首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
HIF-1α is known to play an important role in the induction of VEGF by hypoxia in retinal pigment epithelial (RPE) cells. However, the involvement of the other isoform, HIF-2α, in RPE cells remains unclear. Thus, the purpose of present study was to clarify the role of HIF-2α during induction of angiogenic genes in hypoxic RPE cells. When human RPE cells (ARPE-19) were cultured under hypoxic conditions, HIF-1α and HIF-2α proteins increased. This induced an increase in mRNA for VEGF, causing secretion of VEGF protein into the medium. This conditioned medium induced tube formation in human vascular endothelial cells (HUVEC). The increased expression of mRNA for VEGF in hypoxic RPE cells was partially inhibited by HIF-1α siRNA, but not by HIF-2α siRNA. However, co-transfection of HIF-1α siRNA and HIF-2α siRNA augmented downregulation of VEGF mRNA and protein in hypoxic RPE cells and inhibited formation of tube-like structures in HUVEC. GeneChip and PCR array analyses revealed that not only VEGF, but also expression of other angiogenic genes were synergistically downregulated by co-transfection of hypoxic RPE cells with HIF-1α and HIF-2α siRNAs. These findings suggest an important compensatory role for the HIF-2α isoform in the regulation of angiogenic gene expression. Thus, suppression of angiogenic genes for HIF-1α and HIF-2α may be a possible therapeutic strategy against retinal angiogenesis in Age-related macular degeneration (ARMD).  相似文献   

2.
ARPE-19 retinal pigment epithelial cells cultured in a medium containing 35 mM D-glucose led to an augmented ROS formation and release of vascular endothelial factor (VEGF)-containing exosomes compared to ARPE-19 cells cultured in a medium containing 5 mM D-glucose (standard medium). Exposing these cells to the melanocortin 5 receptor agonist (MCR5) PG-901 (10?10M), for 9 d reduced ROS generation, the number of exosomes released and their VEGF content. In contrast, incubating the cells with the melanocortin receptor MCR1 agonist BMS-470539 (10?5 M) or with the mixed MCR3/4 agonist MTII (0.30 nmol) did not produce any significant decrease in ROS levels. ARPE-19-derived VEGF-containing exosomes promoted neovascularization in human umbilical vein endothelial cells (HUVEC), an effect that was markedly reduced by PG-901 (10?10M) but not by the MCR3/4 agonist MTII (0.30 nmol) or the MCR1 agonist BMS-470539 (10?5 M). The MCR5-related action in the ARPE-19 cells was accompanied by the increased expression of two coupled factors, cytochrome p4502E1 (CYP2E1) and nuclear factor kappa b (Nf-κB). These are both involved in high glucose signalling, in ROS generation and, interestingly, were reduced by the MCR5 agonist in the ARPE-19 cells. Altogether, these data suggest that MCR5 is a modulator of the responses stimulated by glucose in ARPE-19 cells, which might possibly be translated into a modulation of the retinal pigment epithelium response to diabetes in vivo.  相似文献   

3.
4.
5.

Background

Age-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly population. Debris (termed drusen) below the retinal pigment epithelium (RPE) have been recognized as a risk factor for dry AMD and its progression to wet AMD, which is characterized by choroidal neovascularization (CNV). The underlying mechanism of how drusen might elicit CNV remains undefined. Cigarette smoking, oxidative damage to the RPE and inflammation are postulated to be involved in the pathophysiology of the disease. To better understand the cellular mechanism(s) linking oxidative stress and inflammation to AMD, we examined the expression of pro-inflammatory monocyte chemoattractant protein-1 (MCP-1), pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial derived factor (PEDF) in RPE from smoker patients with AMD. We also evaluated the effects of hydroquinone (HQ), a major pro-oxidant in cigarette smoke on MCP-1, VEGF and PEDF expression in cultured ARPE-19 cells and RPE/choroids from C57BL/6 mice.

Principal Findings

MCP-1, VEGF and PEDF expression was examined by real-time PCR, Western blot, and ELISA. Low levels of MCP-1 protein were detected in RPE from AMD smoker patients relative to controls. Both MCP-1 mRNA and protein were downregulated in ARPE-19 cells and RPE/choroids from C57BL/6 mice after 5 days and 3 weeks of exposure to HQ-induced oxidative injury. VEGF protein expression was increased and PEDF protein expression was decreased in RPE from smoker patients with AMD versus controls resulting in increased VEGF/PEDF ratio. Treatment with HQ for 5 days and 3 weeks increased the VEGF/PEDF ratio in vitro and in vivo.

Conclusion

We propose that impaired RPE-derived MCP-1-mediated scavenging macrophages recruitment and phagocytosis might lead to incomplete clearance of proinflammatory debris and infiltration of proangiogenic macrophages which along with increased VEGF/PEDF ratio favoring angiogenesis might promote drusen accumulation and progression to CNV in smoker patients with dry AMD.  相似文献   

6.
In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO) can alter the function of the basement membrane of retinal pigment epithelial (RPE) cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis.  相似文献   

7.
BACKGROUND: The techniques to isolate and purify retinal pigment epithelial (RPE) cells from small piece of autologous tissues are extremely difficult, and it is important to develop an efficient cell culture technique for RPE cells. The purpose of this study was to investigate the effect of 3T3-J2 cells and conditioned medium from 3T3-J2 cells on the proliferation of cultured RPE cells. METHODS: RPE cells from pigmented rabbits and a human RPE-derived cell line, ARPE-19, were used. First, the effects of co-culturing RPE cells with 3T3-J2 cells on the growth of the cells were analyzed. Second, the effects of the conditioned medium from 3T3-J2 cells on the proliferation of both types of cells were investigated. And third, the effects of the conditioned medium on RPE cell culture from a surgically removed choroidal neovascular (CNV) membrane were investigated. RESULTS: The 3T3-J2 cells increased the proliferation of both rabbit RPE cells and ARPE-19 cells. The number of rabbit RPE cells cultured in a mixture of the conditioned medium from 3T3-J2 cells was significantly higher than that in the reported optimal condition, and a similar tendency was observed for ARPE-19 cells. The results from enzyme-linked immunosorbent assay showed the presence of PDGF-AB, VEGF and IGF-I in the conditioned medium. The conditioned medium also promoted selective growth of human RPE cells from CNV. DISCUSSION: The results from this study present the conditions for efficient and selective culture of primary RPE cells.  相似文献   

8.
9.
Exosomes are informative microvesicles associated with intercellular communication via the transfer of many molecular constituents such as proteins, lipids, and nucleic acids; environmental changes and the cellular status around cells greatly affect exosome components. Cells of the retinal pigment epithelium (RPE) are key players in retinal homeostasis. Transforming growth factor (TGF)-β and tumour necrosis factor (TNF)-α are increased in the vitreous and retina in several retinal diseases and activate and undergo epithelial-mesenchymal transition (EMT) in RPE cells. EMT is closely associated with mechanisms of wound healing, including fibrosis and related angiogenesis; however, whether exosome components depend on the cell status, epithelium or mesenchyme and whether these exosomes have pro- or anti-angiogenic roles in the retina are unknown. We performed this study to investigate whether these EMT inducers affect the kinds of components in exosomes secreted from RPE cells and to assess their angiogenic effects. Exosomes were collected from culture media supernatants of a human RPE cell line (ARPE-19) stimulated with or without 10 ng/ml TNF-α and/or 5 ng/ml TGF-β2. NanoSight tracking analysis and immunoblot analysis using exosome markers were used to qualify harvested vesicles. Angiogenic factor microarray analysis revealed that exosomes derived from ARPE-19 cells cultured with TNF-α alone (Exo-TNF) and co-stimulated with TNF-α and TGF-β2 (Exo-CO) contained more angiogenic factors than exosomes derived from control cells (Exo-CTL) or ARPE-19 cells cultured with TGF-β2 alone (Exo-TGF). To assess the effect on angiogenesis, we performed chemotaxis, tube formation, and proliferation assays of human umbilical vein endothelial cells (HUVECs) stimulated with or without exosomes. HUVECs migrated to RPE-derived exosomes, and exosomes derived from ARPE-19 cells accelerated HUVEC tube formation. In contrast, Exo-TNF and Exo-CO reduced HUVEC proliferation. Our findings provide insight into the mechanisms underlying the relation between angiogenesis and exosomes derived from RPE cells.  相似文献   

10.
11.
《Cytokine》2015,75(2):335-338
Dysfunction of the retinal pigment epithelium (RPE) resulting from chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD). RPE cells adjacent to drusen deposits in the AMD eye are known to contain CXCL11, a chemokine involved in inflammatory cell recruitment. We investigated the CXCL11 production by the human RPE (ARPE-19) cells under inflammatory conditions and tested its response to resveratrol, a naturally occurring anti-inflammatory antioxidant. A proinflammatory cytokine mixture consisting of IFN-γ, IL-1β and TNF-α highly increased CXCL11 mRNA expression and CXCL11 protein secretion by ARPE-19 cells. Resveratrol substantially inhibited the proinflammatory cytokines-induced CXCL11 production while partially blocking nuclear factor-κB activation. This inhibitory action of resveratrol was also observed for the cytokines-induced expression of chemokines CXCL9, CCL2 and CCL5. Our results indicate that resveratrol could potentially attenuate RPE inflammatory response implicated in the pathogenesis of AMD.  相似文献   

12.
Sodium iodate (SI) is a widely used oxidant for generating retinal degeneration models by inducing the death of retinal pigment epithelium (RPE) cells. However, the mechanism of RPE cell death induced by SI remains unclear. In this study, we investigated the necrotic features of cultured human retinal pigment epithelium (ARPE-19) cells treated with SI and found that apoptosis or necroptosis was not the major death pathway. Instead, the death process was accompanied by significant elevation of intracellular labile iron level, ROS, and lipid peroxides which recapitulated the key features of ferroptosis. Ferroptosis inhibitors deferoxamine mesylate (DFO) and ferrostatin-1(Fer-1) partially prevented SI-induced cell death. Further studies revealed that SI treatment did not alter GPX4 (glutathione peroxidase 4) expression, but led to the depletion of reduced thiol groups, mainly intracellular GSH (reduced glutathione) and cysteine. The study on iron trafficking demonstrated that iron influx was not altered by SI treatment but iron efflux increased, indicating that the increase in labile iron was likely due to the release of sequestered iron. This hypothesis was verified by showing that SI directly promoted the release of labile iron from a cell-free lysate. We propose that SI depletes GSH, increases ROS, releases labile iron, and boosts lipid damage, which in turn results in ferroptosis in ARPE-19 cells.Subject terms: Disease model, Cell death  相似文献   

13.
The aim of this study was to investigate the change of Integrin-linked kinase (ILK) expression of human retinal pigment epithelium (RPE) cells in response to high glucose, and the effect of targeting ILK with small interference RNA (siRNA) on the high glucose-induced expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1). The ILK mRNA and protein expression in human RPE cells were analyzed with RT-PCR and western blot after exposure to 5.5, 30, 40, 50 mM glucose, or 5.5 mM glucose + 45.5 mM mannitol for 48 h. The expression of VEGF and ICAM-1 was also determined. Cells were treated with ILK siRNA, to determine the effect of ILK on VEGF and ICAM-1 expression following treatment with high glucose. High concentrations of glucose significantly up-regulated ILK mRNA and protein expression, and the ILK expression increased along with the glucose concentration. The changes of VEGF and ICAM-1 expression were similar to that of ILK expression. Knocking down ILK gene expression with siRNA inhibited the elevation of VEGF and ICAM-1 induced by high glucose treatment. These results suggested that ILK was involved in the response of RPE cells to high glucose and may therefore play a role in the pathogenesis of diabetic ophthalmology.  相似文献   

14.
15.
16.
ARPE-19, a human retinal pigment epithelial (RPE) cell line, has been widely used in studies of RPE function as well as gene expression. Here, we report the novel finding that N-(4-hydroxyphenyl)retinamide (fenretinide), a synthetic retinoic acid derivative and a potential chemopreventive agent against cancer, induced the differentiation of ARPE-19 cells into a neuronal phenotype. The treated cells lost their epithelial phenotype and exhibited a typical neuronal shape with long processes (four to five times longer than the cell body). The onset of fenretinide-induced neuronal differentiation was dose and time dependent, started within 1-2 days, and lasted at least 4 weeks. Immunohistochemical studies indicated that the expression of neurofilament proteins (NF160 and NF200), calretinin and neural cell adhesion molecule was increased in these differentiated cells. Western blot analysis indicated that cellular retinaldehyde-binding protein, which is normally expressed in RPE cells, was decreased in treated cells. Protein analysis on a two-dimensional gel followed by matrix-assisted laser desorption ionization-time of flight mass spectrometric analysis demonstrated that heat-shock protein 70 was increased after fenretinide treatment. Thus, fenretinide, a synthetic retinoid, is able to induce neuronal differentiation of human RPE cells in culture.  相似文献   

17.
Retinal pigment epithelial (RPE) cells are the major cell type in the epi- or sub-retinal membranes in the pathogenesis of proliferative vitreoretinopathy (PVR), which is a blinding fibrotic eye disease and still short of effective medicine. The purpose of this study is to demonstrate whether Chalocomoracin (CMR), a novel purified compound from fungus-infected mulberry leaves, is able to inhibit vitreous-induced signalling events and cellular responses intrinsic to PVR. Our studies have revealed that the CMR IC50 for ARPE-19 cells is 35.5 μmol/L at 72 hours, and that 5 μmol/L CMR inhibits vitreous-induced Akt activation and p53 suppression; in addition, we have discovered that this chemical effectively blocks vitreous-stimulated proliferation, migration and contraction of ARPE-19 cells, suggesting that CMR is a promising PVR prophylactic.  相似文献   

18.
This study aims to explore the effects of exosomes, secreted by retinal pigment epithelial (RPE) cells under oxidative stress (OS), on apoptosis and inflammation of normal RPE cells. Exosomes secreted by normal RPE cells (named as exo) and rotenone (2.5 µmol/L) stimulated RPE cells (named as rot-exo) were isolated and extracted by multi-step differential centrifugation for morphology observation under a transmission electron microscopy. pcDNA3.1a, pcDNA3.1a-Apaf1, and p3xFlag-CMV-caspase-9 plasmids were constructed and transfected into ARPE-19 cells. Exosomes secreted by ARPE-19 cells were injected into the vitreous body of rats to verify the effect of Apaf1 and caspase-9 on cell apoptosis and inflammation. Co-immunoprecipitation was applied to clarify the interaction of Apaf1 with caspase-9. Exosomes secreted by rotenone stimulated ARPE-19 cells could induce cell apoptosis, oxidative injury, and inflammation in ARPE-19 cells. Exosomes secreted under OS can damage retinal functions of rats and have upregulated expression of Apaf1. Overexpression of Apaf1 in exosomes secreted under OS can cause the inhibition of cell proliferation, the increase of cell apoptosis and elicitation of inflammatory response in ARPE-19 cells. Exosomes derived from ARPE-19 cells under OS regulate Apaf1 expression to increase cell apoptosis and to induce oxidative injury and inflammatory response through a caspase-9 apoptotic pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号