首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.
Cyclosporine is crucial for the prevention of organ allograft rejection and allogeneic graft-vs-host disease (GVHD). Despite its potent immunosuppressive activity, cyclosporine elicits a T cell-mediated autoimmune syndrome after autologous or syngeneic bone marrow transplantation, which has been termed syngeneic GVHD (SGVHD). Recent studies have shown that for disease manifestation, a cytoxan and radiation-sensitive T cell dependent host resistance mechanism must be eliminated, allowing the clonal expansion of autoreactive cells. This report characterizes the autoregulatory lymphocyte population, present in normal animals, capable of inhibiting the adoptive transfer of SGVHD. First, twice the number of unfractionated splenocytes from normal animals to those from autoimmune donors ensured complete inhibition of the adoptive transfer of immune reactivity. Second, the phenotype of this host resistance mechanism in normal splenocytes involves dual regulatory T cell subsets. A helper/inducer subset (W3/25+) must be cotransferred with a cytotoxic/suppressor subset (OX8+) in a ratio that approximates the normal ratio in normal unfractionated splenocytes in order to affect inhibition of the transfer of SGVHD. Moreover the specific inducer regulatory activity resides in the OX22-, W3/25+ subset of Th cells.  相似文献   

2.
The adoptive transfer of type I diabetes in nonobese diabetic mice requires the contribution of both CD4+ and CD8+ T cells. To further elucidate the cellular pathway(s) of beta-cell destruction and the responsibility of each subset, high doses of committed T cells from diabetic mice purified to single subsets, were injected into syngeneic nonobese diabetic neonates. The recipients of single or mixed subsets were followed for clinical manifestations of diabetes and examined at 30 days of age for in situ lesions. None of the animals injected with either CD4+ or CD8+ T cells became overtly diabetic during the 30 days of observation whereas 8 of 23 mice inoculated with a mixture of the two subsets developed glycosuria and hyperglycemia. However, insulitis was found in 6 of the 13 mice injected with CD4+ T cells whereas only 1 of the 9 mice injected with CD8+ T cells showed marginal infiltration of the pancreas. The lesions initiated by CD4+ T cells alone were considerably less severe than those induced by the mixture of both subsets, corroborating the fact that overt disease did not occur in the former group. Together, these results suggest a distinct function for each diabetogenic T cell subset. CD4+ T cells, which have the capacity to home to the pancreas, promote in turn the influx of CD8+ effector T cells that do not by themselves accumulate in this organ. These results illustrate a novel form of T-T cell interactions leading to organ specific autoimmune lesions.  相似文献   

3.
The SJL strain of mice possess a unique developmental delay in the ability to exhibit delayed-type hypersensitivity (DTH) responses after immunization with a wide variety of Ag. Similar to other models of DTH, the adoptive transfer of syngeneic Ag-pulsed macrophages from DTH-responsive mice into these DTH-unresponsive mice results in the activation of Ag-specific, CD4+ DTH effector Th1 T cells. The absence of other defects in APC-dependent immune responses indicate that the macrophages is the sole APC required for the induction of DTH effector T cells in SJL mice. The defect occurs during the sensitization phase of the DTH response; however, it has not been determined whether a Th cell, which is required for the induction of CD4+ DTH effector T cells, was present in the DTH unresponsive SJL mice. In this study, we have determined that the Thy-1+ helper cell is induced upon Ag stimulation of nonresponder mice and present evidence for the existence of an accessory cell distinct from the macrophage that induces CD4+ DTH effector T cells. Our data indicate that CD4+ DTH effector T cells are induced in an Ag-specific and MHC-restricted manner by an adherent macrophage that expresses the Mac-1+, Mac-2-, Mac-3+, I-A+ phenotype. Adoptive transfer of as few as 100 of the Mac-1+, Mac-2-, or Mac-3+ subsets from DTH responsive donors to DTH unresponsive recipients is able to overcome the DTH deficit. The activation of CD4+ DTH effector T cells in the SJL mouse cells also requires a Thy-1+, Lyt-1+, CD3-, CD4-, CD8-, helper cell. In contrast to the Mac-1+, Mac-3+, I-A+ accessory cell, this helper cell requires an adherent, irradiation resistant, accessory cell that expresses the Mac-1+, Mac-2-, Mac-3-, I-A- surface phenotype for activation. Further, the interaction between this accessory cell and the Thy-1+ helper cell is neither Ag-specific nor MHC restricted. This is the first demonstration of an accessory cell requirement for the Thy-1+, Lyt-1+, B220-, CD4-, CD8-, CD3- DTH Th cell. These data indicate that the activation of the triple negative helper cells and subsequent activation of the CD4+ effector T cells are regulated by two distinct macrophage subpopulations.  相似文献   

4.
CD8+ CTL are the predominant tumoricidal effector cells. We find, however, that MHC class I-deficient mice depleted of CD8+ T cells are able to mount an effective antitumor immunity after immunization with fused dendritic/tumor cells. Such immunity appears to be mediated by the generation of phenotypic and functional CD8+ CTL through CD4+ to CD8+ conversion, which we have demonstrated at the single cell level. CD4+ to CD8+ conversion depends on effective in vivo activation and is promoted by CD4+ T cell proliferation. The effectiveness of this process is shown by the generation of antitumor immunity through adoptive transfer of primed CD4 T cells to provide protection against tumor cell challenge and to eliminate established pulmonary metastases.  相似文献   

5.
Spleen cells from rats that have recovered from experimental autoimmune encephalomyelitis (EAE) suppress the production of IFN-gamma by effector T cells of EAE in an Ag-specific manner. These postrecovery suppressor cells also inhibit EAE in vivo. Fractionation of the postrecovery suppressor spleen cells on nylon wool and OX-8 coated plates yields a nylon wool-adherent CD4+ suppressor cell population that, when cocultured with effector T cells, suppresses IFN-gamma production by these effector cells. In contrast, the nylon wool-adherent, CD4+ postrecovery suppressor cell population fails to inhibit the production of IL-2 by the effector T cells. In further experiments, the effector T cell population was depleted of CD8+ cells and cocultured with the nylon wool-adherent, CD4+ postrecovery suppressor cells, and the supernatants were assayed for IFN-gamma and IL-2. IFN-gamma production was inhibited in these cultures but IL-2 production was not inhibited. Irradiated effector T cells were cocultured with CD4+ postrecovery suppressor cells, without myelin basic protein, in an effort to determine whether the mechanism of differential lymphokine suppression involved an anti-idiotypic response against effector T cells. No IL-2 was produced, indicating that there was no CD4+ suppressor cell mediated anti-idiotypic response against effector T cells. These studies suggest that the suppressor cell is a nylon wool adherent, CD4+ T cell that functions to down-regulate EAE effector T cells by differential inhibition of lymphokine production.  相似文献   

6.
mAb specific for murine CD4+ and CD8+ T cell subsets were utilized to determine the populations participating in delayed-in-time, cutaneous hypersensitivity responses in BALB/c mice. In vivo depletions of these T cell phenotypes revealed that delayed-type hypersensitivity to cellular and protein Ag were mediated by CD4+ effector cells, whereas CD8+ cells down-regulated such responses. Similar depletions in mice prior to sensitization with the hapten 1-fluoro-2,4-dinitrobenzene demonstrated a more complex pattern of cell participation in contact sensitivity (CS) responses. Depletion of CD4+ cells resulted in strikingly enhanced ear swelling, indicating not only an important effector role for CD8+ cells but also a down-regulatory role for some CD4+ cells; depletion of CD8+ cells revealed that some CD4+ cells also act as CS effectors. In vitro depletion of immune lymph node cells with the same mAb before adoptive transfer confirmed CS effector roles for both subsets, and also suggested that at least some CD4+ suppressors act on the efferent limb of the CS response, perhaps by down-regulating the activity of CD8+ effector cells. Partial in vivo depletion with small amounts anti-CD4 mAb and subsequent flow cytometric analysis of residual CD4+ cells was consistent with the hypothesis that CD4+ CS effector cells express a higher density of the CD4 antigen than do CD4+ suppressor cells, raising the possibility that these two functionally distinct CD4+ populations might be separable on the basis of their surface expression of CD4.  相似文献   

7.
Syngeneic graft-vs-host disease (SGVHD) develops following lethal irradiation, reconstitution with syngeneic bone marrow, and treatment with a 21-day course of the immunosuppressive agent cyclosporin A (CsA). Following cessation of CsA, this inducible disease is characterized by weight loss, diarrhea, and development of inflammation in the colon and liver. Although nonspecific effector cells and Th1 cytokines have been shown to participate in disease induction, the role of T cells has not been fully elucidated. Initial studies demonstrated significant increases in CD4+ T cells, but not other T cell populations in the colons of diseased animals relative to transplant control animals. To demonstrate a functional linkage between increases in colonic CD4+ T cells and disease induction, in vivo T cell depletion studies were performed. Beginning on the day of bone marrow transplantation, groups of control and CsA-treated animals were treated with mAb against either CD4 or CD8 for 21 days. Treatment with anti-CD4, but not anti-CD8, eliminated clinical symptoms and colon pathology. Interestingly, neither anti-CD4 nor anti-CD8 therapy affected the development of liver pathology associated with SGVHD. These findings demonstrated that CD4+ T cells initiate development of the intestinal inflammation associated with murine SGVHD.  相似文献   

8.
Several recent reports have described an effector role for CD8(+) T cells during EAE. We have previously demonstrated reduced disease incidence and severity in CD43(-/-) mice following MOG immunization, and attributed this attenuation in disease progression to the effects of CD43 deficiency on CD4+ T cells. Here, we extend those studies to examine the effects of the loss of CD43 on MOG-specific CD8+ T cells. A reduced frequency of MOG-specific CD8+ T cells following immunization was observed in CD43(-/-) mice relative to wild-type controls, as demonstrated by intracellular cytokine and MHC tetramer staining. In addition, adoptive transfer of CD8+ MOG 35-55-primed LN cells from CD43(-/-) mice resulted in significantly attenuated EAE induction as compared to recipients of wild-type CD8+ MOG-primed cells. Analysis of intracellular signaling intermediates revealed a deficiency in the ability of MOG-specific CD8+ T cells to phosphorylate ERK in response to antigen. These results characterize an important role for CD43 during the activation and expansion of autoreactive MOG-specific CD8+ T cells.  相似文献   

9.
We have previously shown that the gld autoimmune syndrome is suppressed in lethally irradiated gld mice reconstituted with a mixture of normal and gld bone marrow (BM). Furthermore, in vivo depletion of normal Thy-1+ cells restores lymphoproliferation and autoantibody production in such chimeras, suggesting that T cells bearing Fas ligand are responsible for correcting the gld defect. In this study, mixed-BM chimeras lacking either normal CD4+ (B6CD4KO-B6gld) or normal CD8+ T cells (B6CD8KO-B6gld) were generated to determine the contribution of the normal T cell subsets to disease suppression. Lymphoproliferation was completely suppressed in B6CD4KO-B6gld chimeras but only modestly in B6CD8KO-B6gld chimeras. On the other hand, both types of mixed-BM chimeras had incomplete effects on the suppression of serum autoantibodies when compared with B6gld reconstituted with isologous BM. These results suggest that both T cell subsets provide Fas ligand to suppress immune cells responsible for autoantibody production; however, CD8+ T cells are mainly responsible for preventing lymphoproliferation.  相似文献   

10.
CD4+CD25+调节性T细胞是一个具有独特免疫调节功能的T细胞亚群,人体主要通过CD4+CD25+调节性T细胞以免疫负向调节的方式来抑制自身反应性T细胞的作用,减少免疫性疾病的发生,从而维持机体内环境的稳定,维持免疫耐受。CD4+CD25+Treg已被证实其与肿瘤、感染、自身免疫病、移植免疫等多种疾病的发生、发展及转归均相关。随着社会的进步和人民生活水平的提高冠状动脉粥样硬化性病变作为一种慢性病变,其发病率越来越高,已经成为严重危害人类健康的常见病,近年来越来越多的证据表明炎症及免疫反应机制在冠状动脉粥样硬化性心脏病的发生、发展及预后过程中具有重要的作用。而CD4+CD25+调节性T细胞在冠状动脉粥样硬化性病变中所起的作用也受到越来越多的关注。本文就CD4+CD25+调节性T细胞与冠状动脉粥样硬化病变之间的关联做一综述。  相似文献   

11.
12.
The B7-1/2-CD28 system provides the critical signal for the generation of an efficient T cell response. We investigated the role played by B7-2 in influencing pathogenic autoimmunity from islet-reactive CD4 T cells in B7-2 knockout (KO) NOD mice which are protected from type 1 diabetes. B7-2 deficiency caused a profound diminishment in the generation of spontaneously activated CD4 T cells and islet-specific CD4 T cell expansion. B7-2 does not impact the effector phase of the autoimmune response as adoptive transfer of islet Ag-specific BDC2.5 splenocytes stimulated in vitro could easily induce disease in B7-2KO mice. CD4 T cells showed some hallmarks of hyporesponsiveness because TCR/CD28-mediated stimulation led to defective activation and failure to induce disease in NODscid recipients. Furthermore, CD4 T cells exhibited enhanced death in the absence of B7-2. Interestingly, we found that B7-2 is required to achieve normal levels of CD4+CD25+CD62L+ T regulatory cells because a significant reduction of these T regulatory cells was observed in the thymus but not in the peripheral compartments of B7-2KO mice. In addition, our adoptive transfer experiments did not reveal either pathogenic or regulatory potential associated with the B7-2KO splenocytes. Finally, we found that the lack of B7-2 did not induce a compensatory increase in the B7-1 signal on APC in the PLN compartment. Taken together these results clearly indicate that B7-2 plays a critical role in priming islet-reactive CD4 T cells, suggesting a simplified, two-cell model for the impact of this costimulatory molecule in autoimmunity against islets.  相似文献   

13.
Microsporidia are obligate intracellular parasites that cause opportunistic infections in immunocompromised patients. The role of two main T cell subsets in anti-microsporidial immunity has been studied using an Encephalitozoon cuniculi-severe combined immunodeficient (SCID) mouse model. Whereas SCID mice reconstituted with CD4+ T lymphocyte-depleted naive BALB/c splenocytes resolved the infection, adoptive transfer of CD8+ T cell-depleted splenocytes failed to protect the animals against a lethal E. cuniculi infection. Splenocytes from E. cuniculi-immune mice specifically killed syngeneic infected macrophages in a short-term 51Cr-release assay. These results suggest the crucial role of cytotoxic T lymphocytes in the protection against E. cuniculi infection.  相似文献   

14.
The relative roles of CD4+ and CD8+ T cells in contact hypersensitivity responses have not been fully solved, and remain an important question. Using an adoptive transfer model, we investigated the role of the respective T cell subset. Magnetic bead separated CD4+ and CD8+ T cells from oxazolone sensitized C57BL/6 mice were transferred into RAG-/- mice, followed by hapten challenge and analysis of inflammatory parameters at 24 hours post exposure. The CD4+ T cell recipient mice developed partial contact hypersensitivity responses to oxazolone. CD8+ T cells caused significant amplification of the response in recipients of both CD4+ and CD8+ T cells including ear swelling, type 1 inflammatory mediators, and cell killing. Unexpectedly, CD8+ T cells were not sufficient to mediate contact hypersensitivity, although abundantly present in the lymph nodes in the CD8+ T cell reconstituted mice. There were no signs of inflammation at the site of hapten exposure, indicating impaired recruitment of CD8+ T cells in the absence of CD4+ T cells. These data show that CD4+ T cells mediate contact hypersensitivity to oxazolone, but CD8+ T cells contribute with the most potent effector mechanisms. Moreover, our results suggest that CD4+ T cell function is required for the mobilization of CD8+ effector T cells to the site of hapten exposure. The results shed new light on the relative importance of CD4+ and CD8+ T cells during the effector phase of contact hypersensitivity.  相似文献   

15.
Nonobese diabetic (NOD) mice develop spontaneous autoimmune diabetes that involves participation of both CD4+ and CD8+ T cells. Previous studies have demonstrated spontaneous reactivity to self-Ags within the CD4+ T cell compartment in this strain. Whether CD8+ T cells in NOD mice achieve and maintain tolerance to self-Ags has not previously been evaluated. To investigate this issue, we have assessed the extent of tolerance to a model pancreatic Ag, the hemagglutinin (HA) molecule of influenza virus, that is transgenically expressed by pancreatic islet beta cells in InsHA mice. Previous studies have demonstrated that BALB/c and B10.D2 mice that express this transgene exhibit tolerance of HA and retain only low-avidity CD8+ T cells specific for the dominant peptide epitope of HA. In this study, we present data that demonstrate a deficiency in peripheral tolerance within the CD8+ T cell repertoire of NOD-InsHA mice. CD8+ T cells can be obtained from NOD-InsHA mice that exhibit high avidity for HA, as measured by tetramer (K(d)HA) binding and dose titration analysis. Significantly, these autoreactive CD8+ T cells can cause diabetes very rapidly upon adoptive transfer into NOD-InsHA recipient mice. The data presented demonstrate a retention in the repertoire of CD8+ T cells with high avidity for islet Ags that could contribute to autoimmune diabetes in NOD mice.  相似文献   

16.
In a previous study, we demonstrated that immunization with the uveitogenic peptide interphotoreceptor retinoid-binding protein (IRBP) 1-20 induces both CD4 and CD8 uveitogenic T cells in the B6 mouse. In the current study, we determined the role of the CD8 IRBP-specific T cells in the pathogenesis of experimental autoimmune uveitis. We also determined the conditions that facilitated the activation of CD8 autoreactive T cells. Our results showed that the beta2-microglobulin(-/-) mouse had a greatly decreased susceptibility to induction of experimental autoimmune uveitis by adoptive transfer of IRBP-specific T cells from B6 mice. We also showed that unlike CD4 autoreactive T cells, activated CD8 autoreactive T cells produced only a limited number and amounts of growth factors. As a result, in the absence of exogenously supplied growth factor(s), CD8 T cell activation and expansion were aborted. However, the growth and expansion of triggered CD8 autoreactive T cells could be supported by various cytokines. In addition to factors produced by activated CD4 autoreactive T cells, factors produced by nonlymphoid cells, such as IL-7 and IL-15, and unidentified factors in the culture supernatants of astrocytes and retinal pigment epithelial cells support the CD8 autoreactive T cells as well. Finally, we showed that, although several cytokines augmented the CD8 T cell response in vitro, different cytokines appeared to act on different CD8 subsets or on different activation/differentiation phases of CD8 autoreactive T cells. As a result, cytokines, such as IL-7, supported the proliferation and survival of CD8 IRBP-specific T cells, while others had only a growth-promoting effect.  相似文献   

17.
Syngeneic graft vs. host disease (SGVHD) was first described as a graft vs. host disease-like syndrome that developed in rats following syngeneic bone marrow transplantation (BMT) and cyclosporin A (CsA) treatment. SGVHD can be induced by reconstitution of lethally irradiated mice with syngeneic bone marrow cells followed by 21 days of treatment with the immunosuppressive agent CsA. Clinical symptoms of the disease appear 2-3 wk following cessation of CsA therapy, and disease-associated inflammation occurs primarily in the colon and liver. CD4(+) T cells have been shown to play an important role in the inflammatory response observed in the gut of SGVHD mice. Time-course studies revealed a significant increase in migration of CD4(+) T cells into the colon during CsA therapy, as well as significantly elevated mRNA levels of TNF-α, proinflammatory chemokines, and cell adhesion molecules in colonic tissue of CsA-treated animals compared with BMT controls, as early as day 14 post-BMT. Homing studies revealed a greater migration of labeled CD4(+) T cells into the gut of CsA-treated mice at day 21 post-BMT than control animals via CsA-induced upregulation of mucosal addressin cell adhesion molecule. This study demonstrates that, during the 21 days of immunosuppressive therapy, functional mechanisms are in place that result in increased homing of CD4(+) T effector cells to colons of CsA-treated mice.  相似文献   

18.
The requirement for CD4(+) Th cells in the cross-priming of antitumor CTL is well accepted in tumor immunology. Here we report that the requirement for T cell help can be replaced by local production of GM-CSF at the vaccine site. Experiments using mice in which CD4(+) T cells were eliminated, either by Ab depletion or by gene knockout of the MHC class II beta-chain (MHC II KO), revealed that priming of therapeutic CD8(+) effector T cells following vaccination with a GM-CSF-transduced B16BL6-D5 tumor cell line occurred independently of CD4(+) T cell help. The adoptive transfer of CD8(+) effector T cells, but not CD4(+) effector T cells, led to complete regression of pulmonary metastases. Regression of pulmonary metastases did not require either host T cells or NK cells. Transfer of CD8(+) effector T cells alone could cure wild-type animals of systemic tumor; the majority of tumor-bearing mice survived long term after treatment (>100 days). In contrast, adoptive transfer of CD8(+) T cells to tumor-bearing MHC II KO mice improved survival, but eventually all MHC II KO mice succumbed to metastatic disease. WT mice cured by adoptive transfer of CD8(+) T cells were resistant to tumor challenge. Resistance was mediated by CD8(+) T cells in mice at 50 days, while both CD4(+) and CD8(+) T cells were important for protection in mice challenged 150 days following adoptive transfer. Thus, in this tumor model CD4(+) Th cells are not required for the priming phase of CD8(+) effector T cells; however, they are critical for both the complete elimination of tumor and the maintenance of a long term protective antitumor memory response in vivo.  相似文献   

19.
CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.  相似文献   

20.
A chronic demyelinating disease results from murine infection with the neurotropic strain JHM of mouse hepatitis virus (MHV-JHM). Demyelination is largely immune mediated. In this study, the individual roles of CD4 and CD8 T cells in MHV-induced demyelination were investigated using recombination-activating gene 1-/- (RAG1-/-) mice infected with an attenuated strain of MHV-JHM. These animals develop demyelination only after adoptive transfer of splenocytes from mice previously immunized to MHV. In this study, we show that, following adoptive transfer, virus-specific CD4 and CD8 T cells rapidly infiltrate the CNS of MHV-JHM-infected RAG1-/- mice. Adoptive transfer of CD4 T cell-enriched donors resulted in more severe clinical disease accompanied by less demyelination than was detected in the recipients of undepleted cells. Macrophage infiltration into the gray matter of CD4 T cell-enriched recipients was greater than that observed in mice receiving undepleted splenocytes. In contrast, CD8 T cell-enriched recipients developed delayed disease with extensive demyelination of the spinal cord. MHV-JHM-infected RAG1-/- mice receiving donors depleted of both CD4 and CD8 T cells did not develop demyelination. These results demonstrate that the development of demyelination following MHV infection may be initiated by either CD4 or CD8 T cells. Furthermore, they show that CD4 T cells contribute more prominently than CD8 T cells to the severity of clinical disease, and that this correlates with increased macrophage infiltration into the gray matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号