首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A procedure for the immunoprecipitation of Fe protein from cell extracts was developed and used to monitor the modification of Fe protein in vivo. The subunit pattern of the isolated Fe protein after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was assayed by Coomassie brilliant blue protein staining and autoradiographic 32P detection of the modifying group. Whole-cell nitrogenase activity was also monitored during Fe protein modification. The addition of ammonia, darkness, oxygen, carbonyl cyanide m-chlorophenylhydrazone, and phenazine methosulfate each resulted in a loss of whole-cell nitrogenase activity and the in vivo modification of Fe protein. For ammonia and darkness, the rate of loss of nitrogenase activity was similar to that for Fe protein modification. The reillumination of a culture incubated in the dark brought about a rapid recovery of nitrogenase activity and the demodification of Fe protein. Cyclic dark-light treatments resulted in matching cycles of nitrogenase activity and Fe protein modification. Carbonyl cyanide m-chlorophenylhydrazone and phenazine methosulfate treatments caused an immediate loss of nitrogenase activity, whereas Fe protein modification occurred at a slower rate. Oxygen treatment resulted in a rapid loss of activity but only an incomplete modification of the Fe protein.  相似文献   

2.
thiK and thiL loci of Escherichia coli.   总被引:4,自引:4,他引:0       下载免费PDF全文
Nitrogenase proteins were isolated from cultures of the photosynthetic bacterium Rhodopseudomonas capsulata grown on a limiting amount of ammonia. Under these conditions, the nitrogenase N2ase A was active in vivo, and nitrogenase activity in vitro was not dependent upon manganese and the activating factor. The nitrogenase proteins were also isolated from nitrogen-limited cultures in which the in vivo nitrogenase activity had been stopped by an ammonia shock. This nitrogenase activity, N2ase R, showed an in vitro requirement for manganese and the activating factor for maximal activity. The Mo-Fe protein (dinitrogenase) was composed of two dissimilar subunits with molecular weights of 55,000 and 59,500; the Fe protein (dinitrogenase reductase), from either type of culture, was composed of a single subunit (molecular weight), 33,500). The metal and acid labile sulfur contents of both nitrogenase proteins were similar to those found for previously isolated nitrogenases. The Fe proteins from both N2ase A and N2ase R contained phosphate and ribose, 2 mol of each per mol of N2ase R Fe protein and about 1 mol of each per mol of N2ase A Fe protein. The greatest difference between the two types of Fe protein was that the N2ase R Fe protein contained about 1 mol per mol of an adenine-like molecule, whereas the N2ase A Fe protein content of this compound was insignificant. These results are compared with various models previously presented for the short-term regulation of nitrogenase activity in the photosynthetic bacteria.  相似文献   

3.
Rhodopseudomonas palustris cells grown on limiting nitrogen produced four- to eightfold higher nitrogenase specific activity relative to cells sparged with N2. The high activity of N-limited cells was the result of overproduction of the nitrogenase proteins. This was shown by four independent techniques: (i) titration of the Mo-Fe protein in cell-free extracts with Fe protein from Azotobacter vinelandii; (ii) direct detection of the subunits of Mo-Fe protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; (iii) monitoring of the electron paramagnetic resonance spectrum of Mo-Fe protein in whole cells; and (iv) immunological assay of the Fe protein level with an antiserum against the homologous protein of Rhodospirillum rubrum. The derepressed level of nitrogenase found in N2-grown cells was not due to an increased turnover of nitrogenase. The apparent half-lives of nitrogenase in N2-grown and N-limited cells were 58 and 98 h, respectively, but were too long to account for the difference in enzyme level. Half-lives were determined by measuring nitrogenase after repression of de novo synthesis by ammonia and subsequent release of nitrogenase switch-off by methionine sulfoximine. Observations were extended to R. rubrum, Rhodopseudomonas capsulata, and Rhodomicrobium vannielii and indicated that overproduction of nitrogenase under nitrogen limitation is not an exceptional property of R. palustris, but rather a general property of phototrophic bacteria.  相似文献   

4.
Rhodobacter capsulatus was grown chemotrophically in the dark in oxygen-regulated chemostat culture and in the presence of limiting amounts of fixed N. When the oxygen partial pressure was varied, in situ nitrogen fixation occurred only at 1% of air saturation of the medium. By contrast, nitrogenase proteins and their activity measured in the absence of oxygen could be detected up to 30% of air saturation. This revealed that expression of nitrogenase is much less sensitive toward oxygen than the in situ function of the enzyme. At oxygen partial pressures > 1% of air saturation, the degree of modification of the Fe protein of nitrogenase was increased. Light was of no stimulatory effect on both the activity and the expression of nitrogenase. This holds true for growth at 1% or 5% of air saturation. At 5% of air saturation, however, high illumination enhanced the inhibitory effect of oxygen on nitrogenase formation.  相似文献   

5.
The nitrogenase activity of the microaerophilic bacteria Azospirillum brasilense and A. lipoferum was completely inhibited by 2.0 kPa of oxygen (approximately 0.02 atm of O2) in equilibrium with the solution. The activity could be partially recovered at optimal oxygen concentrations of 0.2 kPa. In contrast to the NH4+ switch off, no covalent modification of the nitrogenase reductase (Fe protein) was involved, as demonstrated by Western-blotting and 32P-labeling experiments. However, the inhibition of the nitrogenase activity under anaerobic conditions was correlated with covalent modification of the Fe protein. In contrast to the NH4+ switch off, no increase in the cellular glutamine pool and no modification of the glutamine synthetase occurred under anaerobic switch-off conditions. Therefore, a redox signal, independent of the nitrogen control of the cell, may trigger the covalent modification of the nitrogenase reductase of A. brasilense and A. lipoferum.  相似文献   

6.
The photosynthetic bacterium Rhodobacter capsulatus has been shown to regulate its nitrogenase by covalent modification via the reversible ADP-ribosylation of Fe protein in response to darkness or the addition of external NH4+. Here we demonstrate the presence of ADP-ribosylated Fe protein under a variety of steady-state growth conditions. We examined the modification of Fe protein and nitrogenase activity under three different growth conditions that establish different levels of cellular nitrogen: batch growth with limiting NH4+, where the nitrogen status is externally controlled; batch growth on relatively poor nitrogen sources, where the nitrogen status is internally controlled by assimilatory processes; and continuous culture. When cultures were grown to stationary phase with different limiting concentrations of NH4+, the ADP-ribosylation state of Fe protein was found to correlate with cellular nitrogen status. Additionally, actively growing cultures (grown with N2 or glutamate), which had an intermediate cellular nitrogen status, contained a portion of their Fe protein in the modified state. The correlation between cellular nitrogen status and ADP-ribosylation state was corroborated with continuous cultures grown under various degrees of nitrogen limitation. These results show that in R. capsulatus the modification system that ADP-ribosylates nitrogenase in the short term in response to abrupt changes in the environment is also capable of modifying nitrogenase in accordance with long-term cellular conditions.  相似文献   

7.
A comparison of the effect of temperature on the reduction of N2 by purified molybdenum nitrogenase and vanadium nitrogenase of Azotobacter chroococcum showed differences in behaviour. As the assay temperature was lowered from 30 degrees C to 5 degrees C N2 remained an effective substrate for V nitrogenase, but not Mo nitrogenase, since the specific activity for N2 reduction by Mo nitrogenase decreased 10-fold more than that of V nitrogenase. Activity cross-reactions between nitrogenase components showed the enhanced low-temperature activity to be associated with the Fe protein of V nitrogenase. The lower activity of homologous Mo nitrogenase components, although dependent on the ratio of MoFe protein to Fe protein, did not equal that of V nitrogenase even under conditions of high electron flux obtained at a 12-fold molar excess of Fe protein.  相似文献   

8.
In combination with the Mo-Fe protein of nitrogenase from Klebsiella pneumoniae, the Fe protein of nitrogenase from Clostridium pasteurianum forms an active enzyme with novel properties different from those of either of the homologous nitrogenases. The steady-state rates of reduction of acetylene and H+ are 12% of those of the homologous system from C.pasteurianim. Acetylene reductase activity exhibited an approx. 10min lag at 30 degrees C before the rate of reduction became linear, consistent with a once-only activation step being necessary for acetylene reduction to occur. No such lag was observed for H2 evolution. The activity with N2 as a reducible substrate was very low, implying that acetylene reductase activity is not necessarily an accurate indication of nitrogen-fixing ability. This is of particular relevance to studies on mutant and agronomically important organisms. Stopped-flow spectrophotometric studies showed unimolecular electron transfer from the Fe protein to the Mo-Fe protein to occur at the same rate (k2 = 2.5 X 10(2)s-1) and with the same dependence on ATP concentration (apparent KD = 400 muM) as with the homologous Klebsiella nitrogenase. However, an ATP/2e ratio of 50 was obtained for H2 evolution, indicating that ATP hydrolysis had been uncoupled from electron transfer to substrate. These data indicate that ATP has at least two roles in the mechanism of nitrogenase action. The combination of the Mo-Fe protein of nitrogenase of C.pasteurianim and the Fe protein of K.pneumoniae were inactive in all the above reactions, except for a weak adenosine triphosphatase activity, 0.5% of that of the homologous K.pneumoniae system.  相似文献   

9.
The influence of the growth conditions on the concentration of nitrogenase and on the nitrogenase activity, was studied in intact Azotobacter vinelandii cells. It was observed that whole cell nitrogenase activity could be enhanced in two ways. An increase of the growth rate of cells was accompanied by an increase in whole cell nitrogenase activity and by an increase in the concentration of nitrogenase in the cells. The molar ratio of Fe protein:MoFe protein was 1.47 +/- 0.17 and independent of the growth rate. Activity measurements in cell extracts showed that the catalytic activity of the nitrogenase proteins was independent of the growth rate of cells. The second way to increase whole cell nitrogenase activity was to expose cells to excess oxygen. Whole cells were exposed for 2.5 h to an enhanced oxygen-input rate. After this incubation nitrogenase activity was increased without an increase in protein concentration. It is calculated that the catalytic activity of the Fe protein in these cells was 6200 nmol C2H4 formed X min-1 X (mg Fe protein)-1. With these cells and with cells grown at a high growth rate, 50% of the whole cell activity is lost by preparing a cell-free extract. It will be demonstrated that this inactivation is partly caused by the activity measurements in vitro. When dithionite was replaced by flavodoxin as electron donor, a maximal catalytic activity of 4500 nmol C2H4 formed X min-1 X (mg Fe protein)-1 was measured in vitro for the Fe protein. The results are discussed in relation to the present model for nitrogenase catalysis.  相似文献   

10.
Nitrogen fixation is one of the major biogeochemical contributions carried out by diazotrophic microorganisms. The goal of this research is study of posttranslational modification of dinitrogenase reductase (Fe protein), the involvement of malate and pyruvate in generation of reductant in Rhodospirillum rubrum. A procedure for the isolation of the Fe protein from cell extracts was developed and used to monitor the modification of the Fe protein in vivo. The subunit pattern of the isolated the Fe protein after sodium dodecyl sulfate–polyacrylamide gel electrophoresis was assayed by Western blot analysis. Whole-cell nitrogenase activity was also monitored during the Fe protein modification by gas chromatograpy, using the acetylene reduction assay. It has been shown, that the addition of fluoroacetate, ammonia and darkness resulted in the loss of whole-cell nitrogenase activity and the in vivo modification of the Fe protein. For fluoroacetate, ammonia and darkness, the rate of loss of nitrogenase activity was similar to that for the Fe protein modification. The addition of NADH and reillumination of a culture incubated in the dark resulted in the rapid restoration of nitrogenase activity and the demodification of the Fe protein. Fluoroacetate inhibited the nitrogenase activity of R. rubrum and resulted in the modification of the Fe protein in cells, grown on pyruvate or malate as the endogeneous electron source. The nitrogenase activity in draTG mutant (lacking DRAT/DRAG system) decreased after the addition of fluoroacetate, but the Fe protein remained completely unmodified. The results showed that the reduced state of cell, posttranslational modifications of the Fe protein and the DRAT/DRAG system are important for nitrogenase activity and the regulation of nitrogen fixation.  相似文献   

11.
Adenine nucleotide pools were measured in Rhodospirillum rubrum cultures that contained nitrogenase. The average energy charge [([ATP] + 1/2[ADP])/([ATP] + [ADP] + [AMP])] was found to be 0.66 and 0.62 in glutamate-grown and N-limited cultures respectively. Treatment of glutamate-grown cells with darkness, ammonia, glutamine, carbonyl cyanide m-chlorophenylhydrazone, or phenazine methosulphate resulted in perturbations in the adenine nucleotide pools, and led to loss of whole-cell nitrogenase activity and modification in vivo of the Fe protein. Treatment of N-limited cells resulted in similar changes in adenine nucleotide pools but not enzyme modification. No correlations were found between changes in adenine nucleotide pools or ratios of these pools and switch-off of nitrogenase activity by Fe protein modification in vivo. Phenazine methosulphate inhibited whole-cell activity at low concentrations. The effect on nitrogenase activity was apparently independent of Fe protein modification.  相似文献   

12.
The effect of various nitrogen sources on the synthesis and activity of nitrogenase was studied in the marine, non-heterocystous cyanobacterium Trichodesmium sp. NIBB1067 grown under defined culture conditions. Cells grown with N2 as the sole inorganic nitrogen source showed light-dependent nitrogenase activity (acetylene reduction). Nitrogenase activity in cells grown on N2 was not suppressed after 7 h incubation with 2 mM NaNO3 or 0.02 mM NH4Cl. However, after 3 h of exposure to 0.5 mM of urea, nitrogenase was inactivated. Cells grown in medium containing 2 mM NaNO3, 0.5 mM urea or 0.02 mM NH4Cl completely lacked the ability to reduce acetylene. Western immunoblots tested with polyclonal antisera against the Fe-protein and the Mo–Fe protein, revealed the following: (1) both the Fe-protein and the Mo–Fe protein were synthesized in cells grown with N2 as well as in cells grown with NaNO3 or low concentration of NH4Cl; (2) two bands (apparent molecular mass of 38 000 and 40 000) which cross-reacted with the antiserum to the Fe-protein, were found in nitrogen-fixing cells; (3) only one protein band, corresponding to the high molecular mass form of the Fe-protein, was found in cells grown with NaNO3 or low concentration of NH4Cl; (4) neither the Fe-protein nor the Mo–Fe protein was found in cells grown with urea; (5) the apparent molecular mass of the Fe-protein of Trichodesmium sp. NIBB1067 was about 5000 dalton higher than that of the heterocystous cyanobacterium, Anabaena cylindrica IAM-M1.  相似文献   

13.
Acetylene reduction by nitrogenase from Rhodospirillum rubrum, unlike that by other nitrogenases, was recently found by other investigators to require an activation of the iron protein of nitrogenase by an activating system comprising a chromatophore membrane component, adenosine 5'-triphosphate (ATP), and divalent metal ions. In an extension of this work, we observed that the same activating system was also required for nitrogenase-linked H(2) evolution. However, we found that, depending on their nitrogen nutrition regime, R. rubrum cells produced two forms of nitrogenase that differed in their Fe protein components. Cells whose nitrogen supply was totally exhausted before harvest yielded predominantly a form of nitrogenase (A) whose enzymatic activity was not governed by the activating system, whereas cells supplied up to harvest time with N(2) or glutamate yielded predominantly a form of nitrogenase (R) whose enzymatic activity was regulated by the activating system. An unexpected finding was the rapid (less than 10 min in some cases) intracellular conversion of nitrogenase A to nitrogenase R brought about by the addition to nitrogen-starved cells of glutamine, asparagine, or, particularly, ammonia. This finding suggests that mechanisms other than de novo protein synthesis were involved in the conversion of nitrogenase A to the R form. The molecular weights of the Fe protein and Mo-Fe protein components from nitrogenases A and R were the same. However, nitrogenase A appeared to be larger in size, because it had more Fe protein units per Mo-Fe protein than did nitrogenase R. A distinguishing property of the Fe protein from nitrogenase R was its ATP requirement. When combined with the Mo-Fe protein (from either nitrogenase A or nitrogenase R), the R form of Fe protein required a lower ATP concentration but bound or utilized more ATP molecules during acetylene reduction than did the A form of Fe protein. No differences between the Fe proteins from the two forms of nitrogenase were found in the electron paramagnetic resonance spectrum, midpoint oxidation-reduction potential, or sensitivity to iron chelators.  相似文献   

14.
Azotobacter vinelandii was grown diazotrophically at different dissolved oxygen concentrations (in the range of 3 to 216 microM) in sucrose-limited continuous culture. The specific nitrogenase activity, measured on the basis of acetylene reduction in situ, was dependent solely on the growth rate and was largely independent of oxygen and sucrose concentration. FeMo (Av1) and Fe (Av2) nitrogenase proteins were quantified after Western blotting (immunoblotting). When the cultures were grown at a constant dilution rate (D, representing the growth rate, mu) of 0.15.h-1, the cellular levels of both proteins were constant regardless of different dissolved oxygen concentrations. The same was true when the organisms were grown at D values above 0.15.h-1. At a lower growth rate (D = 0.09.h-1), however, and at lower oxygen concentrations cellular levels of both nitrogenase proteins were decreased. This means that catalytic activities of nitrogenase proteins were highest at low oxygen concentrations, but at higher oxygen concentrations they increased with growth rate. Under all conditions tested, however, the Av1:Av2 molar ratio was 1:(1.45 +/- 0.12). Cellular levels of flavodoxin and FeS protein II were largely constant as well. In order to estimate turnover of nitrogenase proteins in the absence of protein synthesis, chloramphenicol was added to cultures adapted to 3 and 216 microM oxygen, respectively. After 2 h of incubation, no significant decrease in the cellular levels of Av1 and Av2 could be observed. This suggests that oxygen has no significant effect on the breakdown of nitrogenase proteins.  相似文献   

15.
A Ernst  S Reich    P Bger 《Journal of bacteriology》1990,172(2):748-755
In the heterocystous cyanobacterium Anabaena variabilis, a change in nitrogenase activity and concomitant modification of dinitrogenase reductase (the Fe protein of nitrogenase) was induced either by NH4Cl at pH 10 (S. Reich and P. B?ger, FEMS Microbiol. Lett. 58:81-86, 1989) or by cessation of C supply resulting from darkness, CO2 limitation, or inhibition of photosystem II activity. Modification induced by both C limitation and NH4Cl was efficiently prevented by anaerobic conditions. Under air, endogenously stored glycogen and added fructose protected against modification triggered by C limitation but not by NH4Cl. With stored glycogen present, dark modification took place after inhibition of respiration by KCN. Reactivation of inactivated nitrogenase and concomitant demodification of dinitrogenase reductase occurred after restoration of diazotrophic growth conditions. In previously C-limited cultures, reactivation was also observed in the dark after addition of fructose (heterotrophic growth) and under anaerobiosis upon reillumination in the presence of a photosynthesis inhibitor. The results indicate that modification of dinitrogenase reductase develops as a result of decreased carbohydrate-supported reductant supply of the heterocysts caused by C limitation or by increased diversion of carbohydrates towards ammonia assimilation. Apparently, a product of N assimilation such as glutamine is not necessary for modification. The increase of oxygen concentration in the heterocysts is a plausible consequence of all treatments causing Fe protein modification.  相似文献   

16.
In Klebsiella pneumoniae, the nifH gene encodes the Fe protein (Kp2) polypeptide that is assembled into a homodimer responsible for the reduction of nitrogenase. Escherichia coli or the yeast Saccharomyces cerevisiae, transformed with the K. pneumoniae nifH gene in suitable expression vectors, synthesize the Fe protein polypeptide. This study examines the assembly of the nifH gene product into its characteristic dimeric structure in E. coli and in yeast. Immunoblotting methods, as well as 55Fe2- labeling of K. pneumoniae were employed to detect native nitrogenase components in cell lysates. E. coli and yeast transformants contained a protein similar to native Kp2 in its immunoreactivity, apparent molecular weight, and lability in the presence of oxygen or MgATP. While in E. coli the co-introduction of nifH and nifM resulted in enhanced levels of the nifH product, it appears that the nifH gene product alone is sufficient for the assembly of an Fe protein-like structure in foreign prokaryotic and eukaryotic hosts.  相似文献   

17.
A purification procedure is described for the components of Bacillus polymyxa nitrogenase. The procedure requires the removal of interfering mucopolysaccharides before the two nitrogenase proteins can be purified by the methods used with other nitrogenase components. The highest specific activities obtained were 2750 nmol C2H4 formed . min-1 . mg-1 MoFe protein and 2521 nmol C2H4 formed . min-1 . mg-1 Fe protein. The MoFe protein has a molecular weight of 215 000 and contains 2 molybdenum atoms, 33 iron atoms and 21 atoms of acid-labile sulfur per protein molecule. The Fe protein contains 3.2 iron atoms and 3.6 acid-labile sulfur atoms per molecule of 55 500 molecular weight. Each Fe protein binds two ATP molecules. The EPR spectra are similar to those of other nitrogenase proteins. MgATP changes the EPR of the Fe protein from a rhombic to an axial-type signal.  相似文献   

18.
Oxygen is an important regulatory factor of nitrogenase induced in a unicellular cyanobacterium, Synechocystis BO 8402, during nitrogen starvation. Synthesis of the enzyme is limited by the efficiency of the cells to remove oxygen by respiration, supported by hydrogenases and, in the light, by inhibition of photosynthesis. With a polyclonal antibody against dinitrogenase reductase (the Fe protein of nitrogenase) a single polypeptide is detected, indicative of an active dimeric enzyme in dense cell suspensions. Inhibition of nitrogenase by addition of oxygen is accompanied by the appearance of a second polypeptide of the Fe protein having a 1.5 kDa higher molecular weight. This disappears upon removal of oxygen from the gas phase while nitrogenase activity is restored. No protein synthesis is required indicating that a fraction of the existing polypeptides is reversibly modified in response to oxygen. After induction of nitrogenase activity in dilute culture suspensions, both forms of the Fe-protein are found in variable amounts possibly due to oxygen contamination during the experiment.Abbreviations CAM chloramphenicol - Chl chlorophyll a - CHO carbohydrates - DCMU 3,4-dichlorophenyl-1,1-dimethylurea (diuron) - kDa kilodalton - SDS sodium dodecylsulphate  相似文献   

19.
The molybdenum nitrogenase enzyme system, comprised of the MoFe protein and the Fe protein, catalyzes the reduction of atmospheric N(2) to NH(3). Interactions between these two proteins and between Fe protein and nucleotides (MgADP and MgATP) are crucial to catalysis. It is well established that salts are inhibitors of nitrogenase catalysis that target these interactions. However, the implications of salt effects are often overlooked. We have reexamined salt effects in light of a comprehensive framework for nitrogenase interactions to offer an in-depth analysis of the sources of salt inhibition and underlying apparent cooperativity. More importantly, we have identified patterns of salt activation of nitrogenase that correspond to at least two mechanisms. One of these mechanisms is that charge screening of MoFe protein-Fe protein interactions in the nitrogenase complex accelerates the rate of nitrogenase complex dissociation, which is the rate-limiting step of catalysis. This kind of salt activation operates under conditions of high catalytic activity and low salt concentrations that may resemble those found in vivo. While simple kinetic arguments are strong evidence for this kind of salt activation, further confirmation was sought by demonstrating that tight complexes that have previously displayed little or no activity due to the inability of Fe protein to dissociate from the complex are activated by the presence of salt. This occurs for the combination Azotobacter vinelandii MoFe protein with: (a) the L127Delta Fe protein; and (b) Clostridium pasteurianum Fe protein. The curvature of activation vs. salt implies a synergistic salt-protein interaction.  相似文献   

20.
Exposure of nitrogen-fixing cultures of Anabaena spp. to 100% oxygen resulted in the rapid decline of nitrogenase activity. When oxygen-treated cells were transferred to 100% argon, nitrogenase activity was quickly restored in a process that required protein synthesis. Anaerobiosis was not essential for the recovery process; in fact, cells of Anabaena sp. strains CA and 1F will recover nitrogenase activity after prolonged incubation in 100% oxygen. Oxygen treatment acted directly on the intracellular nitrogenase and did not affect other metabolic processes. Examination of crude extracts of oxygen-treated Anabaena sp. strain CA indicated that both components of nitrogenase are inactivated. However, several lines of evidence suggest that oxygen treatment does not result in irreversible denaturation of nitrogenase, but rather results in a reversible inactivation which may serve as a protection mechanism. Nitrogenase present in crude extracts from cells of Anabaena sp. strain 1F which had been incubated for a prolonged period in 100% oxygen was less sensitive to oxygen in vitro than was nitrogenase of a crude extract of untreated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号