首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Amber mutants of bacteriophage T4 have been isolated that induce thymidine kinase activity only after infection of a strain of Escherichia coli carrying a suppressor mutation. The activity induced when one of these mutants infected this suppressor strain is much more heat sensitive than the activity induced by wild-type T4. This indicates that this amber mutation lies within the structural gene for thymidine kinase. This gene is between fI and v on the standard T4 genetic map. A mutant of tt4 that is unable to induce thymidine kinase activity incorporates only about one-eighth as much thymidine into its DNA as phage that do induce thymidine kinase. This contrasts to the findings that the total thymidine kinase activity in extracts prepared from cells infected with phage able to induce thymidine kinase in only twice as great as the activity in cells infected with the mutant unable to induce the enzyme.  相似文献   

2.
Two amber mutations in gene 67 of bacteriophage T4 were constructed by oligonucleotide-directed mutagenesis and the resulting mutated genes were recombined back into the phage genome and their phenotype was studied. The 67amK1 mutation is close to the amino terminus of the gene, and phage carrying this mutation are unable to form plaques on suppressor-negative hosts. A second mutation, 67amK2, which lies in the middle of the gene, three codons N-terminal to a proteolytic cleavage site, produces a small number of viable phage particles. In suppressor-negative hosts, both mutants produce polyheads and proheads. 67amK1 assembles only few proheads that have a disorganized core structure, as judged from thin sections of infected cells. The proheads and the mature phages of both mutants are mainly isometric rather than having the usual prolate shape. Depending on the 67 mutant and the host, between 20% and 73% of the particles that are produced are isometric, and 1 to 10% are two-tailed biprolate particles. 67amK2 phages grown on a supD suppressor strain that inserts serine in place of the wild-type leucine do not contain gp67* derived from gene product 67 (gp67) by proteolytic cleavage. This demonstrates the importance of the correct amino acid at this position in the protein. Other abnormalities in these 67amK2 phages are the presence of uncleaved scaffolding core proteins (IPIII and gp68), indicating a structural alteration in the prohead scaffold, resulting in only partial cleavage. In wild-type phages these proteins are found in the head only in the cleaved form. With double-mutants of 67 with mutations in the major shell protein gp23 no naked scaffolding cores were found, confirming the necessity of gp67 for the assembly or persistence of a "normal" core.  相似文献   

3.
The product of gene 1.2 of bacteriophage T7 is not required for the growth of T7 in wild-type Escherichia coli since deletion mutants lacking the entire gene 1.2 grow normally (Studier et al., J. Mol. Biol. 135:917-937, 1979). By using a T7 strain lacking gene 1.2, we have isolated a mutant of E. coli that was unable to support the growth of both point and deletion mutants defective in gene 1.2. The mutation, optA1, was located at approximately 3.6 min on the E. coli linkage map in the interval between dapD and tonA; optA1 was 92% cotransducible with dapD. By using the optA1 mutant, we have isolated six gene 1.2 point mutants of T7, all of which mapped between positions 15 and 16 on the T7 genetic map. These mutations have also been characterized by DNA sequence analysis, E. coli optA1 cells infected with T7 gene 1.2 mutants were defective in T7 DNA replication; early RNA and protein synthesis proceeded normally. The defect in T7 DNA replication is manifested by a premature cessation of DNA synthesis and degradation of the newly synthesized DNA. The defect was not observed in E. coli opt+ cells infected with T7 gene 1.2 mutants or in E. coli optA1 cells infected with wild-type T7 phage.  相似文献   

4.
Bacteriophage T4 gene 1 and 42 amber mutants (defective in deoxynucleoside monophosphate kinase and deoxycytidylate hydroxymethylase, respectively) are able to synthesize DNA in cell-free lysates prepared as described by Barry and Alberts (1972), in contrast to their inabliity to do so in plasmolyzed and toluenized cell systems. Addition of extracts containing an active gene 1 or 42 product has no effect on synthesis in lysates defective in the respective gene. Thus, if these enzymes do play additional direct roles in replication, these roles are not manifest in the lysed-cell system. The gene 42 mutant am N122/m, a double mutant bearing an additional defect in DNA polymerase, is unable to synthesize DNA in these lysates. This inability is overcome by addition of extracts containing an active T4 DNA polymerase. m is a leaky amber mutation which reduces DNA polymerase activity to a very low level. However, this level is high enough to allow positive genetic complementation tests with gene 43 mutants. Two other gene 42 amber mutants contain additional defects: am 269 induces only half the normal level of DNA polymerase, and am C87 fails to induce a detectable level of thymidylate synthetase. These defects do not result from pleiotropic effects of the gene 42 mutations. In plasmolyzed cells, temperature-sensitive gene 42 mutants fail to synthesize DNA under conditions where replication forks and 5-hydroxymethyl-dCTP are present. This supports the idea that the gene 42 protein is directly involved in DNA synthesis.  相似文献   

5.
New mutants of T4 have been isolated by using a strain of Escherichia coli lacking thymidine kinase activity. These T4 mutants, designated tk, are able to grow on this E. coli strain under light on plates containing 5-bromodeoxyuridine and were all found to be unable to induce thymidine kinase (ATP: thymidine 5'-phosphotransferase, EC 2.7.1.21). All of these tk mutants fall into one complementation group which maps just to the right of rI on the standard T4 genetic map, far from most other genes coding for enzymes involved in pyrimidine metabolism. The tk mutants grow as well as wild-type T4, indicating that thymidine kinase is a non-essential enzyme.  相似文献   

6.
Mutants of bacteriophage T4 which exhibit increased sensitivity to ultraviolet radiation specifically at high temperature were isolated after mutagenesis with hydroxylamine. At 42 °C the mutants are twice as sensitive to ultraviolet light as T4D, whereas at 30 °C they exhibit survival curves almost identical to that of the wild-type strain. Complementation tests revealed that the mutants possess temperature-sensitive mutations in the v gene.Evidence is presented to show that T4 endonuclease V produced by the mutants is more thermolabile than the enzyme of the wild-type. (1) Extracts of cells infected with the mutants were capable of excising pyrimidine dimers from ultraviolet irradiated T4 DNA at 30 °C, but no selective release of dimers was induced at 42 °C. (2) Endonuclease V produced by the mutant was inactivated more rapidly than was the enzyme from T4D-infected cells when the purified enzymes were incubated in a buffer at 42 °C. From these results it is evident that the v gene is the structural gene for T4 endonuclease V, which plays an essential role in the excision-repair of ultraviolet light-damaged DNA.The time of action of the repair endonuclease was determined by using the mutant. Survival of a temperature-sensitive v mutant, exposed to ultraviolet light, increased when infected cells were incubated at 30 °C for at least ten minutes and then transferred to 42 °C. It appears that repair of DNA proceeds during an early stage of phage development.  相似文献   

7.
The acyclovir resistant mutant of varicella-zoster virus ACV-R (A 8) induced the same level of thymidine kinase activity in infected cells as the parent Kawaguchi strain. However, it induced less deoxycytidine kinase activity and did not induce phosphorylating activity for the nucleotide analogue, 9-(2 hydroxy-ethoxymethyl)-guanine-(acyclovir). Another acyclovir resistant mutant, ACV-R (A 4), which is cross-resistant to phosphonoacetate and is thought to be a viral DNA polymerase mutant, induced the same level of phosphorylating activities for thymidine, deoxycytidine and acyclovir as the parent strain. The altered substrate specificity of thymidine kinase induced by ACV-R (A 8) is concluded to confer resistance to acyclovir on ACV-R (A 8).  相似文献   

8.
A mutant of phage T5 which is unable to induce thymidylate synthetase was isolated. T5 thy mutants synthesized less DNA than did wild-type T5, and the burst size of progeny phage was correspondingly reduced two- to threefold in thy+ Escherichia coli. No DNA or progeny phage were made in E. coli thy hosts grown in the absence of exogenous thymine. When the T5 thy mutation was recombined with a T5 dut mutation (unable to induce dUTPase), replication resulted in progeny which contained significant amounts of uracil in their DNA, and these phage failed to produce plaques unless the plating host was deficient in uracil-DNA glycosylase. T5 phage containing various amounts of uracil in their DNA were prepared and used to determine the effect of uracil on the induction of the early enzyme dTMP kinase. The presence of uracil in the parental DNA increased the rate of induction of this enzyme by about 2.5-fold. The T5 thy gene was mapped and is located near the T5 frd gene on the B region of the T5 genome.  相似文献   

9.
A gene 32 amber (am) mutant, amNG364, fails to grow on Escherichia coli Su3+ high temperatures, suggesting that the tyrosine residue inserted at the am codon by Su3+ leads to a temperature-sensitive gene 32 protein (P32). By plating amNG364 on E. coli Su3+ 45 degrees C, several pseudorevertants were found that proved to contain a suppressor (su) mutant in addition to the original am mutation. Crosses of two of these amNG364su strains to am+ phage indicated that the suppressors themselves are in or close to gene 32. Phage strains carrying either of the two su mutations, without amNG364, grew normally. When cells were infected by these su mutants and the proteins produced were examined by sodium dodecyl sulfate-gel electrophroesis, specific overproduction of P32 was found. Maximum overproduction compared to am+ phage was 6.6-fold for one su mutant and 2.4-fold for the other. Other proteins were produced in normal amounts and in normal time sequence. When amNG364su phage were allowed to infect E. coli S/6/5(Su-), the gene 32 am fragments produced were present at the same derepressed levels as in an infection by amNG364 without a suppressor. The suppressor mutations are interpreted as causing derepression of P32 by altering sites in this autogenously regulated protein involved in template recognition. Previously, specific derepression of gene 32 had only been shown using gene 32 conditional lethal mutants grown under restrictive conditions. We have shown that P32 can also be derepressed under permissive conditions, indicating that loss of P32 function is not necessary for specific derepression.  相似文献   

10.
Mutants of bacteriophage T4D which fail to induce the deoxyribonucleotide-specific T4 3'-phosphatase have been isolated. These mutants (T4pseT) grow as well as wild-type T4 in most strains of Escherichia coli, but not in the T4-sensitive "Hospital Strain," CT196, or in a derivative strain, CTr5x. Both the formation of infectious centers and the final yield of phage are reduced by 98% when CTr5x is infected by T4pseT mutants. The growth defects are accompanied by a 50% reduction in the rate of T4 DNA synthesis, a decrease in the single-strand length of the DNA product to about one-half the mature length, and greatly reduced packaging of DNA into phage particles. Introduction of an extra-cistronic suppressor mutation (stp) into T4pseT eliminates both the requirement for the T4 3'-phosphatase in infected CTr5x and the other observed effects of the pseT mutations. The pseT gene lies between genes 63 and 31. The stp gene lies in the nonessential region between rIIB and ac. Our results suggest that 3'-phosphoryl termini can disrupt T4 DNA replication to the extent that T4 3'-phosphatase becomes required for phage production.  相似文献   

11.
(i) Phenotypic suppression by aminoglycoside antibiotics of a polyauxotrophic Shigella flexneri var. Y strain on partially completed minimal medium has shown that its Thr dependence is associated with nonsense mutation. Induced Thr+ revertants selected from the culture yielded clones correcting the lytic cycle of nonsense T4 mutant phages. Transfer of R1am plasmid to these clones carrying a nonsense mutation of ampicillin resistance was performed. In this manner a S. flexneri var. Y derivative was isolated which, on the basis of the phenotypic correction of T4 phages and R1am factor, proved to be a suppressor positive clone. (ii) From phage PE5 responsible for conversion of type antigen V, mutants were isolated that had lost their converting capacity. Selected Sup+ and control Sup- strains were treated with the mutant phages and examined for the appearance of type antigen V. Three phage mutants were found to induce antigen conversion only in Sup+ strains. (iii) The data suggest that, at least with phage PE5, the information for type antigen conversion is carried by phage genome.  相似文献   

12.
The nucleoids of Escherichia coli S/6/5 cells are rapidly unfolded at about 3 min after infection with wild-type T4 bacteriophage or with nuclear disruption deficient, host DNA degradation-deficient multiple mutants of phage T4. Unfolding does not occur after infection with T4 phage ghosts. Experiments using chloramphenicol to inhibit protein synthesis indicate that the T4-induced unfolding of the E. coli chromosomes is dependent on the presence of one or more protein synthesized between 2 and 3 min after infection. A mutant of phage T4 has been isolated which fails to induce this early unfolding of the host nucleoids. This mutant has been termed "unfoldase deficient" (unf-) despite the fact that the function of the gene product defective in this strain is not yet known. Mapping experiments indicate that the unf- mutation is located near gene 63 between genes 31 and 63. The folded genomes of E. coli S/6/5 cells remain essentially intact (2,000-3,000S) at 5 min after infection with unfoldase-, nuclear disruption-, and host DNA degradation-deficient T4 phage. Nuclear disruption occurs normally after infection with unfoldase- and host DNA degradation-deficient but nuclear disruption-proficient (ndd+), T4 phage. The host chromosomes remain partially folded (1,200-1,800S) at 5 min after infection with the unfoldase single mutant unf39 x 5 or an unfoldase- and host DNA degradation-deficient, but nuclear disruption-proficient, T4 strain. The presence of the unfoldase mutation causes a slight delay in host DNA degradation in the presence of nuclear disruption but has no effect on the rate of host DNA degradation in the absence of nuclear disruption. Its presence in nuclear disruption- and host DNA degradation-deficient multiple mutants does not alter the shutoff to host DNA or protein synthesis.  相似文献   

13.
A R Sambol  G R Dubes 《Microbios》1984,39(155):19-27
L-tryptophan (codon UGG) at high concentrations, usually 20 mM, phenotypically suppressed all four phage T4 opal (codon UGA) mutants tested. The suppression was incomplete. With three of the opal mutants, H301, H317, and H340, the suppression resulted in marked increases in plaque size and clarity in the restrictive host Escherichia coli strain B. With the very tight opal mutant H429, the suppression was discerned only by a 1,200-fold increase in phage yield from restrictive host cells in the chemically defined medium. Comparisons of L-tryptophan with seven other amino acids showed that only L-tryptophan provided a high magnitude of phenotypic suppression. The possibility that phenotypic suppression by L-tryptophan can be used in a screen for opal mutants of viruses of species without known opal suppressor mutations is discussed.  相似文献   

14.
15.
Mutants of bacteriophage T4 that fail to induce nuclear disruption (ndd mutants) are unable to grow in the wild-type Escherichia coli strain CT447. This inhibition of the growth of ndd mutants occurs only in the presence of a large (ca. 80-megadalton) plasmid resident in CT447 cells.  相似文献   

16.
Q beta phage RNAs with inactivating insertion (8-base) or deletion (17-base) mutations within their replicase genes were prepared from modified Q beta cDNAs and transfected into Escherichia coli spheroplasts containing Q beta replicase provided in trans by a resident plasmid. Replicase-defective (Rep-) Q beta phage produced by these spheroplasts were detected as normal-sized plaques on lawns of cells containing plasmid-derived Q beta replicase, but were unable to form plaques on cells lacking this plasmid. When individual Rep- phage were isolated and grown to high titer in cells containing plasmid-derived Q beta replicase, revertant (Rep+) Q beta phage were obtained at a frequency of ca. 10(-8). To investigate the mechanism of this reversion, a point mutation was placed into the plasmid-derived Q beta replicase gene by site-directed mutagenesis. Q beta mutants amplified on cells containing the resultant plasmid also yielded Rep+ revertants. Genomic RNA was isolated from several of the latter phage revertants and sequenced. Results showed that the original mutation (insertion or deletion) was no longer present in the phage revertants but that the marker mutation placed into the plasmid was now present in the genomic RNAs, indicating that recombination was one mechanism involved in the reversion of the Q beta mutants. Further experiments demonstrated that the 3' noncoding region of the plasmid-derived replicase gene was necessary for the reversion-recombination of the deletion mutant, whereas this region was not required for reversion or recombination of the insertion mutant. Results are discussed in terms of a template-switching model of RNA recombination involving Q beta replicase, the mutant phage genome, and plasmid-derived replicase mRNA.  相似文献   

17.
Growth of a Dihydrofolate Reductaseless Mutant of Bacteriophage T4   总被引:5,自引:5,他引:0       下载免费PDF全文
A mutant of bacteriophage T4 was isolated which was unable to induce virus-specific dihydrofolate reductase in infected cells. The mutant was able to form several other early enzymes of pyrimidine metabolism. Growth of the mutant in a wild-type host, Escherichia coli B, was compared with that of the parent strain, T4BO(1), and T4td8, a mutant which lacks the ability to induce thymidylate synthetase. Growth studies were carried out in minimal medium, which gave higher growth rates and phage yields than the supplemented media used in previous studies. The reductase mutant formed deoxyribonucleic acid and plaque-forming particles at a rate slightly higher than the synthetase mutant but 1.5-to 2-fold lower than that of the wild-type phage under all conditions studied. The addition of thymine to a culture infected by the mutant increased the growth rate significantly, suggesting that the genetic lesion leads to a partial thymidylate deficiency. Like other viral genes controlling steps in thymidylate metabolism, the dihydrofolate reductase gene appears to be useful but not completely essential for growth.  相似文献   

18.
The mouse genome carries one gene and two pseudogenes for cytoplasmic thymidine kinase. The overall structure of these genes was determined with the help of cosmids and lambda phage clones and the upstream sequence containing the promoter was determined. The data allow an allocation of bands seen in the complex patterns of genomic Southern blots obtained from the DNA of wild type cells and of thymidine kinase deficient mutants to the gene as well as to the two pseudogenes. The much used LTK cell line was found to lack the entire gene but to retain the pseudogenes. Two other TK cell lines had DNA patterns indistinguishable from the wild type. Whereas the LTK line did not produce any TKmRNA, the two other mutants had normal amounts of TKmRNA but no cytoplasmic TK activity.  相似文献   

19.
We have isolated mutants of Rous sarcoma virus from an unmutagenized stock of the Schmidt-Ruppin strain of Rous sarcoma virus. These mutants induce only a "partial" transformation, and the transformation properties induced show unusual properties or combinations. Cells infected with mutant CU2 have a unique "blebby" morphology, have lost surface fibronectin, form very small colonies in soft agar, and are nearly normal with respect to adhesiveness and hexose transport. Cells infected with mutant tsCU11 have a nearly normal morphology, but grow well in soft agar. Cells infected with mutant CU12 have a fusiform morphology, intermediate levels of hexose transport and fibronectin, and form very large colonies in soft agar. Because the appearance of the different parameters of transformation is dissociated in these mutant-infected cells, these data are interpreted as supporting a model in which the transforming protein pp60src interacts with more than one primary target in generating the transformed phenotype. All of the mutants display levels of pp60src kinase activity less than that of the wild type. In the case of mutant CU12, the lower kinase activity is in part a consequence of a lower steady-state amount of pp60src inside the cell.  相似文献   

20.
Mutants of Varicella-Zoster Virus (VZV) which are resistant to phosphonoacetic acid (PAA), bromodeoxyuridine (BuDR), and acyclovir (ACV) were obtained by serial passages of VZV with increasing concentrations of these drugs. A PAA-resistant mutant and a BuDR-resistant mutant were found also to be resistant to ACV. Five of 8 ACV-resistant mutants acquired resistance to PAA, but none acquired resistance to BuDR. The BuDR-resistant mutant did not induce viral thymidine kinase (TK) activity, but all the ACV-resistant mutants selected in ACV showed viral TK activity which was suppressed with anti-VZV serum and had almost the same electrophoretic mobility as that of the parent strain on polyacrylamide gel electrophoresis in non-denaturing conditions. However, in competitive TK assay with ACV, 2 of 8 ACV-resistant mutants showed no change of phosphorylation of radioactive thymidine, while the other 6 showed decreased phosphorylation of radioactive thymidine. It was suggested that TK induced by the former 2 ACV-resistant mutants had lost affinity to ACV, and so the mutants could grow in the presence of ACV. Thus of the 8 ACV-resistant mutants selected in ACV, 2 were sensitive to PAA with altered TK activity, 5 were resistant to PAA with unaltered TK activity, and 1 was sensitive to PAA with unaltered TK activity, and may have altered DNA polymerase activity to ACV, retaining sensitivity to PAA. These results suggest that resistance of VZV to ACV results from alterations in the virus-specified TK or DNA polymerase, as demonstrated in HSV resistant to ACV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号