首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Structure of polyoma virus late nuclear RNA   总被引:18,自引:0,他引:18  
  相似文献   

2.
Adenovirus type 7 (Ad7) early region 1 mRNA species transcribed in rat cell lines transformed by the HindIII-I . J fragment (the left 7.8% of the viral genome) and in human KB cells infected with Ad7 were mapped on the viral genome, using S1 nuclease gel and diazobenzyloxymethyl paper hybridization techniques. At the early stage of productive infection, two mRNA's (950 and 840 nucleotides long) with the common 5' and 3' ends but different internal splicings were mapped from region 1A (map units 1.4 to 4.3), and one mRNA (2,310 nucleotides long, with the internal splicing between map units 9.9 to 10.1) was mapped from region 1B (map units 4.6 to 11.4). At the late stage, these early spliced mRNA's were also found and at least three additional Ad7 mRNA's were identified: 700-nucleotide-long mRNA in region 1A; and 1,100- and nucleotide-long mRNA's in region 1B. In transformed rat cell lines, two early region 1A mRNA's (950 and 840 nucleotides long) were also transcribed. Surprisingly, in addition, several unique Ad7 mRNA's, not found in productivity infected cells, were identified in all of the transformed cell lines. Their molecular sizes and coding sequences varied in individual cell lines. However, these mRNA's had the 5' end-proximal portion in region 1B and the 3' end-proximal portion in region 1A, these portions being transcribed by extending from region 1B to 1A on viral DNA fragments joined in a tandem array in transformed cells.  相似文献   

3.
C Basilico  S Gattoni  D Zouzias  G D Valle 《Cell》1979,17(3):645-659
Rat cells transformed by polyoma virus contain, in addition to integrated viral DNA, a small number of nonintegrated viral DNA molecules. The free viral DNA originates from the integrated form through a spontaneous induction of viral DNA replication in a minority of the cell population. Its presence is under the control of the viral A locus. To determine whether the induction of free viral DNA replication was accompanied by a loss of integrated viral DNA molecules in a phenomenon similar to the "curing" of lysogenic bacteria, we selected for revertants arising in the transformed rat populations and determined whether these cells had lost integrated viral genomes. We further investigated whether the viral A function was necessary for "curing" by determining the frequency of cured cells in populations of rat cells transformed by the ts-a mutant of polyoma virus following propagation at the permissive or nonpermissive temperature. A large proportion of the revertants isolated were negative or weakly positive when assayed by immunofluorescence for polyoma T antigen and were unable to produce infectious virus upon fusion with permissive mouse cells. The T antigen-negative, virus rescue-negative clones can be retransformed by superinfection and appear to have lost a considerable proportion of integrated viral DNA sequences. Restriction enzyme analysis of the integrated viral DNA sequences shows that the parental transformed lines contain tandem repeats of integrated viral molecules, and that this tandem arrangement is generally lost in the cured derivatives. While cells transformed by wild-type virus undergo "curing" with about the same frequency at 33 degrees or 39 degrees C, cells transformed by the ts-a mutant contain a much higher frequency of cured cells after propagation at 33 degrees than at 39 degrees C. Our results indicate that in polyoma-transformed rat cells, loss of integrated viral DNA can occur at a rather high rate, producing (at least in some cases) cells which have reverted partially or completely to a normal phenotype. Loss of integrated viral DNA is never total and appears to involve an excision event. The polyoma A function (large T antigen) is necessary for such excision to occur. In the absence of a functional A gene product, the association of the viral DNA with the host DNA appears to be very stable.  相似文献   

4.
Electron microscopic techniques were used to examine the structure of the leader sequences at the 5'-ends of the late polyoma virus mRNAs. The three late mRNA's were partially purified and hybridized to an E. coli plasmid containing two polyoma virus genomes inserted in tandem. The hybrids were spread by the cytochrome c-formamide technique and visualized in the electron microscope. These studies revealed that whereas the body of a given mRNA molecule can hybridize with only one of the two corresponding body sequences in the two adjacent viral genomes, the leader of the same mRNA molecule can hybridize with both copies of the leader sequence-specific DNA. The mVP1 and mVP3 RNA species thus generated hybrids containing two loops, while mVP2 molecules formed hybrids containing one loop. Hence, the leaders of the three polyoma virus late mRNA species must contain two or more repeats of a sequence transcribed from a unique DNA segment. Length measurements showed that most leaders in the late mRNA's consist of at least 200 nucleotides and some contain up to 500 nucleotides, whereas the basic repeat sequence contains about 60 nucleotides.  相似文献   

5.
6.
The integration of polyoma virus DNA into the genome of transformed rat cells generally takes place in a tandem head-to-tail arrangement. A functional viral large tumor antigen (T-Ag) renders this structure unstable, as manifested by free DNA production and excision or amplification of the integrated viral DNA. All of these phenomena involve the mobilization of precise genomic “units,” suggesting that they result from intramolecular homologous recombination events occurring in the repeated viral DNA sequences within the integrated structures. We studied polyoma ts-a-transformed rat cell lines, which produced large T-Ag but contained less than a single copy of integrated viral DNA. In all of these lines, reversion to a normal phenotype (indicative of excision) was extremely low and independent of the presence of a functional large T-Ag. The revertants were either phenotypic or had undergone variable rearrangements of the integrated sequences that seemed to involve flanking host DNA. In two of these cell lines (ts-a 4A and ts-a 3B), we could not detect any evidence of amplification even after 2 months of propagation under conditions permissive for large T-Ag. An amplification event was detected in a small subpopulation of the ts-a R5-1 line after 2 months of growth at 33°C. This involved a DNA fragment of 5.1 kilobases, consisting of the left portion of the viral insertion and about 2.5 kilobases of adjacent host DNA sequences. None of these lines spontaneously produced free viral DNA, but after fusion with 3T3 mouse fibroblasts, R5-1 and 4A produced a low level of heterogeneous free DNA molecules, which contained both viral and flanking host DNA. In contrast, the ts-a 9 cell line, whose viral insertion consists of a partial tandem of ~1.2 viral genomes, underwent a high rate of excision or amplification when propagated at temperatures permissive for large T-Ag function. These results indicate that the high rate of excision and amplification of integrated viral genomes observed in polyoma-transformed rat cells requires the presence of regions of homology (i.e., repeats) in the integrated viral sequences. Therefore, these events occur via homologous intramolecular recombination, which is promoted directly or indirectly by the large viral T-Ag.  相似文献   

7.
8.
9.
10.
The three cytoplasmic polyadenylated mRNA's which separately encode the three capsid proteins (VP1, VP2, and VP3) of polyoma virus were mapped on the viral genome by one- and two-dimensional gel electrophoreses of nuclease S1-resistant RNA-DNA hybrids. The mRNA's, which we designated mVP1, mVP2, and mVP3 to indicate the coding functions deduced from the cosedimentation of the RNAs and the messenger activities, comprise an overlapping set of 3'-coterminal molecules which also share a heterogeneous family of noncoding 5'-terminal regions (Flavell et al., Cell 16:357--371, 1979; Legon et al., Cell 16:373--388, 1979). The three species differ in the length of the 3' colinear coding region which is spliced to the 5' leader sequences. The common polyadenylated 3' end maps at map unit 25.3. The 5' ends of the colinear bodies of mVP1, mVP3, and mVP2 map at 48.5, 59.5, and 66.5 map units, respectively. An examination of the polyoma virus DNA sequence (Arrand et al., J. Virol. 33:606--618, 1980) in the vicinities of splicing sites approximated by the S1 gel mapping data for sequences common to the ends of known intervening sequences allowed prediction of the precise splice points in polyoma virus late mRNA's. In all three cases, the leader sequences are joined to the mRNA bodies at least 48 nucleotides before the translational initiation codon used in each particular messenger. The start signal which functions in each mRNA is the first AUG (or GUG) triplet after the splice junction.  相似文献   

11.
12.
13.
Fischer rat fibroblasts transformed by polyoma virus contain, in addition to viral sequences integrated into the host genome, nonintegrated viral DNA molecules, whose presence is under the control of the viral A gene. To understand the mechanism of production of the "free" viral DNA, we have characterized the DNA species produced by several rat lines transformed by wild-type virus or by ts-a polyoma virus and compared them with the integrated viral sequences. Every cell line tested yielded a characteristic number of discrete species of viral DNA. The presence of defectives was a very common occurrence, and these molecules generally carried deletions mapping in the viral "late" region. The production of multiple species of free viral DNA was not due to heterogeneity of the transformed rat cell population, and its pattern did not change upon fusion with permissive mouse cells. Analysis of the integrated viral DNA sequences in the same cell lines showed, in most cases, a full head-to-tail tandem arrangement of normal-size and defective molecules. The free DNA produced by these lines faithfully reflected the integrated species. This was true also in the case of a cell line which contained a viral insertion corresponding to approximately 1.3 polyoma genomes, with each of the repeated portions of the viral DNA molecule carrying a different-size deletion. These results support the hypothesis that the free DNA derives from the integrated form through a mechanism of homologous recombination leading to excision and limited replication.  相似文献   

14.
Molecular clones of vesicular stomatitis virus mRNA's were used to determine the 3'-terminal sequences of mRNA's encoding the N and NS proteins. This new approach to VSV mRNA sequencing allowed the first comparison of 3'-terminal sequences. The sequences showed a tetranucleotide homology, UAUG, immediately preceding the polyadenylic acid. In addition, both mRNA's had an AU-rich region including the tetranucleotide AUAU at positions 16 to 19 nucleotides from the polyadenylic acid. A possible secondary structure between the 3' end of N mRNA and the 5' end of the adjacent NS mRNA is noted. These structural features may serve as signals for termination (or cleavage) and polyadenylation of vesicular stomatitis virus mRNA's. Neither mRNA had the polyadenylic acidproximal hexanucleotide, AAUAAA, found in eucaryotic cellular and viral mRNA's transcribed from nuclear DNA. The probable location of the translation termination codon for the NS protein is only six nucleotides from polyadenylic acid in NS mRNA.  相似文献   

15.
The structure of the polyoma virus defective species D74 (74% the size of full-length polyoma virus DNA) has been determined and compared with that of polyoma virus A2 DNA. D74 appears to be composed entirely of viral DNA sequences. (No host DNA sequences have been detected.) It is made up of three DNA segments, each about 24, 24 and 27% in size. The two 24% segments appear to be identical and the 27% segment contains one copy of all the sequences found in the 24% fragments as well as a duplication of some of the sequences. When related to the physical map of A2 DNA, each segment is found to be composed of viral sequences from 1 to about 19 map units, 67 to 69 map units and 70 to 72 map units.Three features found in other polyoma virus defective species (Lund et al., 1977) are also present in D74. (1) Sequences from the region around 67 map units are linked to other (non-contiguous) viral sequences. (2) Sequences at about 72 map units are linked to sequences at 1 map unit. (3) Multiple copies of sequences from around the origin of viral DNA replication are present. From studies on other polyoma defective molecules (Griffin &; Fried, 1975; Lund et al., 1977), the origin of DNA replication for polyoma virus has been defined to lie within the sequences from 67 to 72 map units. Since D74 replicates efficiently but lacks the sequences between 69 to 70 map units, the origin of DNA replication appears to be further defined as lying within 67 and 69 map units and/or 70 to 72 map units.  相似文献   

16.
Adenovirus type 2 rat transformed cells produced two polyadenylic acid-terminated mRNA's with approximate coordinates 1.5-4.4 and 4.4-11.0 on the physical map of the adenovirus type 2 genome. These mRNA's were also formed early during lytic infection in addition to one or more smaller mRNA's from the 4.4-11.0 region. In transformed cells, the 1.5-4.4 mRNA appeared in the cell cytoplasm without detectable lag, whereas the 4.4-11.0 mRNA required at least 20 to 30 min for the maximal rate of accumulation.  相似文献   

17.
18.
19.
The nucleotide sequence of part of the late region of the polyoma virus genome was determined. It contains coding information for the major capsid protein VP1 and the C-terminal region of the minor proteins VP2 and VP3. In the sequence with the same polarity as late mRNA's, all coding frames are blocked by termination codons in a region around 48 units on the physical map. This is the region where the N-terminus of VP1 and the C-termini of VP2 and VP3 have been located (T. Hunter and W. Gibson, J. Virol. 28:240-253, 1978; S. G. Siddell and A. E. Smith, J. Virol. 27:427-431, 1978; Smith et al., Cell 9:481-487, 1976). There are two long uninterrupted coding frames in the late region of polyoma virus DNA. One lies at the 5' end of the sequence and contains potential coding sequences for VP2 and VP3. The other contains 383 consecutive sense codons starting with the ATG at nucleotide position 1,218, extends from 47.5 to 25.8 units counterclockwise on the physical map, and is located where the VP1 gene has been mapped. The VP1 gene overlaps the genes for proteins VP2/VP3 by 32 nucleotides and uses a different coding frame. From the DNA sequence, the amino acid sequence of VP1 was predicted. The proposed VP1 sequence is in good agreement with other data, namely, with the partial N-terminal amino acid sequence and the total amino acid composition. The VP1 coding frame terminates with a TAA codon at 25.8 map units. This is followed by an AATAAA sequence, which may act as a processing signal for the viral late mRNA's. When both nucleotide and amino acid sequences are compared with their counterparts in the related simian virus 40, extensive homologies are found over the entire region of the two viral genomes. Maximum homology appears to occur in those regions which code for the C-termini of the VP1 proteins. The overlap region of VP1 with VP2/VP3 of polyoma virus is shorter by 90 nucleotides than is that of simian virus 40 and shows very limited homology with the simian virus 40 sequence. This leads to the suggestion that the overlap segments of both viruses have been freed from stringency imposed on drifting during evolution and that proteins VP2 and VP3 of polyoma virus may have been truncated by the appearance of a termination codon within the sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号