首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arahou  M.  Diem  H.G. 《Plant and Soil》1997,196(1):71-79
The effect of iron deficiency, phosphorus, NaHCO3, chelator supply and nitrogen source on the formation of cluster (proteoid) roots was investigated in Casuarina glauca growing in water culture. The addition of iron-binding chelators (e.g. EDDHA, DTPA, EDTA) or increase in nutrient solution pH with NaHCO3 resulted in the formation of cluster roots when plants were grown in solution lacking iron. Phosphorus supply even at a concentration of 500 µM did not inhibit cluster root formation if EDDHA was added to the iron-deficient medium. Cluster root formation was influenced significantly by nitrogen source and occurred only in nitrate-fed plants.C. glauca seemed to be very sensitive to iron deficiency as shown by plant chlorosis when grown on alkaline soil. The symptoms of chlorosis decreased as the chlorophyll content in shoots and the number of cluster roots increased, suggesting that the alleviation of iron deficiency in plant tissues was correlated with cluster root formation. It appears that iron deficiency is more important than phosphorus deficiency in inducing the formation of cluster roots in C. glauca.  相似文献   

2.
Strategy I peanut plants are frequently subjected to iron deficiency when growing in calcareous soils, which contain high concentrations of bicarbonate. In calcareous soils under field conditions, it has been noted that chlorosis increases in severity after excessive rainfall or irrigation, but the chlorosis symptoms of peanuts are alleviated after waterlogged soils dry. A pot experiment was conducted simulating the chlorosis symptom observed in the field when peanut plants are exposed to fluctuating soil water content induced from rainfall or irrigation. We investigated the bicarbonate fluctuations resulting from adjustable soil water content (SWC) that could lead to bicarbonate-induced iron chlorosis of peanuts growing in calcareous soil. The experiments included three treatments of SWC (50% of water holding capacity (WHC), 80% of WHC, and 100% of WHC) under two levels of CaCO(3) concentrations (at 8.67% and 18.67%.) The results showed that the iron nutrition of peanuts could be regulated by different SWC at both CaCO(3) levels. Our observations indicate that iron deficiency chlorosis symptoms in peanuts grown in high soil water content were more severe, compared to those of peanuts in lower soil water content. A shift from high soil water content to lower soil water content could improve or eliminate the iron deficiency chlorosis symptom of peanuts. The HCO(3)(-) concentration in the peanut rhizosphere increased with increasing SWC and CaCO(3) content and it correlated with the level of soil water content. We suggest that variations in the soil water content could induce HCO(3)(-) concentration variation in the rhizosphere of peanuts. Consequently, the high HCO(3)(-) concentration, which is induced by a high water content in calcareous soil and a high CaCO(3) level, could inhibit the physiological response to iron deficiency of peanuts, resulting in iron deficiency chlorosis. The study indicates that a reasonable agricultural practice of irrigation and drainage should be considered to improve and prevent iron deficiency chlorosis of strategy I plants in calcareous soil.  相似文献   

3.
To investigate nitrogen assimilation in Lolium perenne L. colonized by the arbuscular mycorrhizal (AM) fungus Glomus fasciculatum (Thax. sensu Gerd.), nitrate uptake, key enzyme activities, and 15N incorporation into free amino acids were measured. After a 4-h labelling period with [15N]nitrate, 15N content was higher in roots and shoots of AM-plants than in those of control plants. Glutamine synthetase (GS) and nitrate reductase (NR) activities were increased in shoots of AM-plants, but not in roots. More label was incorporated into amino acids in shoots of AM plants. Glutamine, glutamate, alanine and γ-aminobutyric acid were the major sinks for 15N in roots and shoots of control and AM plants. Interactions between mycorrhizal colonization, phosphate and nitrate nutrition and NR activity were investigated in plants which received different amounts of phosphate or nitrate. In shoots of control plants, NR activity was not stimulated by high levels of phosphate nutrition but was stimulated by high levels of nitrate. At 4 m M nitrate in the nutrient solution, NR activity was similar in control and AM plants. We concluded that mycorrhizal effects on nitrate assimilation are not mediated via improved phosphate nutrition, but could be due to improved nitrogen uptake and translocation.  相似文献   

4.
Summary The effects of increasing amount of nitrate nitrogen on the growth, dry matter production, ionic balance and the appearance of iron chlorosis in two soybean cultivars were studied. More nitrogen increased the dry matter production of the Fe-efficient cultivar Hawkeye and decreased that of the Fe-inefficient cultivar T-203. The plants of Hawkeye showed no iron deficiency symptoms whereas all the plants of the Fe-inefficient cultivar T-203 developed Fe deficiency after about one week following emergence. The degree of chlorosis in the cultivar T-203 was more pronounced as the amount of nitrate applied increased.Deceased  相似文献   

5.
Iron deficiency induces several responses to iron shortage in plants. Metabolic changes occur to sustain the increased iron uptake capacity of Fe-deficient plants. We evaluated the metabolic changes of three Prunus rootstocks submitted to iron chlorosis and their different responses for tolerance using measurements of metabolites and enzymatic activities. The more tolerant rootstocks Adesoto (Prunus insititia) and GF 677 (Prunus amygdalus × Prunus persica), and the more sensitive Barrier (P. persica × Prunus davidiana) were grown hydroponically in iron-sufficient and -deficient conditions over two weeks. Sugar, organic and amino acid concentrations of root tips were determined after two weeks of iron shortage by proton nuclear magnetic resonance spectroscopy of extracts. Complementary analyses of organic acids were performed by liquid chromatography coupled to mass spectrometry. The major soluble sugars found were glucose and sucrose. The major organic acids were malic and citric acids, and the major amino acid was asparagine. Iron deficiency increased root sucrose, total organic and amino acid concentrations and phosphoenolpyruvate carboxylase activity. After two weeks of iron deficiency, the malic, citric and succinic acid concentrations increased in the three rootstocks, although no significant differences were found among genotypes with different tolerance to iron chlorosis. The tolerant rootstock Adesoto showed higher total organic and amino acid concentrations. In contrast, the susceptible rootstock Barrier showed lower total amino acid concentration and phosphoenolpyruvate carboxylase activity values. These results suggest that the induction of this enzyme activity under iron deficiency, as previously shown in herbaceous plants, indicates the tolerance level of rootstocks to iron chlorosis. The analysis of other metabolic parameters, such as organic and amino acid concentrations, provides complementary information for selection of genotypes tolerant to iron chlorosis.  相似文献   

6.
氮素形态和铁营养对玉米苗期生长及体内铁分布的影响   总被引:1,自引:0,他引:1  
以玉米(Zea mays)品种‘豫玉-22’为材料,采用营养液培养方法,研究了低铁和正常供铁条件下供应不同形态氮素对玉米苗期生长及体内铁分布的影响。结果表明:(1)与低铁介质相比,常铁介质增加了各氮素处理玉米幼苗的株高、地上部干重、全株干重,降低了根冠比,其中硝态氮处理表现得尤其突出;与供应硝态氮(NO3--N)相比,增施铵态氮(1/2 NO3--N 1/2 NH4 -N,NH4 -N)能明显促进低铁介质中玉米生长,但在常铁介质下作用不明显。(2)相比于低铁介质,正常供铁显著提高了相应处理玉米新叶叶绿素含量及净光合速率;2种供铁介质中,NH4 -N处理的新叶叶绿素含量以及净光合速率均高于其它氮素处理。(3)相比于低铁介质,正常供铁处理总体上增加了玉米各部分活性铁含量和全铁含量,对NO3--N处理的新叶活性铁含量增加尤其明显;2种供铁介质中,NH4 -N均有利于提高新叶活性铁含量和植株地上部全铁含量。(4)玉米新叶活性铁含量不仅与其叶绿素含量显著正相关(r=0.979**),也与叶片净光合速率显著正相关(r=0.950**)。研究发现,供铁状况显著影响玉米新叶的叶绿素含量及其净光合速率且与供氮形态存在互作;供应铵态氮有利于提高缺铁条件下玉米新叶活性铁含量,增强玉米植株的光合能力,进而促进其正常生长。  相似文献   

7.
8.
The uptake of nitrate by plant roots causes a pH increment in rhizosphere and leads to iron (Fe) deficiency in rice. However, little is known about the mechanism how the nitrate uptake‐induced high rhizosphere pH causes Fe deficiency. Here, we found that rice showed severe leaf chlorosis and large amounts of Fe plaque were aggregated on the root surface and intercellular space outside the exodermis in a form of ferrihydrite under alkaline conditions. In this case, there was significantly decreased Fe concentration in shoots, and the Fe deficiency responsive genes were strongly induced in the roots. The high rhizosphere pH induced excess hydrogen peroxide (H2O2) production in the epidermis due to the increasing expression of NADPH‐oxidase respiratory burst oxidase homolog 1, which enhanced root oxidation ability and improved the Fe plaque formation in rhizosphere. Further, the concentrated H2O2 regulated the phenylpropanoid metabolism with increased lignin biosynthesis and decreased phenolics secretion, which blocked apoplast Fe mobilization efficiency. These factors coordinately repressed the Fe utilization in rhizosphere and led to Fe deficiency in rice under high pH. In conclusion, our results demonstrate that nitrate uptake‐induced rhizosphere alkalization led to Fe deficiency in rice, through H2O2‐dependent manners of root oxidation ability and phenylpropanoid metabolism.  相似文献   

9.
10.
Limited information is available on the role of brassinosteroids (BRs) in response of plants to nutrient deficiency. To understand the functions of BRs in response to iron deficiency, we investigated the effect of 24-epibrassinolide (EBR) on activities of ferric-chelate reductase (FCR), H+-ATPase, Ca2+-ATPase, nitrate reductase (NR), antioxidant enzymes, Fe and other minerals content and distribution, chlorophylls, soluble protein, free proline, reactive oxygen species, and malondialdehyde in peanut (Arachis hypogea L.) plants subjected to Fe deficiency (10?5 M Fe(III)-EDTA) with foliar application of EBR (0, 10?8, 5.0×10?8, 10?7, 5.0×10?7, and10?6 M). Results show that EBR increased Fe translocation from roots to shoots and increased Fe content in cell organelles. Activities of antioxidant enzymes increased and so the ability of resistance to oxidative stress was enhanced. As result of enhancement of H+-ATPase and Ca2+-ATPase activities, the inhibition of Fe, Ca, Mg, and Zn uptake and distribution was ameliorated. Chlorophyll, soluble protein, and free proline content also increased and consequently, chlorosis induced by Fe deficiency was alleviated. The results demonstrate that EBR had a positive role in regulating peanut growth and development under Fe deficiency and an optimal concentration appeared to be 10?7 M.  相似文献   

11.
Ammonium molybdate supplying 20 or 40 p.p.m. Mo prevented chlorosis caused by low iron supply in young flax plants, but sodium molybdate was effective only at the higher concentration. Temporary darkening of the green colour of the shoots was also produced by 40 p.p.m. Mo in iron-deficient soybean and pea plants, but was soon followed by more severe chlorosis. Symptoms of molybdenum toxicity always developed when 40 p.p.m. Mo were given, whether or not the intensity of chlorosis was reduced. With an increase in iron supply, a reduction in molybdenum toxicity symptoms was confirmed in soybean and peas. In flax the higher level of iron eventually proved excessive unless it was combined with 40 p.p.m. Mo. High molybdenum thus seemed able to counteract both iron deficiency and toxicity in this plant.
High iron reduced the molybdenum content (p.p.m./d.m.) of both shoot and root in soybean, peas and also in flax provided the iron was not excessive. High molybdenum usually reduced the iron content of the shoot, but markedly increased it in the root. Molybdenum-induced chlorosis could thus be partly attributed to inhibition in iron translocation, but the beneficial effect of high molybdenum or high iron on colour was not obviously correlated with the analytical data.  相似文献   

12.
Iron availability in plant tissues-iron chlorosis on calcareous soils   总被引:3,自引:1,他引:2  
Konrad Mengel 《Plant and Soil》1994,165(2):275-283
The article describes factors and processes which lead to Fe chlorosis (lime chlorosis) in plants grown on calcareous soils. Such soils may contain high HCO3 - concentrations in their soil solution, they are characterized by a high pH, and they rather tend to accumulate nitrate than ammonium because due to the high pH level ammonium nitrogen is rapidly nitrified and/or even may escape in form of volatile NH3. Hence in these soils plant roots may be exposed to high nitrate and high bicarbonate concentrations. Both anion species are involved in the induction of Fe chlorosis.Physiological processes involved in Fe chlorosis occur in the roots and in the leaves. Even on calcareous soils and even in plants with chlorosis the Fe concentration in the roots is several times higher than the Fe concentration in the leaves. This shows that the Fe availability in the soil is not the critical process leading to chlorosis but rather the Fe uptake from the root apoplast into the cytosol of root cells. This situation applies to dicots as well as to monocots. Iron transport across the plasmamembrane is initiated by FeIII reduction brought about by a plasmalemma located FeIII reductase. Its activity is pH dependent and at alkaline pH supposed to be much depressed. Bicarbonate present in the root apoplast will neutralize the protons pumped out of the cytosol and together with nitrate which is taken up by a H+/nitrate cotransport high pH levels are provided which hamper or even block the FeIII reduction.Frequently chlorotic leaves have higher Fe concentrations than green ones which phenomenon shows that chlorosis on calcareous soils is not only related to Fe uptake by roots and Fe translocation from the roots to the upper plant parts but also dependent on the efficiency of Fe in the leaves. It is hypothesized that also in the leaves FeIII reduction and Fe uptake from the apoplast into the cytosol is affected by nitrate and bicarbonate in an analogous way as this is the case in the roots. This assumption was confirmed by the highly significant negative correlation between the leaf apoplast pH and the degree of iron chlorosis measured as leaf chlorophyll concentration. Depressing leaf apoplast pH by simply spraying chlorotic leaves with an acid led to a regreening of the leaves.  相似文献   

13.
14.
Nikolic M  Römheld V 《Plant physiology》2003,132(3):1303-1314
It has been hypothesized that nitrate (NO(3)(-)) nutrition might induce iron (Fe) deficiency chlorosis by inactivation of Fe in the leaf apoplast (H.U. Kosegarten, B. Hoffmann, K. Mengel [1999] Plant Physiol 121: 1069-1079). To test this hypothesis, sunflower (Helianthus annuus L. cv Farnkasol) plants were grown in nutrient solutions supplied with various nitrogen (N) forms (NO(3)(-), NH(4)(+) and NH(4)NO(3)), with or without pH control by using pH buffers [2-(N-morpholino)ethanesulfonic acid or 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid]. It was shown that high pH in the nutrient solution restricted uptake and shoot translocation of Fe independently of N form and, therefore, induced Fe deficiency chlorosis at low Fe supply [1 micro M ferric ethylenediaminedi(O-hydroxyphenylacetic acid)]. Root NO(3)(-) supply (up to 40 mM) did not affect the relative distribution of Fe between leaf apoplast and symplast at constant low external pH of the root medium. Although perfusion of high pH-buffered solution (7.0) into the leaf apoplast restricted (59)Fe uptake rate as compared with low apoplastic solution pH (5.0 and 6.0, respectively), loading of NO(3)(-) (6 mM) showed no effect on (59)Fe uptake by the symplast of leaf cells. However, high light intensity strongly increased (59)Fe uptake, independently of apoplastic pH or of the presence of NO(3)(-) in the apoplastic solution. Finally, there are no indications in the present study that NO(3)(-) supply to roots results in the postulated inactivation of Fe in the leaf apoplast. It is concluded that NO(3)(-) nutrition results in Fe deficiency chlorosis exclusively by inhibited Fe acquisition by roots due to high pH at the root surface.  相似文献   

15.
Summary Iron chlorosis of 4 year old Scots pine (Pinus sylvestris L.) in comparison to areas of adjacent healthy growth on calcareous prairie soil, was associated with slight increases in the soluble ion content of the saturation paste extract. Such increases in soluble ions (mainly calcium sulphate) were associated with significant increases in ash, cation (including iron) and organic anion content of the chlorotic needles. Increasing levels of available soil nitrate were also related to increase in organic anions. Nitrogen and phosphorus assimilation was adversely affected under conditions of iron chlorosis. These observations support the theory of induced iron deficiency associated with elevated levels of organic anions or translocated cations and are applicable to plantings of conifers on prairie soils.  相似文献   

16.
Our study investigates the effect of iron deficiency on morpho-physiological and biochemical parameters of two Medicago ciliaris ecotypes (Mateur TN11.11 and Soliman TN8.7). Iron deficiency was imposed by making plants grow, either in an iron free or by the addition of CaCO3/NaHCO3 to the Hoagland nutrient solution. Our results showed that both true and bicarbonate Fe-deficiency induced the characteristic iron-chlorosis symptoms, although the intensity of the symptoms was ecotype-dependent. This variability in tolerance to iron deficiency was also displayed by other morphological parameters such as root biomass and chlorophyll concentration. Besides, iron chlorosis induced an increase in biochemical parameters: the iron reducing capacity (measured in vivo on root segments and in vitro on plasma membrane enriched vesicles) and rhizosphere acidification by enhancement of H+-ATPase activity were more pronounced in Mateur ecotype. These findings suggest that Soliman ecotype was more sensitive than Mateur one to iron chlorosis.  相似文献   

17.
This work investigated how copper (Cu) phytotoxicity affected iron (Fe) nutrition and root elongation in hydroponically grown durum wheat (Triticum turgidum durum L., cv Acalou) in order to establish the critical level of Cu concentration in roots above which significant Cu phytotoxicity occurs. This was assessed at two levels of Fe supply (2 and 100 μM). Severe symptoms of Cu phytotoxicity were observed at Cu2+ concentration above 1 μM, i.e. interveinal chlorosis symptoms and global root growth alteration. Total root Cu concentration of about 100, 150 and 250–300 mg kg?1 corresponded to 10%, 25% and 50% reduction in root elongation, respectively. Copper and Fe concentrations as well as amounts of Cu and Fe accumulated in shoots varied inversely which suggested an antagonism between Cu and Fe leading to Fe deficiency. In addition, the root-induced release of complexing compounds increased significantly with increasing Cu concentration in nutrient solution and was positively correlated with Cu uptake without significant difference between the two Fe treatments (high and low Fe supply). This work suggests that total root Cu concentration might be a simple, sensitive indicator of Cu rhizotoxicity. It also indicated that Cu phytotoxicity which may have resulted in Fe deficiency and significant increase in root-induced release of complexing compounds (presumably phytosiderophores) was independent of the level of Fe supply provided that the threshold values of phytotoxicity were based on the free Cu-ion concentration.  相似文献   

18.
A combined effect of iron deficiency and root hypoxia on the biochemical composition activity and structure of chloroplasts in pea leaves have been studied. Both factors are shown to affect the accumulation of chlorophyll causing leaf chlorosis. At iron deficiency chlorosis occurs from the top of plant leaves. At root hypoxia chlorosis starts from the lower strata. At a combined action of both factors the destructive effects are summarized. It was established that light-harvesting complexes of photosystems were reduced stronger at iron deficiency, while complexes of reaction centers of photosystem I and photosystem II are lessened at root hypoxia. Nevertheless, even at a combined effect of both factors yellow leaves preserved small amounts of any pigment-protein complexes and their functional activities. The ultrastructure of chloroplasts during leaf chlorosis was gradually reduced. At first, intergranal sites of thylakoids and then granal ones were destroyed, that was typical of iron deficiency. However, even yellow and almost white leaves kept small thylakoids, capable of forming stacking and small grana made of 2-3 thylakoids. It has been concluded that the destructive effects are summarized due to different kinds of action of iron deficiency and root hypoxia on the structure and functioning of leaves at their combined action.  相似文献   

19.
The ultrastructure of mesophyll chloroplasts of maize (Zea mays L.) was more severely affected by iron deficiency that induced mild chlorosis than was the ultrastructure of bundle sheath plastids. Ferredoxin and ribulose diphosphate carboxylase levels were severely decreased by iron deficiency. Malic enzyme was less affected, and phosphoenolpyruvate carboxylase activity remained high even under severe iron deficiency. Iron deficient leaves fixed carbon into malic and aspartic acids but the rate of entrance of carbon into the sugar phosphates and sucrose was greatly reduced compared to the control. Chlorophyll a/b ratios ranged from low values of less than 2 in severely iron deficient leaves to high values exceeding 4 in leaves showing little iron deficiency.  相似文献   

20.
Summary In three water-culture experiments, the effects of variations in pH, N form, and Si- and P level on the uptake and translocation of Fe and Mn, and on the chlorophyll contents of lowland rice were examined.It was found that Mn uptake increased with increasing pH, that it was not affected by variations in N form (NO3 or NH4), and that Si has a suppressive effect on Mn uptake. With increasing pH, the translocation of Fe to the shoots was reduced. This pH effect might be indirect, in that Fe translocation is hampered by excessive Mn uptake induced by high pH. Variations in N form and in Si level did not influence Fe uptake and- translocation.A combination of high P-and high Mn levels in solution proved to reduce the translocation of Fe to the rice shoots. Precipitation of Mn phosphate on the roots is likely to occur at high concentrations of both Mn and P in the root medium.A negative correlation was found between chlorophyll content and Mn content of the leaves. The chlorophyll content was not related to the iron content of the leaves. It is likely that chlorosis of rice leaves in an early growth stage can be caused by several combinations of the following factors: 1. high Mn supply, 2. NO3 nutrition inducing an increase in solution pH favouring a further increase in Mn uptake, 3. absence of Si which exerts a suppressive effect on Mn uptake, and 4. high P supply. These factors can induce chlorosis, with and without exerting a concomitant influence on the uptake and translocation of Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号