首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The three-dimensional structure of a cyclic enterobacterial common antigen (ECA) having four trisaccharide repeating units has been investigated by NMR spectroscopy and molecular dynamics simulations. Three different NMR parameters were determined: (a) (1)H,(1)H cross-relaxation rates from NOE experiments were used for determination of proton-proton distances; (b) trans-glycosidic (3)J(C,H) scalar coupling constants analyzed via a Karplus-type relationship provided information on torsion angles; and (c) (1)H,(13)C one-bond dipolar couplings obtained in a dilute liquid-crystalline medium were interpreted in terms of the orientational order and molecular conformations. The molecular dynamics simulations of the dodecasaccharide were performed with explicit water and counterions, which are important factors that strongly influence molecular conformation. Subsequently, the results from computer simulation were used to generate a three-dimensional structure of the cyclic ECA which is consistent with the experimental NMR parameters.  相似文献   

2.
The binding of methyl beta-lactoside and of all possible monodeoxy derivatives of methyl beta-lactoside to the galactose-specific highly cytotoxin lectin ricin, has been investigated. The distribution of low-energy conformers of the disaccharide structures has been first determined using molecular-mechanics calculations and high-resolution NMR spectroscopy. The nuclear Overhauser enhancements and specific deshieldings observed are in agreement with a similar distribution of low-energy conformers for all studied compounds which may be described by a major conformer defined by phi (H1'-C1'-O1'-C4) and psi (C1'-O1'-C4-H4) torsion angles of 49 degrees and 5 degrees, respectively, with contribution of conformers with angles phi/psi 24 degrees/-59 degrees, 22 degrees/-32 degrees and 6 degrees/-44 degrees. Assuming that the disaccharides bind to the lectin in these preferred conformations, the apparent dissociation constants for the ricin-disaccharide complexes have been interpreted in terms of specific polar and nonpolar interactions. In agreement with X-ray data, the hydroxyl groups at positions 3, 4 and 6 of the beta-D-galactopyranose moiety appear as key polar groups in the interaction with ricin. These results are in contrast to previous results which have established that position 6 is not involved in lectin binding. An important nonpolar interaction involving position 3 of the beta-D-glucopyranose moiety, seems to be operative. The distribution of low-energy conformers of these disaccharide structures permits this interaction to take place with the hydroxyl group at this position intramolecularly bonded, thus rendering this region of the molecule more lipophylic in character for acceptance into nonpolar regions of the combining site.  相似文献   

3.
Transferred nuclear Overhauser enhancement spectroscopy (TRNOE) was used to observe changes in a ligand's conformation upon binding to its specific antibody. The ligands studied were methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-4-fluoro-beta-D-galactopyra nos ide (me4FGal2) and its selectively deuteriated analogue, methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-2-deuterio-4-fluoro-beta -D- galactopyranoside (me4F2dGal2). The monoclonal antibody was mouse IgA X24. The solution conformation of the free ligand me4F2dGal2 was inferred from measurements of vicinal 1H-1H coupling constants, long-range 1H-13C coupling constants, and NOE cross-peak intensities. For free ligand, both galactosyl residues adopt a regular chair conformation, but the NMR spectra are incompatible with a single unique conformation of the glycosidic linkage. Analysis of 1H-1H and 1H-13C constants indicates that the major conformer has an extended conformation: phi = -120 degrees; psi = 180 degrees; and omega = 75 degrees. TRNOE measurements on me4FGal2 and me4F2dGal2 in the presence of the specific antibody indicate that the pyranose ring pucker of each galactose ring remains unchanged, but rotations about the glycosidic linkage occur upon binding to X24. Computer calculations indicate that there are two sets of torsion angles that satisfy the observed NMR constraints, namely, phi = -152 +/- 9 degrees; psi = -128 +/- 7 degrees; and omega = -158 +/- 6 degrees; and a conformer with phi = -53 +/- 6 degrees; psi = 154 +/- 10 degrees; and omega = -173 +/- 6 degrees. Neither conformation is similar to any of the observed conformations of the free disaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Transferred nuclear Overhauser effect (TRNOE) experiments have revealed a change in the torsion angles about the alpha-1-6 glycosidic bond of methyl beta-melibioside upon binding of the melibioside to the ricin B-chain (Rb). A full relaxation rate matrix simulation of experimental buildup curves aided in quantitative interpretation of 1D selective inversion recovery TRNOE experiments. The data are consistent with a model in which both major (omega approximately 170 degrees) and minor (omega approximately -60 degrees) conformers for methyl beta-melibioside are significantly populated in solution while the Rb/methyl beta-melibioside complex has little of the minor conformer populated. The results indicate that the ricin B-chain excludes binding of certain ligand conformations on the basis of unfavorable interactions between the protein surface and remote portions of the disaccharide system.  相似文献   

5.
Quantification of DNA structure from NMR data: conformation of d-ACATCGATGT   总被引:1,自引:0,他引:1  
K V Chary  S Modi  R V Hosur  G Govil  C Q Chen  H T Miles 《Biochemistry》1989,28(12):5240-5249
Resonance assignments of nonexchangeable base and sugar protons have been obtained in double-helical d-ACATCGATGT by using two-dimensional correlated spectroscopy (COSY) and nuclear Overhauser enhancement spectroscopy (NOESY). The exchangeable imino protons have been assigned on the basis of their chemical shifts. The characteristic phase-sensitive multiplet patterns of the intrasugar cross-peaks in the omega 1-scaled COSY spectrum have been used to estimate several scalar coupling constants (J). The information on the J values combined with the intranucleotide COSY cross-peak intensities has been used to identify sugar puckers of individual nucleotide units. In most cases, the deoxyribofuranose rings are found to adopt a conformation close to O4'-endo. Spin diffusion has been monitored from the buildup of the normalized volumes of NOE cross-peaks in NOESY spectra as a function of mixing time. A set of 52 intranucleotide and internucleotide proton-proton distances have been estimated by using low mixing time NOESY spectra (tau m = 40 and 80 ms). The estimated intrasugar proton-proton distances rule out possibilities of existence of a fast equilibrium between C2'-endo and C3'-endo conformations. Intranucleotide proton-proton distances combined with the knowledge of sugar puckers have been used to fix the glycosidic bond torsion angle (chi). For this purpose, simulated distance contours depicting the dependence of intranucleotide proton-proton distances on pseudorotational phase angle (P) and glycosidic bond torsion angle (chi) have been used. Further, the proton homonuclear (J, delta) spectrum has been used to monitor the 31P-1H heteronuclear couplings, which are preserved in the omega 2 projection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The binary complex of diacetylchloramphenicol and chloramphenicol acetyltransferase (CAT) has been studied by a combination of isotope-edited 1H NMR spectroscopy and site-directed mutagenesis. One-dimensional HMQC spectra of the complex between 1,3-[2-13C]diacetylchloramphenicol and the type III natural variant of CAT revealed the two methyl 1H signals arising from each 13C-labeled carbon atom in the acetyl groups of the bound ligand. Slow hydrolysis of the 3-acetyl group by the enzyme precluded further analysis of this binary complex. It was possible to slow down the rate of hydrolysis by use of the catalytically defective S148A mutant of CATIII (Lewendon et al., 1990); in the complex of diacetylchloramphenicol with S148A CATIII, the chemical shifts of the acetyl groups of the bound ligand were the same as in the wild-type complex. The acetyl signals were individually assigned by repeating the experiment using 1-[2-13C],3-[2-12C]diacetylchloramphenicol, where only one signal from the bound ligand was observed. A two-dimensional 1H, 1H NOESY experiment, with 13C(omega 2) half-filter, on the 1,3-[2-13C]diacetylchloramphenicol/S148A CATIII complex showed a number of intermolecular NOEs from each methyl group in the ligand to residues in the chloramphenicol binding site. The 3-acetyl group showed strong NOEs to two aromatic signals which were selected for assignment. The possibility that the NOEs originated from the aromatic protons of diacetylchloramphenicol itself was eliminated by assignment of the signals from enzyme-bound diacetylchloramphenicol and chloramphenicol using perdeuterated CATIII. Examination of the X-ray crystal structure of the chloramphenicol/CATIII binary complex indicated four plausible candidate aromatic residues: Y25, F33, F103, and F158.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
N Murali  Y Lin  Y Mechulam  P Plateau    B D Rao 《Biophysical journal》1997,72(5):2275-2284
The conformations of MgATP and AMP bound to a monomeric tryptic fragment of methionyl tRNA synthetase have been investigated by two-dimensional proton transferred nuclear Overhauser effect spectroscopy (TRNOESY). The sample protocol was chosen to minimize contributions from adventitious binding of the nucleotides to the observed NOE. The experiments were performed at 500 MHz on three different complexes, E.MgATP, E.MgATP.L-methioninol, and E.AMP.L-methioninol. A starter set of distances obtained by fitting NOE build-up curves (not involving H5' and H5") were used to determine a CHARMm energy-minimized structure. The positioning of the H5' and H5" protons was determined on the basis of a conformational search of the torsion angle to obtain the best fit with the observed NOEs for their superposed resonance. Using this structure, a relaxation matrix was set up to calculate theoretical build-up curves for all of the NOEs and compare them with the observed curves. The final structures deduced for the adenosine moieties in the three complexes are very similar, and are described by a glycosidic torsion angle (chi) of 56 degrees +/- 5 degrees and a phase angle of pseudorotation (P) in the range of 47 degrees to 52 degrees, describing a 3(4)T-4E sugar pucker. The glycosidic torsion angle, chi, deduced here for this adenylyl transfer enzyme and those determined previously for three phosphoryl transfer enzymes (creatine kinase, arginine kinase, and pyruvate kinase), and one pyrophosphoryl enzyme (PRibPP synthetase), are all in the range 52 degrees +/- 8 degrees. The narrow range of values suggests a possible common motif for the recognition and binding of the adenosine moiety at the active sites of ATP-utilizing enzymes, irrespective of the point of cleavage on the phosphate chain.  相似文献   

8.
Sue SC  Brisson JR  Chang SC  Huang WN  Lee SC  Jarrell HC  Wu W 《Biochemistry》2001,40(35):10436-10446
Glycosaminoglycans (GAGs) have been suggested to be a potential target for cobra cardiotoxin (CTX) with high affinity and specificity via a cationic belt at the concave surface of the polypeptide. The interaction of GAGs, such as high-molecular weight heparin, with CTXs not only can induce aggregation of CTX molecules but also can enhance their penetration into membranes. The binding of short chain heparin, such as a heparin-derived disaccharide [DeltaUA2S(1-->4)-alpha-D-GlcNS6S], to CTX A3 from Taiwan cobra (Naja atra), however, will not induce aggregation and was, therefore, investigated by high-resolution (1)H NMR. A novel heparin binding site on the convex side of the CTX, near the rigid disulfide bond-tightened core region of Cys38, was identified due to the observation of intermolecular NOEs between the protein and carbohydrate. The derived carbohydrate conformation using complete relaxation and conformational exchange matrix analysis (CORCEMA) of NOEs indicated that the glycosidic linkage conformation and the ring conformation of the unsaturated uronic acid in the bound state depended significantly on the charge context of CTX molecules near the binding site. Specifically, comparative binding studies of several heparin disaccharide homologues with two CTX homologues (CTX Tgamma from Naja nigricollis and CTX A3) indicated that the electrostatic interaction of N-sulfate of glucosamine with NH(3)(+)zeta of Lys12 and of the 2-O-sulfate of the unsaturated uronic acid with NH(3)(+)zeta of Lys5 played an important role. These results also suggest a model on how the CTX-heparin interaction may regulate heparin-induced aggregation of the toxin via the second heparin binding site.  相似文献   

9.
The orientation of the disaccharide headgroup of a lactose-containing lipid, 3-O-(4-O-beta-D-galactopyranosyl-beta-D-glucopyranosyl)-1,2-di-O-tetrade cyl-sn- glycerol (DTLL), relative to the surface of bilayer membranes has been determined via 2H NMR. The lactosyl headgroup is extended away from the membrane surface into the aqueous phase. The headgroup motion has axial symmetry as evidenced by the spectral line shape and order parameter tensor. 2H NMR of oriented multibilayers of DTLL confirms that the director of motional averaging is the bilayer normal. The two sugar residues have segmental order parameters S (glucose, 0.53; galactose, 0.51) which indicate that the headgroup fluctuates about the bilayer normal as a rigid unit. 2H spin-lattice relaxation times T1z for deuterons on each of the two sugar rings are similar, indicating further that there is no substantial motion about the disaccharide linkage within the headgroup. The magnitude of the relaxation times (4 ms) suggests that the rigid body motions of the headgroup are approaching the Larmor frequency; however, they increase with increasing temperature, indicating that the motions are rapid enough to be in the fast motional regime (omega o2 tau c2 less than 1). The conformation about the galactose-glucose intersaccharide linkage, calculated from the 2H NMR data, is shown to differ substantially from those found in X-ray diffraction studies of crystalline lactose and high-resolution NMR studies of methyl lactoside in nonviscous solution. The orientations of the hydroxymethyl groups in the headgroup have been calculated from the 2H NMR data. For the galactosyl residue the data are consistent with the presence of more than one rotamer about the C5"-C6" bond which are in fast exchange on the 2H NMR time scale. The hydroxymethyl group of the glucose residue exists in two rotameric forms about the C5'-C6' bond which have relative populations of ca. 2:1 and which are in slow exchange on the 2H NMR time scale (10(-5) s). The two rotamers differ from those deduced from X-ray crystallography of crystalline lactose and 13C NMR studies of methyl lactoside in solution.  相似文献   

10.
Proton NMR studies are reported on the complementary d(C-A-T-G-G-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dG 9-mer duplex), which contains exocyclic adduct 1,N6-ethenodeoxyadenosine positioned opposite deoxyguanosine in the center of the helix. The present study focuses on the alignment of dG5 and epsilon dA14 at the lesion site in the epsilon dA.dG 9-mer duplex at neutral pH. This alignment has been characterized by monitoring the NOEs originating from the NH1 proton of dG5 and the H2, H5, and H7/H8 protons of epsilon dA14 in the central d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment of the epsilon dA.dG 9-mer duplex. These NOE patterns establish that epsilon dA14 adopts a syn glycosidic torsion angle that positions the exocyclic ring toward the major groove edge while all the other bases including dG5 adopt anti glycosidic torsion angles. We detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment which establish formation of right-handed helical conformations on both strands and stacking of the dG5(anti).epsilon dA14(syn) pair between stable dG4.dC15 and dG6.dC13 pairs. The energy-minimized conformation of the central d(G4-G5-G6).d(C13-epsilon A14-C15) segment establishes that the dG5(anti).epsilon dA14(syn) alignment is stabilized by two hydrogen bonds from the NH1 and NH2-2 of dG5(anti) to N9 and N1 of epsilon dA14(syn), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have determined the three-dimensional solution structure of the complex of Lactobacillus casei dihydrofolate reductase and the anticancer drug trimetrexate. Two thousand seventy distance, 345 dihedral angle, and 144 hydrogen bond restraints were obtained from analysis of multidimensional NMR spectra recorded for complexes containing 15N-labeled protein. Simulated annealing calculations produced a family of 22 structures fully consistent with the constraints. Several intermolecular protein-ligand NOEs were obtained by using a novel approach monitoring temperature effects of NOE signals resulting from dynamic processes in the bound ligand. At low temperature (5 degrees C) the trimethoxy ring of bound trimetrexate is flipping sufficiently slowly to give narrow signals in slow exchange, which give good NOE cross peaks. At higher temperature these broaden and their NOE cross peaks disappear thus allowing the signals in the lower-temperature spectrum to be identified as NOEs involving ligand protons. The binding site for trimetrexate is well defined and this was compared with the binding sites in related complexes formed with methotrexate and trimethoprim. No major conformational differences were detected between the different complexes. The 2,4-diaminopyrimidine-containing moieties in the three drugs bind essentially in the same binding pocket and the remaining parts of their molecules adapt their conformations such that they can make effective van der Waals interactions with essentially the same set of hydrophobic amino acids, the side-chain orientations and local conformations of which are not greatly changed in the different complexes (similar chi1 and chi2 values).  相似文献   

12.
In order to make clear the structural role of the C-terminal amide group of endomorphin-2 (EM2, H-Tyr-Pro-Phe-Phe-NH2), an endogenous mu-receptor ligand, in the biological function, the solution conformations of endomorphin-2 and its C-terminal free acid (EM2OH, H-Tyr-Pro-Phe-Phe-OH), studied using two-dimensional 1H NMR measurements and molecular modeling calculations, were compared. Both peptides were in equilibrium between the cis and trans isomers around the Tyr-Pro omega bond in a population ratio of approximately/= 1:2. The lack of significant temperature and concentration dependence of NH protons suggested that the NMR spectra reflected the conformational features of the respective molecules themselves. Fifty possible 3D structures for the each isomer were generated by the dynamical simulated annealing method under the proton-proton distance constraints derived from the ROE cross-peaks. These energy-minimized conformers, which were all in the phi torsion angles estimated from J(NHCalphaH) coupling constants within +/- 30 degrees, were then classified in groups one or two according to the folding backbone structures. All trans and cis EM2 conformers adopt an open conformation in which their extended backbone structures are twisted at the Pro2-Phe3 moiety. In contrast, the trans and cis conformers of EM2OH show conformational variation between the 'bow'-shaped extended and folded backbone structures, although the cis conformers of its zwitterionic form are refined into the folded structure of the close disposition of C- and N-terminal groups. These results indicate clearly that the substitution of carboxyl group for C-terminal amide group makes the peptide flexible. The conformational requirement for mu-receptor activation has been discussed based on the active form proposed for endomorphin-1 and by comparing conformational features of EM2 and EM2OH.  相似文献   

13.
P Cagas  C A Bush 《Biopolymers》1992,32(3):277-292
To probe differences in conformation of the type 1 and type 2 linkages in blood group oligosaccharides, two-dimensional nuclear Overhauser effect spectroscopy (2D-NOESY) and 1H T1 data were obtained for two blood group A oligosaccharide alditols containing the type 1 and type 2 linkage. The NOE data were interpreted using a complete relaxation matrix approach. Simulations of NOE and T1 values were made using disaccharide and tetrasaccharide model conformations generated by a systemic variation of the glycosidic dihedral angles phi and psi. NOEs from the amide protons of GlcNAc and GalNAc in the type 1 pentasaccharide alditol were obtained, and simulated in a manner similar to those from carbon-bound protons. In addition to providing data for determining the conformation of the type 1 linkage from amide proton NOEs of GlcNAc and GalNAc to neighboring residues, amide proton NOEs also yield information on the orientation of the acetamido side chains. The amide NOE data indicated subtle differences in the orientation of the amide side chain of GlcNAc among the A type 1 pentasaccharide alditol and two previously studied blood group oligosaccharides, lacto-N-difucohexaose 1 and lacto-N-fucopentaose 1. From the NOE and 1H T1 data, and from simple rigid geometry energy calculations, it is concluded that the type 1 and type 2 linkages in the oligosaccharides studied have different conformations and that these conformations are relatively rigid in solution.  相似文献   

14.
The (1)H-(13)C coupling constants of methyl alpha- and beta-pyranosides of D-glucose and D-galactose have been measured by one-dimensional and two-dimensional (1)H-(13)C heteronuclear zero and double quantum, phase sensitive J-HMBC spectra to determine a complete set of coupling constants ((1)J(CH), (2)J(CH), (3)J(CH), (2)J(HH), and (3)J(HH)) within the exocyclic hydroxymethyl group (CH(2)OH) for each compound. In parallel with these experimental studies, structure, energy, and potential energy surfaces of the hydroxymethyl group for these compounds were determined employing quantum mechanical calculations at the B3LYP level using the 6-311++G( * *) basis set. Values of the vicinal coupling constants involving (1)H and (13)C in the C5-C6 (omega) and C6-O6 (theta) torsion angles in the aldohexopyranoside model compounds were calculated with water as the solvent using the PCM method. To test the relationship between (3)J(CXCH) (X=C, O, S) and torsion angle C1-X (phi) around the anomeric center, the conformations of 24 derivatives of glucose and galactose, which represent sequences of atoms at the anomeric center of C-glycosides (C-C bond), O-glycosides (C-O bond), thioglycosides (C-S bond), glycosylamines (C-N bond), and glycosyl halides (C-halogen (F/Cl) bond) have been calculated. Nonlinear regression analysis of the coupling constants (1)J(C1,H1), (2)J(C5,H6R), (2)J(C5,H6S), (2)J(C6,H5), (3)J(C4,H6R), (3)J(C4,H6S), (2)J(H6R,H5), and (3)J(H5,H6R) as well as (3)J(CXCH) (X=C, O, S) on the dihedral angles omega, theta, and phi have yielded new Karplus equations. Good agreement between calculated and experimentally measured coupling constants revealed that the DFT method was able to accurately predict J-couplings in aqueous solutions.  相似文献   

15.
Cellular RA binding proteins are thought to play important roles in the (RA), a hormonally active metabolite of vitamin A that has profound effects on cell growth, + differentiation and morphogenesis. Binding of RA to type II human cellular RA binding proteins (CRABPII) has been investigated by NMR spectroscopy. The sequential resonance assignments of +CRABPII in the presence of RA were established by heteronuclear three-dimensional NMR at pH 7.3. The resonance assignments of the bound RA were achieved by homonucl NMR. The secondary structures of holo-CRABPII determined by NMR were ess as revealed by the crystal structure of holo-CRABPII. Most of the nuclear Overhauser effects (NOEs) between CRABPII and the bound RA were consistent with those predicted crystal structure of holo-CRABPII. The results suggested that the conformations in solution and in the crystalline state are highly similar. Compared to the ligand binding pocket, especially the ligand entrance, was stabilize Ser12-Leu18, one of the structure elements that constitute the ligand binding pocket, became more mobile upon binding of RA. Intramolecular NOEs between protons of the bo the carboxylate end of the bound RA is well fixed but the β-ionone  相似文献   

16.
Maaheimo H  Kosma P  Brade L  Brade H  Peters T 《Biochemistry》2000,39(42):12778-12788
A NMR study of the binding of the synthetic disaccharides alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl 1 (Kdo, 3-deoxy-D-manno-oct-2-ulopyranosonic acid) and alpha-Kdo-(2-->8)-alpha-Kdo-(2-->O)-allyl 2, representing partial structures of the lipopolysaccharide epitope of the intracellular bacteria Chlamydia, to corresponding monoclonal antibodies (mAbs) S23-24, S25-39, and S25-2 is presented. The conformations of 1 bound to mAbs S25-39 and of 2 bound to mAbs S23-24 and S25-39 were analyzed by employing transfer-NOESY (trNOESY) and QUIET-trNOESY experiments. A quantitative analysis of QUIET-trNOESY buildup curves clearly showed that S25-39 recognized a conformation of 1 that was similar to the global energy minimum of 1, and significantly deviated from the conformation of 1 bound to mAb S25-2. For disaccharide 2, only a qualitative analysis was possible because of severe spectral overlap. Nevertheless, the analysis showed that all mAbs most likely bound to only one conformational family of 2. Saturation transfer difference (STD) NMR experiments were then employed to analyze the binding epitopes of the disaccharide ligands 1 and 2 when binding to mAbs S23-24, S25-39, and S25-2. It was found that the nonreducing pyranose unit was the major binding epitope, irrespective of the mAb and the disaccharide that were employed. Individual differences were related to the engagement of other portions of the disaccharide ligands.  相似文献   

17.
A Fede  A Labhardt  W Bannwarth  W Leupin 《Biochemistry》1991,30(48):11377-11388
We have investigated the interaction of the bisbenzimidazole derivative Hoechst 33258 with the self-complementary dodecadeoxynucleotide duplex d(GTGGAATTCCAC)2 using one-dimensional (1D) and two-dimensional (2D) proton nuclear magnetic resonance (1H NMR) spectroscopy. To monitor the extent of complex formation, we used the imino proton region of the 1D 1H NMR spectra acquired in H2O solution. These spectra show that the DNA duplex loses its inherent C2v symmetry upon addition of the drug, indicating that the two molecules form a kinetically stable complex on the NMR time scale (the lifetime of the complex has been measured to be around 450 ms). We obtained sequence-specific assignments for all protons of the ligand and most protons of each separate strand of the oligonucleotide duplex using a variety of homonuclear 2D 1H NMR experiments. The aromatic protons of the DNA strands, which are symmetrically related in the free duplex, exhibit exchange cross peaks in the complex. This indicates that the drug binds in two equivalent sites on the 12-mer, with an exchange rate constant of 2.2 +/- 0.2 s-1. Twenty-five intermolecular NOEs were identified, all involving adenine 2 and sugar 1' protons of the DNA and protons in all four residues of the ligand, indicating that Hoechst 33258 is located in the minor groove at the AATT site. Only protons along the same edge of the two benzimidazole moieties of the drug show NOEs to DNA protons at the bottom of the minor groove. Using molecular mechanics, we have generated a unique model of the complex using distance constraints derived from the intermolecular NOEs. We present, however, evidence that the piperazine group may adopt at least two locally different conformations when the drug is bound to this dodecanucleotide.  相似文献   

18.
The equilibrium binding kinetics of enzymatically prepared N-acetyllactosamine to the lectin from Erythrina cristagalli have been investigated by 13C-NMR spectroscopy. Under the experimental conditions used, NMR signals in the spectrum, corresponding to both the free and bound disaccharide species, were observed for the first time. This has permitted the simultaneous determinations of the equilibrium binding constant and the number of binding sites per lectin molecule. At the relatively high lectin concentrations used (0.3-0.87 mM), the association constants determined at 31 degrees C (approximately 6 X 10(3) M-1) are typically lower then those obtained by other methods employing much lower lectin concentrations. Extrapolation of the experimentally observed values to infinite dilution gave a better fit of the data (Ka approximately 1.4 X 10(4) M-1) with the binding constant determined by other methods (K approximately 1.1 X 10(4) M-1). The sugar residence time on the lectin (approximately 0.2 s) was determined directly from the signal's line-width using total line-shape analysis. Similar NMR experiments may permit an analysis of the interaction of the lectin with glycoproteins and cells labelled with 13C-enriched galactose residues. Moreover, information on lectin-galactose interactions at the binding site may be obtained by using galactose labeled at various carbons.  相似文献   

19.
A complex of the synthetic tetrasaccharide AGA*IM [GlcN, 6-SO3-alpha(1-4)-GlcA-beta(1-4)-GlcN,3, 6-SO3-alpha(1-4)-IdoA-alphaOMe] and the plasma protein antithrombin has been studied by NMR spectroscopy. 1H and 13C chemical shifts, three-bond proton-proton (3JH-H) and one-bond proton-carbon coupling constants (1JC-H) as well as transferred NOEs and rotating frame Overhauser effects (ROEs) were monitored as a function of the protein : ligand molar ratio and temperature. Considerable changes were observed at both 20 : 1 and 10 : 1 ratios (AGA*IM : antithrombin) in 1H as well as 13C chemical shifts. The largest changes in 1H chemical shifts, and the linewidths, were found for proton resonances (A1, A2, A6, A6', A1*, A2*, A3*, A4*) in GlcN, 6-SO3 and GlcN,3,6-SO3 units, indicating that both glucosamine residues are strongly involved in the binding process. The changes in the linewidths in the IdoA residue were considerably smaller than those in other residues, suggesting that the IdoA unit experienced different internal dynamics during the binding process. This observation was supported by measurements of 3JH-H and 1JC-H. The magnitude of the three-bond proton-proton couplings (3JH1-H2 = 2.51 Hz and 3JH4-H5 = 2.23 Hz) indicate that in the free state an equilibrium exists between 1C4 and 2S0 conformers in the ratio of approximately 75 : 25. The chair form appears the more favourable in the presence of antithrombin, as inferred from the magnitude of the coupling constants. In addition, two-dimensional NOESY and ROESY experiments in the free ligand, as well as transferred NOESY and ROESY spectra of the complex, were measured and interpreted using full relaxation and conformational exchange matrix analysis. The theoretical NOEs were computed using the geometry of the tetrasaccharide found in a Monte Carlo conformational search, and the three-dimensional structures of AGA*IM in both free and bound forms were derived. All monitored NMR variables, 1H and 13C chemical shifts, 1JC-H couplings and transferred NOEs, indicated that the changes in conformation at the glycosidic linkage GlcN, 6-SO3-alpha(1-4)-GlcA were induced by the presence of antithrombin and suggested that the receptor selected a conformer different from that in the free state. Such changes are compatible with the two-step model [Desai, U.R., Petitou, M., Bjork, I. & Olson, S. (1998) J. Biol. Chem. 273, 7478-7487] for the interaction of heparin-derived oligosaccharides with antithrombin, but with a minor extension: in the first step a low-affinity recognition complex between ligand and receptor is formed, accompanied by a conformational change in the tetrasaccharide, possibly creating a complementary three-dimensional structure to fit the protein-binding site. During the second step, as observed in a structurally similar pentasaccharide [Skinner, R., Abrahams, J.-P., Whisstock, J.C., Lesk, A.M., Carrell, R.W. & Wardell, M.R. (1997) J. Mol. Biol. 266, 601-609; Jin, L., Abrahams, J.-P., Skinner, R., Petitou, M., Pike, R. N. & Carrell, R.W. (1997) Proc. Natl Acad. Sci. USA 94, 14683-14688], conformational changes in the binding site of the protein result in a latent conformation.  相似文献   

20.
Conformational energies for inulobiose [beta-D-fructofuranosyl-(2----1)-beta-D-fructofuranoside], a model for inulin, were computed with the molecular mechanics program MMP2(85). The torsion angles of the three linkage bonds were driven in 20 degree increments, and the steric energy of all other parameters was minimized. The linkage torsion angles defined by C-1'-C-2'-O-C-1 (phi) and O-C-1-C-2-O-2 (omega) have minima at +60 degrees and -60 degrees, respectively, regardless of side group orientation; accessible minima exist at other staggered conformations. The torsion angle at the central bond C-2'-O-1-C-1-C-2 (psi) was approximately 180 degrees in all the low-energy conformers. This appears to be generally true for rings linked by three bonds. The fructofuranose rings initially had low-energy 4/3T conformations (angle of pseudorotation, phi 2 = 265 degrees) that were retained except when the linkage conformations created severe inter-residue conflicts. In those cases, almost all puckerings of the furanose rings were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号