首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 362 毫秒
1.
The present study was carried out to examine modified bagasse and rice straw as absorbents for the removal of emulsified oil by a microwave-assisted technique. The raw adsorbents were chemically modified with sodium hydroxide and surfactant solution for better adsorption of oil. The surface modification was confirmed through Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) analysis. Batch studies were performed to identify the influence of contact time, pH, dosage, speed, and temperature on the percentage of removal of emulsified oil from the wastewater. A maximum oil removal of 98.07% and 98.72% was achieved in microwave-assisted bagasse and rice straw at 313 K. The obtained data were compared with isotherm and kinetic models to understand the mechanism behind the adsorption. From the Langmuir isotherm model, a maximum adsorption capacity of 192.58 and 276.82 mg/g was observed for modified bagasse and rice straw. The oil-loaded raw and microwave-assisted adsorbents can act as a potential energy source for renewable energy.  相似文献   

2.
A barley straw was modified by a surfactant, cetylpyridinium chloride, and used as an adsorbent for acid (acid blue 40) and reactive dye (reactive black 5) adsorption in aqueous solution. Characterization of the modified barley straw was performed using N2 adsorption, titration, and FT-IR analysis. It was found that the surfactant modified barley straw exhibits higher adsorption to acid blue 40 than reactive black 5 and adsorption of the dyes is influenced by several parameters such as dye initial concentration, adsorbent dosage, solution pH, and adsorption temperature. Adsorption isotherms show that maximum adsorption of acid blue 40 and reactive black 5 is 1.02 × 10−4 and 2.54 × 10−5 mol/g, respectively. Desorption studies show that both dyes are strongly bounded with the adsorbent and exhibit low desorption.  相似文献   

3.
The influence of process variables in batch adsorption has been used to assess the removal of methylene blue dye from aqueous solution using pure and carbonized biomasses of water hyacinth and water spinach. Dried leaves of the water weeds were carbonized at temperature up to 750°C. The optimum removal of dye was achieved at pH 10, 30°C, and 55 min at a dye concentration of 10 mg/L. In an attempt to describe the adsorption process, the equilibrium isotherm for each adsorbent was determined using Langmuir and Freundlich adsorption isotherm models. Maximum adsorption capacities based on the Langmuir model for pure and carbonized water hyacinth were (mg/g) 7.05 and 2.07, respectively, whereas those of pure and carbonized water spinach were 1.25 and 5.32, respectively. It was observed that the equilibrium data were well fit by both the Freundlich and Langmuir isotherms as R 2 > .97. This study demonstrates that the two waterweeds are effective, environmentally friendly, and inexpensive biomaterials for the removal of color from industrial effluents.  相似文献   

4.
Apple pomace (AP), before and after chemical modification (CM), was assessed for the removal of cadmium (Cd2+) ions from aqueous solution by equilibrium, kinetics, and thermodynamics studies. The chemical modification of AP was done with succinic anhydride by a simple ring opening mechanism for providing a large surface area for cadmium adsorption. The surface area of chemically modified apple pomace (CMAP) increased about 18% after the treatment. The amount of CMAP required for cadmium removal was 50 times less than the unmodified AP. The Langmuir adsorption isotherm equation was found to be more suitable for the AP and CMAP adsorption experimental data with a correlation coefficient of r2 = 0.99 than was the Freundlich isotherm. The FTIR spectra of CMAP, with or without cadmium loading, indicated that ester (–COO), carboxyl (–CO), and amine (–NH2) groups were involved in the cadmium adsorption mechanism. The adsorption of cadmium ions onto AP and CMAP followed pseudo-second-order kinetics. The ΔG° value, at different temperatures, was calculated by applying the Van't Hoff equation and found to be negative, indicating that the reaction is spontaneous in nature. The value of ΔH° indicated that the adsorption was exothermic (−6.93 KJ mol−1) and endothermic (3.171 KJ mol−1) for AP and CMAP, respectively. CMAP could be reutilized for up to three cycles with a removal efficiency of 76.6%, while AP efficiency lessened significantly after a single cycle.  相似文献   

5.
The objective of this study is to assess the environmentaly friendly Ni(II) adsorption from synthetic wastewater using waste pomace of olive oil factory (WPOOF). Batch kinetic studies were performed in order to investigate the adsorbent and adsorbate dose, solution pH, agitating speed and temperature. The maximum Ni(II) adsorption was obtained at pH 4.0. The equilibrium nature of Ni(II) adsorption at different temperature was described by the Freundlich, Langmuir and Temkin isotherms. The equilibrium data fit well the Temkin and Langmuir isotherm. The monolayer adsorption capacities of WPOOF as obtained from Langmuir isotherm at 60 °C was found to be 14.80 mg/g. The adsorption mechanism was examined by the FTIR technique. The results of the thermodynamic investigations indicated that the adsorption reactions were spontaneous (ΔG < 0), slightly endothermic (ΔH > 0) and irreversible (ΔS > 0). The pseudo first-order, pseudo second-order, Elovich and intraparticle diffusion kinetic models were used to describe the kinetic data.  相似文献   

6.
Defective coffee press cake, a residue from coffee oil biodiesel production, was evaluated as an adsorbent for removal of basic dyes (methylene blue – MB) from aqueous solutions. The adsorbent was prepared by microwave treatment, providing a significant reduction in processing time coupled to an increase in adsorption capacity in comparison to conventional carbonization in a muffle furnace. Batch adsorption tests were performed at 25 °C and the effects of particle size, contact time, adsorbent dosage and initial solution pH were investigated. Adsorption kinetics was better described by a second-order model. The experimental adsorption equilibrium data were fitted to Langmuir, Freundlich and Tempkin adsorption models, with Langmuir providing the best fit. The results presented in this study show that microwave activation presents great potential as an alternative method in the production of adsorbents.  相似文献   

7.
ABSTRACT

Lead contamination in soil due to anthropogenic activities has amplified and therefore, remediation is of prime significance due to its nonbiodegradability and toxicity effects. This study focuses on lead removal from the soil collected from a rifle range using biosurfactants produced from native microorganisms and edible oils. Native microorganisms in contaminated soil served as a source for biosurfactant production aided by edible vegetable oils such as palm oil and gingelly oil. Preliminary isolation and characterization studies indicated the presence of Pseudomonas aeruginosa that produced biosurfactant and removed lead simultaneously. Batch adsorption experiments showed 96%–99.6% of lead adsorption following Langmuir isotherm model. Lead desorption of 23.6% occurred without biosurfactant. Whereas in the presence of biosurfactants, enhanced desorption of 62.3% was observed. Of both palm oil and gingelly oil derived biosurfactants, the former reached a lead removal efficiency of 93.6% indicating the feasibility and effectiveness of the biosurfactants for contaminated site remediation.  相似文献   

8.
The present work deals with the biosorption performance of raw and chemically modified biomass of the brown seaweed Lobophora variegata for removal of Cd(II) and Pb(II) from aqueous solution. The biosorption capacity was significantly altered by pH of the solution delineating that the higher the pH, the higher the Cd(II) and Pb(II) removal. Kinetic and isotherm experiments were carried out at the optimal pH 5.0. The metal removal rates were conspicuously rapid wherein 90% of the total sorption occurred within 90 min. Biomass treated with CaCl2 demonstrated the highest potential for the sorption of the metal ions with the maximum uptake capacities i.e. 1.71 and 1.79 mmol g−1 for Cd(II) and Pb(II), respectively. Kinetic data were satisfactorily manifested by a pseudo-second order chemical sorption process. The process mechanism consisting of both surface adsorption and pore diffusion was found to be complex. The sorption data have been analyzed and fitted to sorption isotherm of the Freundlich, Langmuir, and Redlich–Peterson models. The regression coefficient for both Langmuir and Redlich–Peterson isotherms were higher than those secured for Freundlich isotherm implying that the biosorption system is possibly monolayer coverage of the L. variegata surface by the cadmium and lead ions. FT-IR studies revealed that Cd(II) and Pb(II) binding to L. variegata occurred primarily through biomass carboxyl groups accompanied by momentous interactions of the biomass amino and amide groups. In this study, we have observed that Lvariegata had maximum biosorption capacity for Cd(II) and Pb(II) reported so far for any marine algae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The aim of this study was to investigate the feasibility of utilizing the fruiting bodies of a jelly macro-fungus Auricularia polytricha as adsorbents to remove emulsified oil from water. The effects of several factors, including temperature, initial pH, agitation speed, and adsorbent dosage, were taken into account. Results showed that the optimized conditions for adsorption of A. polytricha were a temperature of 35°C, pH of 7.5, and agitation speed of 100 rpm. The adsorption kinetics were characterized by the pseudo-first order model, which showed the adsorption to be a fast physical process. The Langmuir-Freundlich isotherm described the adsorption very well and predicted the maximum adsorption capacity of 398 mg g−1, under optimized conditions. As illustrated by scanning electron micrographs, the oil particles were adsorbed onto the hairs covering the bottom surface and could be desorbed by normal temperature volatilization. The material could be used as an emulsified oil adsorbent at least three times, retaining more than 95% of the maximum adsorption capacity. The results demonstrated that the fruiting bodies of A. polytricha can be a useful adsorbent to remove emulsified oil from water.  相似文献   

10.
The removal of organic nitrogen compounds present in crude perroleum and shale oils poses a challenging problem in petroleum industries. The deleterious effect of nitrogen compounds on cracking catalysts and the indication that they contribute to gum formation in gasolines are some of these aspects. Pyridine, a representative nitrogen compound in gaavy oil—was degraded byRhodoccus sp. KCTC 3218 in a water-heavy oil two-phase system. The pyridine degradation rate was affected by the presence of hydrocarbons such as n-hexadecane. This microorganism formed flocs which could be a barrier to mass transfer between the cells in flocs and the pyridine dissolved in water. This problem could be overcome by the addition of a surfactant such as Triton X-100. The ratio of water to heavy oil was important to separate the heavy oil phase from the water phase after treating the heavy oil. The culture medium was emulsified by a sort of biosurfactant secreted by this microorganism. The emulsified oil phase returned to its natural state when the ratio of water to heavy oil was 1.5. Above this ratio, the emulsified oil phase remained an emulsion after decantation. Pyridine in heavy oil was completely degraded in 15 hr at this water to heavy oil ratio of 1.5 when the concentration of pyridine in heavy oil was 700 ppm and the cell concentration was 0.32 g DCW/L.  相似文献   

11.
The study investigated the preparation and characterization of biochars from water hyacinth at 300°C to 700°C for cadmium (Cd) removal from aqueous solutions. The adsorption process was dominated by oxygen-containing functional groups with irregular surfaces via esterification reactions. Furthermore, the mineral components in the biochars also contributed to Cd absorption through precipitation. Parameters such as the effects of solution pH, contact time, and initial concentration were studied. The optimum pH value was observed at 5.0, in which nearly 90% of Cd was removed. The maximum Cd adsorption capacities based on the Langmuir isotherm were calculated at 49.837, 36.899, and 25.826 mg g−1. The adsorption processes of the biochars followed the pseudo-second-order kinetics, with the equilibrium achieved around 5 h. The biochar from E. crassipes is a promising adsorbent for the treatment of wastewater, which can in turn convert one environmental problem to a new cleaning Technology.  相似文献   

12.
Activated carbons were prepared from sewage sludge by chemical activation. Pyrolusite was added as a catalyst during activation and carbonization. The influence of the mineral addition on the properties of the activated carbons produced was evaluated. The results show that activated carbons from pyrolusite-supplemented sewage sludge had up to a 75% higher BET surface area and up to a 66% increase in mesoporosity over ordinary sludge-based activated carbons. Batch adsorption experiments applying the prepared adsorbents to synthetic dye wastewater treatment yielded adsorption data well fitted to the Langmuir isotherm. The adsorbents from pyrolusite-supplemented sludges performed better in dye removal than those without mineral addition, with the carbon from pyrolusite-augmented sludge T2 presenting a significant increase in maximum adsorption capacity of 50 mg/g. The properties of the adsorbents were improved during pyrolusite-catalyzed pyrolysis via enhancement of mesopore production, thus the mesopore channels may provide fast mass transfer for large molecules like dyes.  相似文献   

13.
The adsorption performance of CS beads impregnated with triton X-100 (TX-100) as a nonionic surfactant and sodium dodecyl sulfate (SDS) as an anionic surfactant was investigated for the removal of anionic dye (congo red) from aqueous solution. While the adsorption capacity of CS/TX-100 beads was enhanced at all concentrations of TX-100 (0.005–0.1%), the increase in the concentration of SDS above 0.01% in the CS/SDS beads gradually reduced the adsorption capacity of the beads. Equilibrium adsorption isotherm data indicated a good fit to the Sips isotherm model and a heterogeneous adsorption process. The Sips maximum adsorption capacity in dry weight of the CS/TX-100 beads was 378.79 mg/g and 318.47 mg/g for the CS/SDS beads, higher than the 223.25 mg/g of the CS beads. Modification of CS beads by impregnation with nonionic surfactant, or even anionic surfactant, at low concentrations is a possible way to enhance adsorption of anionic dye.  相似文献   

14.
The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.  相似文献   

15.
Low-cost activated carbon was prepared from Spartina alterniflora by phosphoric acid activation for the removal of Pb(II) from dilute aqueous solution. The effect of experimental parameters such as pH, initial concentration, contact time and temperature on the adsorption was studied. The obtained data were fitted with the Langmuir and Freundlich equations to describe the equilibrium isotherms. The kinetic data were fitted with the Lagergren-first-order, pseudo-second-order and Elovich models. It was found that pH played a major role in the adsorption process. The maximum adsorption capacity for Pb(II) on S. alterniflora activated carbon (SAAC) calculated from Langmuir isotherm was more than 99 mg g−1. The optimum pH range for the removal of Pb(II) was 4.8–5.6. The Freundlich isotherm model was found to best describe the experimental data. The kinetic rates were best fitted to the pseudo-second-order model. Thermodynamic study showed the adsorption was a spontaneous exothermic process.  相似文献   

16.
The development of a simple method to synthesize highly efficient and stable magnetic microsphere beads for sulfathiazole (STZ) removal from contaminated aqueous media was demonstrated in this study. Conocarpus (Conocarpus erectus L.) tree waste (CW) derived biochar (BC) was modified to fabricate chitosan-BC (CBC) and magnetic CBC (CBC-Fe) microsphere beads. Proximate, chemical, and structural properties of the produced adsorbents were investigated. Kinetics, equilibrium, and pH adsorption batch trials were conducted to evaluate the effectiveness of the synthesized adsorbents for STZ removal. All adsorbents exhibited the highest STZ adsorption at pH 5.0. STZ adsorption kinetics data was best emulated using pseudo-second order and Elovich models. The equilibrium adsorption data was best emulated using Langmuir, Freundlich, Redlich–Peterson, and Temkin models. CBC-Fe demonstrated the highest Elovich, pseudo-second order, and power function rate constants, as well as the highest apparent diffusion rate constant. Additionally, Langmuir isotherm predicted maximum adsorption capacity was the highest for CBC-Fe (98.67 mg g−1), followed by CBC (56.54 mg g−1) and BC (48.63 mg g−1). CBC-Fe and CBC removed 74.5%–108.8% and 16.2%–25.6% more STZ, respectively, than that of pristine BC. π-π electron-donor–acceptor interactions and Lewis acid-base reactions were the main mechanisms for STZ removal; however, intraparticle diffusion and H-bonding further contributed in the adsorption process. The higher efficiency of CBC-Fe for STZ adsorption could be due to its magnetic properties as well as stronger and conducting microsphere beads, which degraded the STZ molecules through generation of HO radicals.  相似文献   

17.
Hydrocarbon degrading bacteria, enriched from an in situ bioremediation site in Long Valley, AZ emulsified and colonized the surface of waste engine oil. The application of a partial dehydration conventional embedding protocol for ultrathin-section transmission electron microscopy preserved the hydrocarbon degrading bacteria–surfactant–oil interface. Bacterial adsorption to oil occurred in association with a highly charged, amphipathic bacterial surfactant interface (25–50 nm thick). This biosurfactant completely encapsulated the emulsified oil droplets demonstrating that less than 1% surfactant (by volume) is required to emulsify waste hydrocarbon during or to promote biodegradation. Growth on oil appeared to occur by the uptake of tens of nm-sized droplets of emulsified oil.  相似文献   

18.
Biochars produced by pyrolysis of hardwood at 450 °C (HW450) and corn straw at 600 °C (CS600) were characterized and investigated as adsorbents for the removal of Cu(II) and Zn(II) from aqueous solution. The adsorption data were well described by a Langmuir isotherm, with maximum Cu(II) and Zn(II) adsorption capacities of 12.52 and 11.0 mg/g for CS600, 6.79 and 4.54 mg/g for HW450, respectively. Thermodynamic analysis suggested that the adsorption was an endothermic process and did not occur spontaneously. Although Cu(II) adsorption was only marginally affected by Zn(II), Cu(II) competed with Zn(II) for binding sites at Cu(II) and Zn(II) concentrations ?1.0 mM. Results from this study indicated that plant-residue or agricultural waste derived biochar can act as effective surface sorbent, but their ability to treat mixed waste streams needs to be carefully evaluated on an individual basis.  相似文献   

19.
Moringa oliferia seed pod was modified using orthophosphoric acid (H3PO4) and used as adsorbent for sequestering Rhodamine B (Rh-B) dye from aqueous solution. The acid-modified adsorbent (MOSPAC) was characterized using Scanning Electron microscopy (SEM), Fourier Transform Infra Red (FTIR), Energy Dispersive X-ray (EDX), pH point of zero charge (pHpzc) and Boehm Titration (BT) techniques, respectively. Operational parameters such as contact time, initial dye concentration, adsorbent dosage, pH and solution temperature were studied in batch process. Optimum dye adsorption was observed at pH 3.01. Equilibrium adsorption data was tested data using four different isotherm models: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich. Langmuir isotherm model fitted most with maximum monolayer adsorption capacity of 1250 mg g–1. Pseudo-second-order kinetic model provided the best correlation for the experimental data. Thermodynamic study showed that the process is endothermic, spontaneous and feasible. MOSPAC is an effective adsorbent for the removal of RhB dye from aqueous solutions.  相似文献   

20.
Using persulfate/ascorbic acid redox pair, poly(methylacrylate) was grafted on to guar gum and the conditions for the grafting were optimized. The copolymer sample having maximum %G was evaluated for the removal of Cr(VI) and the sorption conditions were optimized. The sorption was found pH dependent, pH 1.0 being the optimum value. Sorption data at pH 1.0 were modeled using both the Langmuir and Freundlich isotherms where the data fitted better to Freundlich isotherm. The equilibrium sorption capacity of 29.67 mg/g was determined from the Langmuir isotherm. The sorption followed a pseudo-second-order kinetics with a rate constant 2.5 × 10?4 g mg?1 min?1. The grafted product was also evaluated for Cr(VI) removal from local electroplating industrial waste water. The regeneration experiments revealed that the guar-graft-poly(methylacrylate) could be successfully reused for five cycles. In the present study conductivity measurements were used instead of conventional photometric method for determining Cr(VI) concentration in the equilibrium solutions and the results obtained have been compared with photometric method. Optimum Cr(VI) binding under highly acidic conditions indicated significant contribution of non electrostatic forces in the adsorption process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号