首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete genome of Chlamydia pneumoniae contains a total of 21 genes encoding polymorphic membrane proteins (Pmp). From this large Pmp family three genes, pmp8, pmp10 and pmp11, were cloned and antibodies against recombinant full-length Pmp proteins were produced. Indirect immunofluorescence microscopy of HEp-2 cells infected with C. pneumoniae CWL029 was performed with the Pmp antibodies in combination with a Chlamydia-specific anti-lipopolysaccharide (LPS) antibody. This double staining technique clearly showed that expression of Pmp10 was differential. Additional double staining with monoclonal antibodies to the surface of C. pneumoniae elementary bodies and the anti-LPS antibody resulted in identification of seven monoclonal antibodies that reacted identically to the Pmp10 antibody indicating that Pmp10 is an immunodominant protein. Finally, the molecular mechanism responsible for differential expression is suggested to be variation in the guanine residues in the polyG tract of pmp10.  相似文献   

2.
Chlamydia pneumoniae is an obligate intracellular bacterium that causes upper and lower respiratory tract infection in humans. C. pneumoniae harbors the polymorphic membrane protein (Pmp) family with 21 different proteins with a molecular mass around 100 kDa. The Pmps are species-specific, abundant and, together with major outer membrane protein and outer membrane protein 2, the dominant proteins in the C. pneumoniae outer membrane complex. Nevertheless, it is unknown whether Pmps are recognized by the cell-mediated immune response. To address this issue, C57BL/6J mice were infected intranasally with C. pneumoniae and the immune response to primary infection was investigated. We demonstrate, as expected, that the primary response is of the Th1 type by IgG2a- and IgG1-specific sELISA (Medac) on serum. In vivo-primed spleen lymphocytes were found to be reactive to Pmp8, Pmp20 and Pmp21 in an interferon-gamma ELISpot assay. The responses were shown to be mediated by CD4(+) T cells. To our knowledge, this is the first identification of antigens recognized by CD4(+) T cells during murine C. pneumoniae infection.  相似文献   

3.
Chlamydophila pneumoniae displays surprisingly little genomic variation, as seen by comparisons of the published genomes from three different isolates and sequencing of four different genes from different isolates. We have in the present study, however, demonstrated genomic variation between 10 C. pneumoniae isolates in the 11690-bp region between the two outer membrane protein genes pmp1 and pmp2. This region of the C. pneumoniae CWL-029 isolate contains seven C. pneumoniae-specific open reading frames (hb1-7, encoding hydrophobic beta-sheet-containing proteins). We identified additionally 12 open reading frames in the C. pneumoniae CWL-029 genome encoding hypothetical proteins with similarity to the seven hypothetical Hb-proteins. Compared to other isolates, genomic variation is seen to cause frame-shifting of three of the 19 hb-open reading frames, which are proposed to be three full-length genes and eight frame-shifted pseudogenes. The hypothetical proteins encoded by these proposed genes contain an N-terminally located highly hydrophobic stretch of 50-60 residues. A similar motif is found in all identified Chlamydia inclusion membrane proteins and therefore the Hb-proteins are candidate inclusion proteins.  相似文献   

4.
The controversial discussion about the role of Chlamydia pneumoniae in atherosclerosis cannot be solved without a reliable diagnosis that allows discrimination between past and persistent infections. Using a proteomic approach and immunoblotting with human sera, we identified 31 major C. pneumoniae Ags originating from 27 different C. pneumoniae proteins. More than half of the proteins represent Chlamydia Ags not described previously. Using a comparative analysis of spot reactivity Pmp6, OMP2, GroEL, DnaK, RpoA, EF-Tu, as well as CpB0704 and CpB0837, were found to be immunodominant. The comparison of Ab-response patterns of sera from subjects with and without evidence for persisting C. pneumoniae, determined by multiple PCR analysis of PBMC and vasculatory samples, resulted in differential reactivity for 12 proteins, which is not reflected by reactivity of the sera in the microimmunofluorescence test, the current gold standard for serodiagnosis. Although reactivity of sera from PCR-positive donors was increased toward RpoA, MOMP, YscC, Pmp10, PorB, Pmp21, GroEL, and Cpaf, the reactivity toward YscL, Rho, LCrE, and CpB0837 was decreased, reflecting the altered protein expression of persisting C. pneumoniae in vitro. Our data provide the first evidence of a unique Ab-response pattern associated with persistent C. pneumoniae infections, which is a prerequisite for the serological determination of persistently infected patients.  相似文献   

5.
Outer membrane complex proteins of Chlamydia pneumoniae   总被引:3,自引:0,他引:3  
Abstract The protein composition of the outer membrane complex (OMC) of Chlamydia pneumoniae strain AR-39 was analyzed by metabolic labeling with [35S]methionine and [35S]cysteine. Cysteine-rich proteins with molecular masses of 98, 60 doublet, 39.5 (MOMP) and 15.5 kDa were found in the OMC of C. pneumoniae . The cysteine-rich proteins of the OMCs of the threee Chlamydia species showed specific reaction patterns by immunoassay and autoradiography to rabbit or turkey immune sera. Recognition of the MOMP and 60-kDa proteins of the three species was cross-reactive. However, the C. pneumoniae 98-kDa protein was recognized by anti- C. pneumoniae (AR-39) and anti- C. psittaci (TT3) immune sera. None of the immunee sera recognized the 12-kDa cysteine-rich complex.  相似文献   

6.
Whole sequence genome analysis is invaluable in providing complete profiles of related proteins and gene families. The genome sequences of the obligate intracellular bacteria Chlamydia trachomatis and Chlamydia pneumoniae both encode proteins with similarity to several 90-kDa Chlamydia psittaci proteins. These proteins are members of a large superfamily, C. trachomatis with 9 members and C. pneumoniae with 21 members. All polymorphic membrane protein (Pmp) are heterogeneous, both in amino acid sequence and in predicted size. Most proteins have apparent signal peptide leader sequences and hence are predicted to be localized to the outer membrane. The unifying features of all proteins are the conserved amino acid motifs GGAI and FXXN repeated in the N-terminal half of each protein. In both genomes, the pmp genes are clustered at various locations on the chromosome. Phylogenetic analysis suggests six related families, each with at least one C. trachomatis and one C. pneumoniae orthologue. One of these families has seen prolific expansion in C. pneumoniae, resulting in 13 protein paralogues. The maintenance of orthologues from each species suggests specific functions for the proteins in chlamydial biology.  相似文献   

7.
The envelopes of elementary bodies of Chlamydia spp. consist largely of disulfide-cross-linked major outer membrane protein (MOMP) and two cysteine-rich proteins (CRPs). The MOMP gene of Chlamydia psittaci 6BC has been sequenced previously, and the genes encoding the small and large CRPs from this strain were cloned and sequenced in this study. The CRP genes were found to be tandemly arranged on the chlamydial chromosome but could be independently expressed in Escherichia coli. The deduced 87-amino-acid sequence of the small-CRP gene (envA) contains 15 cysteine residues, a potential signal peptide, and a potential signal peptidase II-lipid modification site. Hydropathy plot and conformation analysis of the small-CRP amino acid sequence indicated that the protein was unlikely to be associated with a membrane. However, the small CRP was specifically labeled in host cells incubated with [3H]palmitic acid and may therefore be associated with a membrane through a covalently attached lipid portion of the molecule. The deduced 557-amino-acid sequence of the large-CRP gene (envB) contains 37 cysteine residues and a single putative signal peptidase I cleavage site. In one recombinant clone the large CRP appeared to be posttranslationally cleaved at two sites, forming a doublet in a manner similar to the large-CRP doublet made in native C. psittaci 6BC. Comparison of the deduced amino acid sequences of the CRPs from chlamydial strains indicated that the small CRP is moderately conserved, with 54% identity between C. psittaci 6BC and Chlamydia trachomatis, and the large CRP is highly conserved, with 71% identity between C. psittaci and C. trachomatis and 85% identity between C. psittaci 6BC and Chlamydia pneumoniae. The positions of the cysteine residues in both CRPs are highly conserved in Chlamydia spp. From the number of cysteine residues in the MOMP and the CRPs and the relative incorporation of [35S]cysteine into these proteins, it was calculated that the molar ratio of C. psittaci 6BC elementary body envelope proteins is about one large-CRP molecule to two small-CRP molecules to five MOMP molecules.  相似文献   

8.
The first sigma(54) promoters in Chlamydia trachomatis L2 were mapped upstream of hypothetical proteins CT652.1 and CT683. Comparative genomics indicated that these sigma(54) promoters and potential upstream activation binding sites are conserved in orthologous C. trachomatis D, C. trachomatis mouse pneumonitis strain, and Chlamydia pneumoniae (CWL029 and AR39) genes.  相似文献   

9.
To mimic in vivo conditions during chlamydial infections, Chlamydia trachomatis serovar D and Chlamydia pneumoniae CWL029 were cultured in low-oxygen atmospheres containing 4% O(2), with parallel controls cultured in atmospheric air. Both were enriched with 5% CO(2). The results showed a dramatic increase in the growth of C. pneumoniae but not of C. trachomatis.  相似文献   

10.
Chlamydia pneumoniae IOL-207 genomic DNA was hybridized with a 1.5 kb labelled DNA probe containing the 3' region of the coding sequence for the major outer membrane protein (MOMP) of C. trachomatis serovar L1. An 8.5 kb Bg/II fragment containing the complete MOMP gene was cloned into lambda EMBL3. Two hybridizing EcoRI fragments were sub-cloned into the lambda ZAP II cloning vector and the resulting plasmids were used as templates for sequencing both strands of the C. pneumoniae MOMP gene. Computer taxonomic studies using the nucleotide and inferred amino acid sequence of the MOMP of C. pneumoniae IOL-207 and all known chlamydial MOMP sequences supported the designation of C. pneumoniae as a new species, but electron microscope studies suggested that the presence of pear-shaped elementary bodies (EBs) may not be a reliable taxonomic criterion.  相似文献   

11.
R Kaul  M J Duncan  J Guest  W M Wenman 《Gene》1990,87(1):97-103
The major outer membrane protein (MOMP)-encoding gene (omp1) of Chlamydia trachomatis has been cloned into Escherichia coli and partially sequenced. This recombinant gene expresses a full-length 40-kDa product, which is recognized by a monoclonal antibody directed against the species-specific epitope of MOMP. The recombinant omp1 is expressed in either insertion orientation, indicating that it utilizes its own promoter system. The endogenous omp1 promoter possesses a relatively low activity despite the high level of MOMP expression. Deletion of a 520-bp fragment at the 3' end encoding 39 amino acids (aa) at the C terminus and the remainder of the noncoding region leads to a significant decrease in mRNA stability and loss of protein synthesis. When the MOMP-encoding plasmid was introduced into E. coli minicells, it expressed 40- and 43-kDa proteins; however, inhibition of post-translational processing by ethanol revealed only a 43-kDa protein. These data indicate that the unprocessed omp1 gene product contains a 22-aa leader sequence which is cleaved during translocation to the outer membrane, to yield a processed 40-kDa protein. The recombinant MOMP was localized to the outer membrane E. coli fraction, comparable to the location of the native C. trachomatis protein.  相似文献   

12.
By comparison of proteome profiles of purified Chlamydia pneumoniae and whole lysates of C. pneumoniae infected HEp-2 cells, an N-terminal fragment of the previously uncharacterized chlamydial protein Cpn0796 was identified as a secreted protein. A 38 kDa cleavage product of Cpn0796 was present in infected cells, whereas only the 65 kDa full-length Cpn0796 could be detected in purified Chlamydia. Confocal immunofluorescence microscopy demonstrated that Cpn0796 was localized in the Chlamydia membrane in young inclusions. However, at 36 h post infection and later Cpn0796 was detected in the cytoplasm of C. pneumoniae infected HEp-2 and BHK cells. Furthermore, Cpn0796 was detected in the cytoplasm of infected cells in the lungs of C. pneumoniae infected C57Bl mice. When cleavage was inhibited, Cpn0796 was retained in the chlamydiae. We propose that Cpn0796 is an autotransporter the N-terminal of which is translocated to the host cell cytoplasm. This is the first example of secretion of a Chlamydia autotransporter passenger domain into the host cell cytoplasm. Cpn0796 is specific for C. pneumoniae, where five homologous proteins are encoded by clustered genes. None of these five proteins were found to be secreted.  相似文献   

13.
The protein composition and N-terminal sequences of proteins in the outer membrane of Chlamydia trachomatis L2 were analysed following isolation of N-terminal peptides using combined fractional diagonal chromatography and identification by liquid chromatography tandem MS. Acetylation of primary amino groups of in vivo generated proteolytic cleavage sites facilitated identification of such sites in known outer membrane proteins (MOMPs). Our results further support a proposed prediction of the topology of the MOMPs. Furthermore, a previously unknown MOMP, CTL0626 (Ct372), was assigned as an MOMP with a carbohydrate-selective porin (OprB) family motif, and the presence of CTL0626 was confirmed using antibodies raised against the protein.  相似文献   

14.
The disulfide bond cross-linked major outer membrane protein (MOMP) of the extracellular elementary bodies (EBs) of Chlamydia psittaci was reduced to its monomeric form within 1 h of entry of EBs into host cells by a process which was inhibited by chloramphenicol, while monomeric forms of three cross-linked cysteine-rich proteins could not be detected in Sarkosyl outer membrane complexes at any time in either extracellular or intracellular forms of C. psittaci. Synthesis and incorporation of the MOMP into outer membrane complexes were detected early in the infection cycle (12 h postinfection), while synthesis and incorporation of the cysteine-rich proteins were not observed until reticulate bodies had begun to reorganize into EBs at 20 to 22 h postinfection. By 46 h postinfection, the intracellular population of C. psittaci consisted mainly of EBs, the outer membrane complexes of which were replete with monomeric MOMP and cross-linked cysteine-rich proteins. Upon lysis of infected cells at 46 h, the MOMP was rapidly cross-linked, and infectious EBs were released. The status of the MOMP of intracellular Chlamydia trachomatis was similar to the status of the MOMP of C. psittaci in that the MOMP was largely uncross-linked at 24 and 48 h postinfection, but formed interpeptide disulfide bonds when it was exposed to an extracellular environment late in the developmental cycle. In contrast to C. psittaci, only a fraction of the cross-linked MOMP of infecting EBs of C. trachomatis was reduced by 4 h postinfection, and reduction of the MOMP was not inhibited by chloramphenicol. Exposure of extracellular EBs of C. trachomatis and C. psittaci to dithiothreitol reduced the MOMP but failed to stimulate metabolic activities normally associated with reticulate bodies.  相似文献   

15.
Chlamydia trachomatis is a major pathogen throughout the world, and preventive measures have focused on the production of a vaccine using the major outer membrane protein (MOMP). Here, in elementary bodies and in preparations of the outer membrane, we identified native trimers of the MOMP. The trimers were stable under reducing conditions, although disulfide bonds appear to be present between the monomers of a trimer and between trimers. Cross-linking of the outer membrane complex demonstrated that the MOMP is most likely not in a close spatial relationship with the 60- and 12-kDa cysteine-rich proteins. Extraction of the MOMP from Chlamydia isolates under nondenaturing conditions yielded the trimeric conformation of this protein as shown by cross-linking and analysis by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with different concentrations of acrylamide. Using circular dichroism spectroscopy, we determined that the trimers were formed mainly of beta-pleated sheet structures in detergent micelles. Using a liposomal swelling assay, the MOMP was found to have porin activity, and the size of the pore was estimated to be approximately 2 nm in diameter. The trimers were found to be stable in SDS at temperatures ranging from 4 to 37 degrees C and over a pH range of 5.0 to 8.0. In addition, the trimers of MOMP were found to be resistant to digestion with trypsin. In conclusion, these results show that the native conformation of the MOMP of C. trachomatis is a trimer with predominantly a beta-sheet structure and porin function.  相似文献   

16.
衣原体感染与多种慢性疾病密切相关,其主要外膜蛋白(MOMP)是一种多功能蛋白,分别与外膜结构的稳定性、生长代谢调节、抗原性和毒力密切相关。随着沙眼衣原体和肺炎衣原体基因组测序的完成,人们得以揭示其重要的生物合成、代谢途径,确定调控机制及其与致病的相关性。利用分子生物学技术在分子水平分析衣原体主要外膜蛋白的结构、抗原表位,对于免疫防御、免疫病理和免疫诊断均有重要意义。本文综述了衣原体主要外膜蛋白的分子结构、基因特性、抗原表位与应用前景。  相似文献   

17.
Sequences of the major outer membrane protein (MOMP) gene (ompA) and the outer membrane complex B protein gene (omcB) from Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci were analyzed for evidence of intragenic recombination and for linkage equilibrium. The Sawyer runs test, compatibility matrices, and index of association analyses provided substantial evidence that there has been a history of intragenic recombination at ompA including one instance of interspecies recombination between the C. trachomatis mouse pneumonitis strain and the C. pneumoniae horse N16 strain. Although none of these methods detected intragenic recombination within omcB, differences in divergence reported in earlier studies suggested that there has been intergenic recombination involving omcB, and the analyses presented in this study are consistent with this. For C. trachomatis, index-of-association analyses suggested a higher degree of recombination for C class than for B class strains and a higher degree of recombination in the downstream half of ompA. In concordance with these findings, many significant breakpoints were found in variable segments 3 and 4 of MOMP for the recombinant strains D/B120, G/UW-57, E/Bour, and LGV-98 identified in this study. We provide examples of how genetic diversity generated by repeated recombination in these regions may be associated with evasion of immune surveillance, serovar-specific differences in tissue tropism, and persistence.  相似文献   

18.
We recently demonstrated that the major outer membrane protein of Chlamydia psittaci, the primary vaccine candidate for combating chlamydial infections, functions as a porin-like ion channel. In this study, we have cloned, expressed and functionally reconstituted recombinant major outer membrane proteins from C. psittaci and Chlamydia pneumoniae and analysed them at the single channel level. Both form porin-like ion channels that are functionally similar to those formed by native C. psittaci major outer membrane protein. Also, like the native channels, recombinant C. psittaci channels are modified by a native major outer membrane protein-specific monoclonal antibody. This is the first time that native function has been demonstrated for recombinant chlamydial major outer membrane proteins. Future bilayer reconstitution will provide a strategy for detailed structure/function studies of this new subclass of bacterial porins and the work also has important implications for successful protein refolding and the development of improved subunit vaccines.  相似文献   

19.
A predicted protein (CT713) with weak sequence similarity to the major outer membrane protein (20.4% identity) in Chlamydia trachomatis was identified by Chlamydia genome analysis. We show that this protein is expressed, surface accessible, localized to the chlamydial outer membrane complex and functions as a porin. This protein, PorB, was highly conserved among different serovars, with nearly identical sequences between serovars D, B, C and L2. Sequence comparison between C. trachomatis and Chlamydia pneumoniae showed less conservation between species with 59.3% identity. Immunofluorescence staining with monospecific antisera to purified PorB revealed antigen localized within chlamydial inclusions and found throughout the developmental cycle. Antibodies to PorB neutralized infectivity of C. trachomatis in an in vitro neutralization assay confirming that PorB is surface exposed. As PorB was found to be in the outer membrane, as well as having weak structural characteristics similar to major outer membrane protein (MOMP) and other porins, a liposome-swelling assay was used to determine whether this protein had pore-forming capabilities. PorB had pore-forming activity and was shown to be different from MOMP porin activity.  相似文献   

20.
Yen TY  Pal S  de la Maza LM 《Biochemistry》2005,44(16):6250-6256
Members of the genus Chlamydia lack a peptidoglycan layer. As a substitute for peptidoglycan, it has been proposed that several cysteine rich proteins, including the major outer membrane protein (MOMP), form disulfide bonds to provide rigidity to the cell wall. Alignment of the amino acids sequences of the MOMP from various serovars of Chlamydia showed that they have from 7 to 10 cysteine residues and seven of them are highly conserved. Which of these are free cysteine residues and which are involved in disulfide bonds is unknown. The complexity of the outer membrane of Chlamydia precludes at this point the characterization of the structure of the cysteines directly in the bacteria. Therefore, mass spectrometric analysis of a purified and refolded MOMP was used in this study. Characterization of the structure of this preparation of the MOMP is critical because it has been shown, in an animal model, to be a very effective vaccine against respiratory and genital infections. Here, we demonstrated that in this MOMP preparation four cysteines are involved in disulfide bonds, with intramolecular pairs formed between Cys(48) and Cys(55) and between Cys(201) and Cys(203). A stepwise alkylation, reduction, alkylation process using two different alkylating reagents was required to establish the Cys(48)-Cys(55) disulfide pair. The other residues in MOMP, Cys(51), Cys(136), Cys(226), and Cys(351), are free cysteines and could potentially form disulfide-linked complexes with other MOMP or other membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号