首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If generalist insect predators are a selective force contributing to patterns of feeding specialization by insect herbivores, then predators should be deterred from eating allelochemical-fed prey. The attack and feeding behaviors of naive predators (Podisus maculiventris stinkbugs) reared on control caterpillars (Manduca sexta) fed plain diet were compared to experienced predators reared on caterpillars fed tomato allelochemicals. Tomatine-fed prey were found more quickly by both naive and tomatine-experienced predators, and chlorogenic acid-experienced predators were more stimulated to begin searching for prey. However, experienced predators were less likely to attack both chlorogenic acidfed and tomatine-fed caterpillars than were naive predators. These results indicate that allelochemical-fed prey were easier for predators to locate, but allelochemical-containing prey often deterred predation by experienced predtors.  相似文献   

2.
The mechanisms underlying differential prey selection of two microcrustaceans by the common bladderwort (Utricularia vulgaris) were studied in the laboratory. Functional response experiments with single prey showed that Utricularia had a higher attack rate coefficient and a longer handling time coefficient with the cladoceran Polyphemus pediculus than with the cyclopoid copepod Eucyclops serrulatus. Observation of predation rate, defined as number of prey eaten per unit time, from direct behavioural observation on single prey species, showed a higher predation rate with Polyphemus than on Eucyclops, at low prey densities. The opposite pattern was found at high prey density. When the two prey were presented simultaneously to the predator, Eucyclops was preferred over Polyphemus. Results from the situation with two prey and some of the results from the direct behavioural observations support field data on the diet of Utricularia, which shows that cyclopoid copepods are selected more frequently than Polyphemus.  相似文献   

3.
The sentinel prey method can quantify predation pressure in various habitats. Real prey is assumed to more realistically mimic the predator experience but the predator can rarely be identified. Artificial prey made of plasticine may lack real chemical cues, but provides information about predator identity. However, the relationship between predation pressure registered by artificial versus real prey is not clear. We tested the relative attractiveness of artificial caterpillars, and intact, wounded, or dead larvae of the cabbage moth (Mamestra brassicae) for the carabid predator Pterostichus melanarius Illiger (Coleoptera: Carabidae). P. melanarius adults were attracted to dead caterpillars more than to live or wounded ones. Coating artificial caterpillars with caterpillar haemolymph increased their attractiveness. However, predators were not attracted more to healthy, real caterpillars than to “untreated” artificial ones. We conclude that using artificial caterpillars does not underestimate predation pressure by this carabid on healthy caterpillars.  相似文献   

4.
Laboratory experiments tested the effectiveness ofScatophaga stercoraria (L.) as a predator of various insect species. Photophases, ages and gender of predators and effects of dung presence on predation rates were compared for either sex using counts of prey cadavers, behavioral observations and oviposition rates. Males consistently killed more prey than females, but longer photophases did not significantly increase daily predation rates. Nine to 10-day-old flies approaching sexual maturity achieved highest predation rates. Dung was found to affect predatory behaviour but not cumulative predation. Predatory behaviour of sexually mature males was more affected than female behaviour by the presence of dung, whereas sexually immatures flies showed no response to dung presence. Preconditioning ofS. stercoraria adults using 3 prey species of different sizes did not affect the prey chosen in subsequent random choice experiments. Larger prey species such asMusca domestica (L.) orDelia antiqua (Meigen) were preferred toDrosophila sp. by both sexes ofS. stercoraria. This species may be a useful predator for future integrated pest management techniques in vegetable crops or control of house flies in barns.   相似文献   

5.
Summary Prey of feeding juvenile and adult Dolomedes triton (Walckenaer 1837) were sampled over two seasons on three small ponds in central Alberta, Canada. Prey were mainly insects active at the water surface with truly aquatic species making up about 14% of the diet. Throughout the season aquatic and semi-aquatic Heteroptera represented about 30% of the prey. Diptera and adult Odonata were also important prey items but their abundance in the diet was more variable seasonally. Of the 625 prey items recorded nearly 50% were represented by taxa taken no more than once by spiders in one of the five size classes (adult females, adult males, large, intermediate and small juveniles). Large spiders did not take the smallest prey available, although small and intermediate-sized spiders fed on nearly the full size range taken by larger spiders. Cannibalism was common, accounting for 5% of the observations, with females and large juveniles as the most frequently observed cannibals. We hypothesize that intraguild predation (including cannibalism) could be an important coevolutionary force structuring phenology, population dynamics and microhabitat use of the predatory guild of the neuston community.  相似文献   

6.
Aarnio  Katri  Mattila  Johanna 《Hydrobiologia》2000,440(1-3):347-355
Due to increasing eutrophication of the coastal Baltic waters, drifting algae are a common phenomenon. Drifting algal mats accumulate on shallow sandy bottoms in late summer and autumn, and affect the ambient fauna. Juvenile flounder, Platichthys flesus, utilize these habitats during their first few years. They feed on benthic meio- and macrofauna; part of their diet consists of shelled species, such as Ostracods, and juvenile Hydrobia spp. and Macoma balthica. Earlier studies have shown that up to 75% of ostracods and 92% of hydrobiids survive the gut passage of juvenile flounder, while all M. balthica are digested by the fish. We conducted laboratory experiments to study how the shelled prey responded to a drift algal mat, and the predation efficiency of juvenile P. flesus on these prey species on bare sand and with drifting algae (50% coverage). Hydrobia spp. utilized the drift algae as a habitat and, after 1 h, 50% had moved into the algae; ostracods and M. balthica were more stationary and, after 96 h, only 23 and 12%, respectively, were found in the algae. For the predation efficiency of P. flesus, a two-way ANOVA with habitat (algae, bare sand) and predation (fish, no fish) as factors revealed that both algae and predation affected negatively the survival of all three prey species. The algae, thus, affected the predation efficiency of juvenile P. flesus and the consumption of prey was much reduced in the algal treatments compared to the bare sand. This was due probably to increased habitat complexity and the ability of prey, especially hydrobiids, to use the algal mat as a refuge. Altered habitat structure due to drift algae, together with the resultant changes in habitat (refuge) value for different prey species, may profoundly change the structure of benthic communities.  相似文献   

7.
Summary Caterpillars of Maculinea arion are obligate predators of the brood of Myrmica sabuleti ants. In the aboratory, caterpillars eat the largest available ant larvae, although eggs, small larvae and prepupae are also palatable. This is an efficient way to predate. It ensures that newly-adopted caterpillars consume the final part of the first cohort of ant brood in a nest, before this pupates in early autumn and becomes unavailable as prey. At the same time, the fixed number of larvae in the second cohort is left to grow larger before being killed in late autumn and spring. Caterpillars also improve their feeding efficiency by hibernating for longer than ants in spring, losing just 6% of their weight while the biomass of ant larvae increases by 27%. Final instar caterpillars acquire more than 99% of their ultimate biomass in Myrmica nests, growing from 1.3 mg to an estimated 173 mg. A close correlation was found between the weights of caterpillars throughout autumn and the number of large ant larvae they had eaten. This was used to calculate the number of larvae eaten in spring, allowing both for the loss of caterpillar weight during winter and the increase in the size of their prey in spring. It is estimated that 230 of the largest available larvae, and a minimum nest size of 354 M. sabuleti workers, is needed to support one butterfly. Few wild M. sabuleti nests are this large: on one site, it was estimated that 85% of nests were too small to produce a butterfly, and only 5% could support two or more. This prediction was confirmed by the mortalities of 376 caterpillars in 151 wild M. sabuleti nests there. Mortalities were particularly high in nests that adopted more than two caterpillars, apparently due to scramble competition and starvation in autumn. Survival was higher than predicted in wild nests that adopted one caterpillar. These caterpillars seldom exhaust their food before spring, when there is intense competition among Myrmica for nest sites. Ants often desert their nests in the absence of brood, leaving the caterpillar behind. Vacant nests are frequently repopulated by a neighbouring colony, carrying in a fresh supply of brood. Maculinea arion caterpillars have an exceptional ability to withstand starvation, and sometimes survive to parasitize more than one Myrmica colony. Despite these adaptations, predation is an inefficient way to exploit the resources of a Myrmica nest. By contrast, Maculinea rebeli feeds mainly at a lower trophic level, on the regurgitations of worker ants. Published data show that Myrmica nests can support 6 times more caterpillars of Maculinea rebeli than of M. arion in the laboratory. This is confirmed by field data.  相似文献   

8.
The tritrophic model featuring plants consumed by herbivores consumed by parasitoids or predators has become the primary paradigm used to describe herbivore dynamics. However, interactions involving herbivores can be habitat‐ specific and plants often provide habitat, as well as food. Structural complexity of the habitat may favor predators or may allow herbivore prey to escape detection and capture. This study considered the spatial and temporal dynamics of an arctiid caterpillar, Platyprepia virginalis. The tritrophic model that includes only a tachinid parasitoid that attacks P. virginalis and the caterpillars’ primary host‐plant, Lupinus arboreus, has failed to provide much insight into this system. Instead, we found that ants killed and removed many small caterpillars. Protecting caterpillars from ants increased their survival three‐fold and five‐fold in assays conducted during two years. Caterpillars were more likely to survive in short‐term assays at sites that naturally had a deeper cover of dead and living plant material. Experiments with baits showed that ant recruitment declined as litter depth increased on average. These survey results indicated that ant predation was an important source of mortality for young caterpillars and that the presence of thick litter reduced this mortality. These results were corroborated in an experiment that manipulated litter depth and ant access to caterpillars. Previous findings that other defoliating caterpillars increased litter depth and benefitted P. virginalis are also consistent with this hypothesis. Litter acts as an important non‐trophic resource, allowing caterpillars to avoid predation by ants such that wet sites with deep litter act as source populations for caterpillars. Our results show strong effects of both trophic and non‐trophic interactions since plants indirectly provided limiting habitat and this heterogeneous habitat strongly affected risk of predation and ultimately caterpillar abundance and distribution.  相似文献   

9.
Asplanchna sylvestrii does not discriminate between groups of Brachionus calyciflorus fed either the cyanobacterium Anabaena flos-aquae or a control diet of Euglena gracilis. We based our analysis on the observed probabilities of attack, capture and ingestion during encounters between predator and prey. While A. sylvestrii was very sensitive to brachionid size, we found no significant affects of prey diet on predatory behavior. Thus, cyanobacterial diet did not influence the short-term predation risk of B. calyciflorus exposed to an effective predator. On the other hand, matched cohorts of A. sylvestrii fed B. calyciflorus cultured on the cyanobacterium reproduced more slowly than those fed the same prey cultured on the control food. With prolonged sympatry, therefore, the long-term risk of Asplanchna predation may be reduced for Brachionus by the latter's consumption of cyanobacteria.  相似文献   

10.
1. Intraguild predation and cannibalism are common among predaceous phytoseiid mites (Acari, Phytoseiidae) but the nutritional benefits gained by these processes are poorly understood. 2. The study reported here addressed the questions of whether cannibalism and intraguild predation provide different nutritional benefits and whether the ability to utilise cannibalism and intraguild predation is linked to the diet specialisation of phytoseiid mites. Specialists tested were Phytoseiulus macropilis, Galendromus occidentalis, and Neoseiulus longispinosus; generalists tested were Amblyseius andersoni, Neoseiulus cucumeris, and Neoseiulus fallacis. 3. All generalists and the specialist P. macropilis were able to complete juvenile development with both con‐ and hetero‐specific prey. Juvenile development of generalists was shorter with heterospecific prey than with conspecific prey, whereas development of the specialist P. macropilis did not differ between prey types. Only a few N. longispinosus and G. occidentalis, both specialists, reached adulthood by cannibalism but none reached adulthood by intraguild predation. 4. All generalists were able to sustain oviposition by intraguild predation. Neoseiulus cucumeris and A. andersoni laid more eggs with heterospecific prey than with conspecific prey, whereas N. fallacis had similar oviposition rates with both prey types. No specialist sustained oviposition by intraguild predation or cannibalism. 5. Overall, generalists gained equal or more nutritional benefits by intraguild predation than by cannibalism and were able to utilise phytoseiid intraguild prey as an alternative food source. Specialists gained equal or more nutritional benefits from cannibalism than from intraguild predation. For specialists, con‐ and hetero‐specific phytoseiids may be considered only a supplemental food.  相似文献   

11.
We examined the diet of an endangered frog, Rana porosa brevipoda inhabiting rice fields of western Japan, by forced regurgitation of stomach contents. The frog diet consisted of a wide variety of arthropods, and ants, beetles, dipterans, bugs, orthopterans, and spiders, which were especially prominent. These prey taxa were also collected in large numbers by sweep-net samplings made in the frog habitat, and relative abundances of prey taxa in frog diet and those in sweep samples were found to be significantly correlated. Aquatic forms did not contribute much to the frog diet, but were found to be taken more frequently and in larger numbers in irrigated fields than in drained fields. These findings suggest that prey availability around frog habitat is very important to regulate the food items of R. p. brevipoda. On the other hand, terrestrial components of frog habitats are indicated to be important because the frog highly depended on terrestrial invertebrates. From these results, we consider it imperative to preserve terrestrial components linked with aquatic environments to conserve biodiversity in rice field ecosystems.  相似文献   

12.
We examined the foraging patterns of two species of caterpillar (Junonia coenia: Nymphalidae and Spilosoma congrua: Arctiidae) that contrast in feeding specialization and crypticity on plantain (Plantago lanceolata) in the absence and presence of two different insect predators [stinkbugs, Podisus maculiventris (Pentatomidae) and wasps, Polistes fuscatus (Vespidae)]. Junonia larvae were quite apparent to human observers, feeding on upper leaf surfaces during daylight, whereas Spilosoma larvae were relatively cryptic, often hiding under leaves and in soil crevices during daylight. In the presence of either predator species, the non-cryptic Junonia caterpillars more quickly left the plant on which they were initially placed and were less apparent than Junonia larvae not exposed to predators. The presence of predators had no detectable influence on where the caterpillars occurred on the plants (new, intermediate-aged or mature leaves, or reproductive stalks). Surprisingly, the predators influenced the behavior of the inherently cryptic Spilosoma: the apparency of these larvae at night increased when wasps had access to the plots during the day. Survivorship of the non-cryptic Junonia was less than 12% when stinkbugs were present compared to 60% in their absence. Although the presence of wasps resulted in a lower relative growth rate for the non-cryptic Junonia larvae, the indirect effect of predators on reduction in survivorship due to alterations in prey growth rate through behavioral changes was less than 3%. After taking into account the decline in caterpillars per plot through predation, we found that both the amount of leaves eaten and the proportion of plants eaten were altered on plots with predators present, which suggests that the caterpillars' increased consumption countered increased maintenance costs due to the presence of predators. Overall, our results indicate that hostplant size, level of predation and type of predator can influence the degree to which these caterpillars react to the presence of insect predators. In contrast, degree of inherent feeding specialization and cryptic behavior seemed to have little effect on the expression of reactive behaviors of these caterpillars to predators.  相似文献   

13.
Summary Responses of the predaceous mites Phytoseiulus persimilis, Typhlodromus (=Metaseiulus) occidentalis, and Amblyseius andersoni to spatial variation in egg density of the phytophagous mite, Tetranychus urticae, were studied in the laboratory.The oligophagous predator P. persimilis showed initially a direct density dependent foraging time allocation and variation in foraging time increased with prey density. With changes in prey density due to predation, predator foraging rates (per hour) decreased with time and density dependent foraging gradually became density independence, because P. persimilis continued to respond to initial prey density, instead of the changing prey density and distribution. The consequent spatial pattern of predation by P. persimilis was density independent, although slopes of predation rate-prey density regressions increased with time.Compared with P. persimilis, the narrowly polyphagous predator T. occidentalis responded relatively slowly to the the presence or absence of prey eggs but not to prey density: the mean and variation of foraging time spent in patches with prey did not differ with prey density, but was significantly greater in patches with prey eggs than in patches without eggs. Prey density and distribution changed only slightly due to predation and overall foraging rates remained more or less constant. The consequent spatial pattern of predation by T. occidentalis was inversely density dependent. As with P. persimilis, slopes of predation rate-prey density regressions increased with time (i.e. the inverse density dependence in T. occidentalis became weaker through time).The broadly polyphagous predator A. andersoni showed density independent foraging time allocation with variation independent of prey density. With changes in prey density over time due to prey depletion, overall foraging rates decreased. The consequent spatial pattern of predation by A. andersoni also changed through time; it initially was inversely density dependent, but soon became density independent.Overall, P. persimilis and T. occidentalis spent more time in prey patches than A. andersoni, suggesting that A. andersoni tended to spend more time moving outside patches. The overall predation rates and searching efficiency were higher in P. persimilis than in A. andersoni and T. occidentalis. Predator reproduction was highest in P. persimilis, lower in T. occidentalis and the lowest A. andersoni.The differences in response to prey distribution among the three predaceous species probably reflect the evolution of these species in environments with different patterns of prey distribution. The degree of polyphagy is a major determinant of the aggregative response, but other attributes such as handling time are also important in other aspects of phytoseiid foraging behavior (e.g. searching efficiency or predation rate).  相似文献   

14.
G. Ernsting 《Oecologia》1977,31(1):13-20
Summary With diurnally active predators like Notiophilus biquttatus F. food deprivation is involved in predation in two ways: as a consequence of food shortage (i.e., low prey density), and as a consequence of the night period. The pattern of food intake after deprivation at night has been studied with respect to two prey species and differently deprived predators. They prey species represent a locomotory active one (Orchesella cincta) and a locomotory inactive one (Tomocerus minor). It appears that the rate of predation after deprivation shows a distinct pattern, initially high and then slowing to a more or less constant value. This pattern is influenced by food deprivation and type of prey. The beetles preying on O. cincta consumed more prey than those preying on T. minor. The more deprived predators compensated for deprivation by a higher daily predation when O. cincta was the prey, but not when T. minor was. Consequences of these findings are discussed with respect to diet composition and functional response.  相似文献   

15.
16.
Predator foraging behaviour affects the outcome of enemy–enemy interactions. Using a combination of fieldwork and laboratory experiments, we show that intraguild predation may be important in the field distribution of generalist predators that share a common prey: the eggs (and larvae) of the leaf beetle Phratora vulgatissima, a major insect pest in coppicing willow plantations. We focused on a species from the hoverfly genus Parasyrphus (Syrphidae), which may exhibit large temporal and spatial variation in density. Predator and prey densities were quantified in 40 field plots in willow plantations. The likelihood of finding hoverfly eggs declined with increasing densities of two predatory mirids, Orthotylus marginalis and Closterotomus fulvomaculatus, which exhibit less mobile behaviour similar to that of hoverfly larvae. The density of a more mobile predatory bug species, the anthocorid Anthocoris nemorum, was not associated with hoverfly occurrence. These results corroborate the hypothesis that less mobile predators should be stronger intraguild predators than mobilepredators. Further partial support for this hypothesis was obtained in the laboratory study where individual predators were presented with clutches of P. vulgatissima eggs containing one hoverfly egg: the less mobile C. fulvomaculatus and O. marginalis tended to consume the hoverfly egg more readily than the more mobile A. nemorum. However, most individuals of all three bug species consumed the egg of the potential competitor – the syrphid – within 24 h. The field study also showed that hoverfly occurrence was positively associated with the density of their prey and with the presence of nearby forests. We conclude that intraguild predation, abundance of prey and the surrounding habitat affect the distribution of hoverflies in this system and should be considered when developing biological control methods.  相似文献   

17.
Large planktonic Cladocera are typically the most important components of the diet of underyearling roach. Selection for large species and individuals by fish can result in a shift in the species composition of the cladoceran community as well as a reduction in the mean size of the individuals of large species and in the assemblage as a whole. Laboratory experiments demonstrated that underyearlings feeding on Daphnia hyalina smaller than 1 mm in length has a significantly lower intake of prey volume per unit time than when feeding on prey greater than 1.5 mm. A decrease in the nutritional quality of zooplankton prey, brought about by increasing predation pressure is suggested as the mechanism for density-dependent reductions in the growth of underyearling roach in eutrophic water bodies.  相似文献   

18.
The diet of a coast-living population of mink was investigated from the scats collected over a three-year period, and compared with information on the availability of principal prey species. Lagomorphs were the single most important prey, and predation upon them matched the abundance of rabbits as determined by monthly counts. Aquatic foraging was particularly important, with rockpool-inhabiting fish accounting for 29–1% occurrence of food items. Fish predation was more pronounced during winter months when lagomorph prey was less available. Crustacean prey, particularly the shore crab, Carcinus maenas , occurred frequently in the diet. Seabirds figured regularly in the diet; these were either taken as carrion from the strand-line or through predation on breeding colonies during the summer months.  相似文献   

19.
Optimal foraging theory assumes that predators use different prey types to maximize their rate of energetic gain. Studies focusing on prey preference are important sources of information to understand the foraging dynamics of Chrysomya albiceps. The purpose of this investigation is to determine the influence of larval starvation in C. albiceps on the predation rate of different prey blowfly species and instars under laboratory conditions. Our results suggest that C. albiceps prefers Cochliomyia macellaria larvae to Chrysomya megacephala under non-starvation and starvation conditions. Nevertheless, predators gained more weight consuming C. macellaria. This result suggests that C. albiceps profit more in consuming C. macellaria rather than C. megacephala. The foraging behaviour displayed by C. abiceps on their prey and the consequences for the blowfly community are also discussed.  相似文献   

20.
Large invasive predators like the king crab, Paralithodes camtschaticus, deserve particular attention due to their potential for catastrophic ecological impact on recipient communities. Conspicuous, epibenthic prey species, such as the slow growing commercial scallop Chlamys islandica, are particularly exposed to the risk of local extinction. A research program integrating experiments and field monitoring is attempting to predict and track the impact of invasive king crab on scallop beds and associated fauna along the north Norwegian coast. The claw gape of the crab shows no limitations in handling the flat-bodied scallop. However, the potential impact of the crab on scallop may depend on the availability of other calcified prey associated with scallop beds, such as the sea star, sea urchin, and blue mussel, all species recorded in the diet of P. camtschaticus. To address this issue, a laboratory experiment on foraging behaviour of P. camtschaticus was conducted. The experimental results show that all size classes of red king crab prefer scallops, but small juveniles and medium sized crabs demonstrate active selection for starfish (Asterias rubens) that equals or surpasses the electivity of the large crab. The selection of sea urchin (Strongylocentrotus droebachiensis) and blue mussel (Mytilus edulis) is slightly positive or neutral for the three crab size classes. These results suggest that scallop beds with a rich associated fauna are less vulnerable to red king crabs predation and possibly more resilient than beds with few associated species. Also, crab size distribution is likely relevant for invasion impact, with increasing abundance of small and medium sized crabs being detrimental for alternative calcified prey associated with scallop beds. Successive stages of crab invasion will see an acceleration of scallop mortality rates associated with (i) decreasing availability of alternative prey, due to protracted predation pressure intensified by recruitment of juvenile crabs, and (ii) increased number of large crabs. Estimates of crab density and intake rates suggest that the accelerated loss rates will eventually endanger scallop beds persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号