Type-I recognition sequences in a 248-bp DNA fragment. Furthermore, a series of 27 plasmids (designated 'reference plasmids'), each containing a unique Type-I recognition sequence, were also constructed using pMECA, a derivative of pUC vectors. In this study, we tried those vectors on 108 clinical E. coli strains and found that 48 strains produced isoschizomers of Type I enzymes. A detailed study of 26 strains using these 'reference plasmids' revealed that they produce seven different isoschizomers of the prototypes: EcoAI, EcoBI, EcoKI, Eco377I, Eco646I, Eco777I and Eco826I. One strain EC1344 produces two Type I enzymes (EcoKI and Eco377I).  相似文献   

8.
The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5'-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can 'turnover' in vitro, i.e. whether they can catalyse translocation and cleavage events on one DNA molecule, dissociate and then re-bind a second DNA molecule. Translocation termination by both EcoKI and EcoR124I leads to HsdR dissociation from linear DNA but not from circular DNA. Following DNA cleavage, the HsdR subunits appear unable to dissociate even though the DNA is linear, suggesting a tight interaction with the cleaved product. The MTases of EcoKI and EcoAI can dissociate from DNA following either translocation or cleavage and can initiate reactions on new DNA molecules as long as free HsdR molecules are available. In contrast, the MTase of EcoR124I does not turnover and additional cleavage of circular DNA is not observed by inclusion of RecBCD, a helicase-nuclease that degrades the linear DNA product resulting from Type I cleavage. Roles for Type I restriction endonuclease subunit dynamics in restriction alleviation in the cell are discussed.  相似文献   

9.
Cellular localization of Type I restriction-modification enzymes EcoKI, EcoAI, and EcoR124I-the most frequently studied representatives of IA, IB, and IC families-was analyzed by immunoblotting of subcellular fractions isolated from Escherichia coli strains harboring the corresponding hsd genes. EcoR124I shows characteristics similar to those of EcoKI. The complex enzymes are associated with the cytoplasmic membrane via DNA interaction as documented by the release of the Hsd subunits from the membrane into the soluble fraction following benzonase treatment. HsdR subunits of the membrane-bound enzymes EcoKI and EcoR124I are accessible, though to a different extent, at the external surface of cytoplasmic membrane as shown by trypsinization of intact spheroplasts. EcoAI strongly differs from EcoKI and EcoR124I, since neither benzonase nor trypsin affects its association with the cytoplasmic membrane. Possible reasons for such a different organization are discussed in relation of the control of the restriction-modification activities in vivo.  相似文献   

10.
The transmissive plasmid IncI1 R64 contains the ardA gene encoding the ArdA antirestriction protein. The R64 ardA gene locating in the leading region of plasmid R64 has been cloned and their sequence has been determined. Antirestriction proteins belonging to the Ard family are specific inhibitors of type I restriction-modification enzymes. The IncI1 ColIb-P9 and R64 are closely related plasmids, and the latter specifies an ArdA homologue that is predicted to be 97.6% (162 residues from 166) identical at the amino acid sequence level with the ColIb = P9 equivalent. However, the R64 ArdA selectively inhibits the restriction activity of EcoKi enzyme leaving significant levels of modification activity under conditions in which restriction was almost completely prevented. The ColIb-P9 ArdA inhibits restriction endonuclease and methyltransferase activities simultaneously. It is hypothesized that the ArdA protein forms two complexes with the type I restriction-modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonuclease. The association of the ColIb-P9 ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of the R64 ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

11.
1953 was a historical year for biology, as it marked the birth of the DNA helix, but also a report by Bertani and Weigle on ‘a barrier to infection’ of bacteriophage λ in its natural host, Escherichia coli K-12, that could be lifted by ‘host-controlled variation’ of the virus. This paper lay dormant till Nobel laureate Arber and PhD student Dussoix showed that the λ DNA was rejected and degraded upon infection of different bacterial hosts, unless it carried host-specific modification of that DNA, thus laying the foundations for the phenomenon of restriction and modification (R-M). The restriction enzyme of E.coli K-12, EcoKI, was purified in 1968 and required S-adenosylmethionine (AdoMet) and ATP as cofactors. By the end of the decade there was substantial evidence for a chromosomal locus hsdK with three genes encoding restriction (R), modification (M) and specificity (S) subunits that assembled into a large complex of >400 kDa. The 1970s brought the message that EcoKI cut away from its DNA recognition target, to which site the enzyme remained bound while translocating the DNA past itself, with concomitant ATP hydrolysis and subsequent double-strand nicks. This translocation event created clearly visible DNA loops in the electron microscope. EcoKI became the archetypal Type I R-M enzyme with curious DNA translocating properties reminiscent of helicases, recognizing the bipartite asymmetric site AAC(N6)GTGC. Cloning of the hsdK locus in 1976 facilitated molecular understanding of this sophisticated R-M complex and in an elegant ‘pas de deux’ Murray and Dryden constructed the present model based on a large body of experimental data plus bioinformatics. This review celebrates the golden anniversary of EcoKI and ends with the exciting progress on the vital issue of restriction alleviation after DNA damage, also first reported in 1953, which involves intricate control of R subunit activity by the bacterial proteasome ClpXP, important results that will keep scientists on the EcoKI track for another 50 years to come.  相似文献   

12.
Type I restriction–modification (R–M) systems are comprised of two multi-subunit enzymes with complementary functions: the methyltransferase (∼160 kDa), responsible for methylation of DNA, and the restriction endonuclease (∼400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits, including HsdM. Characterisation of either enzyme first requires the expression and purification of its constituent subunits, before reconstitution of the multisubunit complex. Previously, purification of the HsdM protein had proved problematic, due to the length of time required for the purification and its susceptibility to degradation. A new protocol was therefore developed to decrease the length of time required to purify the HsdM protein and thus prevent degradation. Finally, we show that the HsdM subunit exhibits a concentration dependent monomer–dimer equilibrium.  相似文献   

13.
The specificity (S) subunit of the restriction enzyme EcoKI imparts specificity for the sequence AAC(N6)GTGC. Substitution of thymine with bromodeoxyuridine in a 25 bp DNA duplex containing this sequence stimulated UV light-induced covalent crosslinking to the S subunit. Crosslinking occurred only at the residue complementary to the first adenine in the AAC sequence, demonstrating a close contact between the major groove at this sequence and the S subunit. Peptide sequencing of a proteolytically-digested, crosslinked complex identified tyrosine 27 in the S subunit as the site of crosslinking. This is consistent with the role of the N-terminal domain of the S subunit in recognizing the AAC sequence. Tyrosine 27 is conserved in the S subunits of the three type I enzymes that share the sequence AA in the trinucleotide component of their target sequence. This suggests that tyrosine 27 may make a similar DNA contact in these other enzymes.  相似文献   

14.
We report the properties of the new AloI restriction and modification enzyme from Acinetobacter lwoffi Ks 4-8 that recognizes the DNA target 5' GGA(N)6GTTC3' (complementary strand 5' GAAC(N)6TCC3'), and the nucleotide sequence of the gene encoding this enzyme. AloI is a bifunctional large polypeptide (deduced M(r) 143 kDa) revealing both DNA endonuclease and methyltransferase activities. Depending on reaction cofactors, AloI cleaves double-stranded DNA on both strands, seven bases on the 5' side, and 12-13 bases on the 3' side of its recognition sequence, and modifies adenine residues in both DNA strands in the target sequence yielding N6-methyladenine. For cleavage activity AloI maintains an absolute requirement for Mg(2+) and does not depend on or is stimulated by either ATP or S-adenosyl-L-methionine. Modification function requires the presence of S-adenosyl-L-methionine and is stimulated by metal ions (Ca(2+)). The C-terminal and central parts of the protein were found to be homologous to certain specificity (HsdS) and modification (HsdM) subunits of type I R-M systems, respectively. The N-terminal part of the protein possesses the putative endonucleolytic motif DXnEXK of restriction endonucleases. The deduced amino acid sequence of AloI shares significant homology with polypeptides encoding HaeIV and CjeI restriction-modification proteins at the N-terminal and central, but not at the C-terminal domains. The organization of AloI implies that its evolution involved fusion of an endonuclease and the two subunits, HsdM and HsdS, of type I restriction enzymes. According to the structure and function properties AloI may be regarded as one more representative of a newly emerging group of HaeIV-like restriction endonucleases. Discovery of these enzymes opens new opportunities for constructing restriction endonucleases with a new specificity.  相似文献   

15.
Anti-restriction and anti-modification (anti-RM) is the ability to prevent cleavage by DNA restriction–modification (RM) systems of foreign DNA entering a new bacterial host. The evolutionary consequence of anti-RM is the enhanced dissemination of mobile genetic elements. Homologues of ArdA anti-RM proteins are encoded by genes present in many mobile genetic elements such as conjugative plasmids and transposons within bacterial genomes. The ArdA proteins cause anti-RM by mimicking the DNA structure bound by Type I RM enzymes. We have investigated ArdA proteins from the genomes of Enterococcus faecalis V583, Staphylococcus aureus Mu50 and Bacteroides fragilis NCTC 9343, and compared them to the ArdA protein expressed by the conjugative transposon Tn916. We find that despite having very different structural stability and secondary structure content, they can all bind to the EcoKI methyltransferase, a core component of the EcoKI Type I RM system. This finding indicates that the less structured ArdA proteins become fully folded upon binding. The ability of ArdA from diverse mobile elements to inhibit Type I RM systems from other bacteria suggests that they are an advantage for transfer not only between closely-related bacteria but also between more distantly related bacterial species.  相似文献   

16.
The ocr protein of bacteriophage T7 is a structural and electrostatic mimic of approximately 24 base pairs of double-stranded B-form DNA. As such, it inhibits all Type I restriction and modification (R/M) enzymes by blocking their DNA binding grooves and inactivates them. This allows the infection of the bacterial cell by T7 to proceed unhindered by the action of the R/M defence system. We have mutated aspartate and glutamate residues on the surface of ocr to investigate their contribution to the tight binding between the EcoKI Type I R/M enzyme and ocr. Contrary to expectations, all of the single and double site mutations of ocr constructed were active as anti-R/M proteins in vivo and in vitro indicating that the mimicry of DNA by ocr is very resistant to change.  相似文献   

17.
EcoP15I is the prototype of the Type III restriction enzyme family, composed of two modification (Mod) subunits to which two (or one) restriction (Res) subunits are then added. The Mod subunits are responsible for DNA recognition and methylation, while the Res subunits are responsible for ATP hydrolysis and cleavage. Despite extensive biochemical and genetic studies, there is still no structural information on Type III restriction enzymes. We present here small-angle X-ray scattering (SAXS) and analytical ultracentrifugation analysis of the EcoP15I holoenzyme and the Mod(2) subcomplex. We show that the Mod(2) subcomplex has a relatively compact shape with a radius of gyration (R(G)) of ~37.4 ? and a maximal dimension of ~110 ?. The holoenzyme adopts an elongated crescent shape with an R(G) of ~65.3 ? and a maximal dimension of ~218 ?. From reconstructed SAXS envelopes, we postulate that Mod(2) is likely docked in the middle of the holoenzyme with a Res subunit at each end. We discuss the implications of our model for EcoP15I action, whereby the Res subunits may come together and form a "sliding clamp" around the DNA.  相似文献   

18.
A ParE-ParC fusion protein is a functional topoisomerase.   总被引:4,自引:0,他引:4  
L S Lavasani  H Hiasa 《Biochemistry》2001,40(29):8438-8443
Type II topoisomerases are responsible for DNA unlinking during DNA replication and chromosome segregation. Although eukaryotic enzymes are homodimers and prokaryotic enzymes are heterotetramers, both prokaryotic and eukaryotic type II topoisomerases belong to a single protein family. The amino- and carboxyl-terminal domains of eukaryotic enzymes are homologous to the ATP-binding and catalytic subunits of prokaryotic enzymes, respectively. Topoisomerase IV, a prokaryotic type II topoisomerase, consists of the ATP-binding subunit, ParE, and the catalytic subunit, ParC. We have joined the coding regions of parE and parC in frame and constructed a fusion protein of the two subunits of topoisomerase IV. This fusion protein, ParEC, can catalyze both decatenation and relaxation reactions. The ParEC protein is also capable of decatenating replicating daughter DNA molecules during oriC DNA replication in vitro. Furthermore, the fusion gene, parEC, complements the temperature-sensitive growth of both parC and parE strains, indicating that the ParEC protein can substitute for topoisomerase IV in vivo. These results demonstrate that a fusion protein of the two subunits of topoisomerase IV is a functional topoisomerase. Thus, a heterotetrameric type II topoisomerase can be converted into a homodimeric type II topoisomerase by gene fusion.  相似文献   

19.
Proteins of the Ard family are specific inhibitors of type I restriction-modification enzymes. The ArdA of R64 is highly homologous to ColIb-P9 ArdA, differing only by four amino acid residues of the overall 166. However, unlike ColIb-P9 ArdA, which inhibits both the endonuclease and the methylase activities of EcoKI, the R64 ArdA protein inhibits only the endonuclease activity of this enzyme. The mutant forms of R64 ArdA--A29T, S43A, and Y75W, capable of partially reversing the protein to ColIb-P9 ArdA form--were produced by directed mutagenesis. It was demonstrated that only Y75W mutation of these three variants essentially influenced the functional activity of ArdA: the antimodification activity was restored to approximately 90-99%. It is assumed that R64 ArdA inhibits formation of the complex between unmodified DNA and the R subunit of the type I restriction-modification enzyme EcoKI (R2M2S), which translocates and cleaves DNA. ColIb-P9 ArdA protein is capable of forming the DNA complex not only with the R subunit, but also with the S subunit, which contacts sK site (containing modified adenine residues) in DNA. ArdA bound to the specific sK site inhibits concurrently the endonuclease and methylase activities of EcoKI (R2M2S), while ArdA bound to the nonspecific site in the R subunit blocks only its endonuclease activity.  相似文献   

20.
The Type III restriction endonuclease EcoP15I forms a hetero-oligomeric enzyme complex that consists of two modification (Mod) subunits and two restriction (Res) subunits. Structural data on Type III restriction enzymes in general are lacking because of their remarkable size of more than 400 kDa and the laborious and low-yield protein purification procedures. We took advantage of the EcoP15I-overexpressing vector pQEP15 and affinity chromatography to generate a quantity of EcoP15I high enough for comprehensive proteolytic digestion studies and analyses of the proteolytic fragments by mass spectrometry. We show here that in the presence of specific DNA the entire Mod subunit is protected from trypsin digestion, whereas in the absence of DNA stable protein domains of the Mod subunit were not detected. In contrast, the Res subunit is comprised of two trypsin-resistant domains of approximately 77-79 kDa and 27-29 kDa, respectively. The cofactor ATP and the presence of DNA, either specific or unspecific, are important stabilizers of the Res subunit. The large N-terminal domain of Res contains numerous functional motifs that are predicted to be involved in ATP-binding and hydrolysis and/or DNA translocation. The C-terminal small domain harbours the catalytic center. Based on our data, we conclude that both structural Res domains are connected by a flexible linker region that spans 23 amino acid residues. To confirm this conclusion, we have investigated several EcoP15I enzyme mutants obtained by insertion mutagenesis in and around the predicted linker region within the Res subunit. All mutants tolerated the genetic manipulation and did not display loss of function or alteration of the DNA cleavage position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号