首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
To examine whether the reduced shoot growth of abscisic acid (ABA)-deficient mutants of tomato is independent of effects on plant water balance, flacca and notabilis were grown under controlled-humidity conditions so that their leaf water potentials were equal to or higher than those of well-watered wild-type plants throughout development. Most parameters of shoot growth remained markedly impaired and root growth was also greatly reduced. Additional experiments with flacca showed that shoot growth substantially recovered when wild-type levels of ABA were restored by treatment with exogenous ABA, even though improvement in leaf water potential was prevented. The ability of applied ABA to increase growth was greatest for leaf expansion, which was restored by 75%. The ethylene evolution rate of growing leaves was doubled in flacca compared to the wild type and treatment with silver thiosulphate to inhibit ethylene action partially restored shoot growth. The results demonstrate that normal levels of endogenous ABA are required to maintain shoot development, particularly leaf expansion, in well-watered tomato plants, independently of effects on plant water balance. The impairment of shoot growth caused by ABA deficiency is at least partly attributable to ethylene.  相似文献   

2.
土壤干旱条件下氮素营养对玉米内源激素含量影响   总被引:14,自引:6,他引:8  
张岁岐  山仑 《应用生态学报》2003,14(9):1503-1506
在田间持水量分别保持于35%、55%和75%±5%的土壤水分条件下,利用盆栽实验研究了土壤干旱和氮素营养对玉米内源激素和气孔导度的影响.结果表明,土壤干旱下氮素营养明显降低了玉米根系木质部汁液ABA浓度,而正常供水下施氮处理间则无显著差异(施氮处理仍较低),同时测定的叶片ABA浓度则呈相反的变化趋势,表现为干旱下施氮处理要高于不施氮处理;施氮处理木质部汁液中ZRs浓度应低于相应的不施氮处理,在调控气孔行为方面并未表现拮抗ABA作用;3种土壤水分条件下,施氮玉米叶片的气孔导度均高于不施氮处理,与木质部汁液ABA浓度呈负相关,说明施氮处理较低的根源ABA浓度是导致其气孔导度较大的主要原因.  相似文献   

3.
ABA, ethylene and the control of shoot and root growth under water stress.   总被引:34,自引:0,他引:34  
The question of whether abscisic acid (ABA) acts as an inhibitor or promoter of shoot growth in plants growing in drying soil is examined, drawing on current understanding of the role of ABA in root growth maintenance. Particular consideration is given to studies of endogenous ABA deficiency, which have shown that an important role of ABA is to limit ethylene production, and that this interaction is involved in the effects of ABA status on shoot and root growth.  相似文献   

4.
The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root‐sourced ABA on root growth during water stress. Here, we tested whether foliage‐derived ABA could be transported to the roots, and whether this foliage‐derived ABA had an influence on root growth under well‐watered conditions. Using both application studies of deuterium‐labelled ABA and reciprocal grafting between wild‐type and ABA‐biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage‐derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA‐deficient scions suggest that foliage‐derived ABA inhibits root growth through the root growth‐inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage‐derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.  相似文献   

5.
Abstract. It is now clear that drying of the soil does not always result in an early change in shoot water status. This may be because stomata close and leaf growth slows to reduce water loss. When this is the case, it is necessary to ask how the change in soil water status has been 'sensed'by the shoot. The current view is that soil drying results in some type of chemical signalling between roots and shoots. The sensitivity of the response and experiments involving the manipulation of small parts of root systems suggest that the signalling involves more than a simple change in root activity in response to soil drying. In this paper, we consider the evidence for chemical signalling between roots and shoots and discuss the possible candidates for such signals. In some plants, root-sourced ABA can apparently influence shoot physiology and growth in the absence of any perturbation of shoot water relations. The ABA produced is quantitatively sufficient to account for the responses observed. Applied ABA can mimic many of the effects of soil drying on plants, including effects at the plasma membrane and on gene expression. Perhaps uniquely, ABA seems to be involved in signalling between different plant organs, and in signalling at the transmembrane and genome levels. We review the effects of ABA on leaf cells with a view to gaining some understanding of how soil drying may influence plant development.  相似文献   

6.
The phytohormone abscisic acid (ABA) has been proposed to act as a mediator in plant responses to a range of stresses, including salt stress. Most studies of ABA response apply ABA as a single dose. This may not resemble the prolonged increasing endogenous ABA levels that can occur in association with slowly increasing salinity stresses in nature or field situations. Salt stress response based on method of ABA application was examined in four potato genotypes of varying salt stress resistance: the sensitive ABA-deficient mutant and its normal sibling, a resistant genotype line 9506, and commercial cultivar ‘Norland’ of moderate resistance. ABA was applied by root drench at 0, 50, 75, or 100 μM concentrations through a single dose, or by slowly increasing multiple ABA doses in a sand-based growing system under greenhouse conditions. Salt tolerance was then evaluated after 2 weeks of exposure to 150–180 mM NaCl stress. The method of ABA application had a marked effect on the responses to salt stress. Plant responses to the method of ABA application were differentiated according to (1) growth rate, (2) root water content, and (3) apparent shoot growth response. Under a single dose, growth rate increased in all genotypes under salt stress, whereas slowly increasing multiple ABA applications generally maintained stable growth rates except in the ABA-deficient mutant where there was an upward growth trend. Percent root water content was elevated only under slowly increasing multiple ABA doses in two genotypes, whereas none of the single-dose treatments induced any change. The single ABA dose enhanced vertical growth, whereas the slowly increasing multiple ABA dose applications enhanced lateral shoot growth. Because exogenous application is still an artificial system, endogenous ABA was supplied through grafting of ABA-deficient mutant scions onto rootstocks with known elevated ABA levels. Multiple exogenous ABA applications as low as 50 μM elicited similar shoot water content responses as grafting treatments without ABA application in the mutant genotype but had no effect on the ABA normal sibling. Shoot dry weight was significantly increased through grafting over all exogenous ABA treatments. Our study further indicates that the method of ABA application regime in itself can alter plant responses under salt stress and that certain application regimes may reflect responses to elevated endogenous levels of ABA.  相似文献   

7.
Is coordination of leaf and root growth mediated by abscisic acid? Opinion   总被引:13,自引:1,他引:12  
Leaf growth is more inhibited than root growth when the soil is nitrogen-deficient, dry, saline, compacted, or of restricted volume. Similar differential responses in leaf and root growth occur when ABA is applied to plants in well-watered and well-fertilised conditions, and opposite responses are often found in ABA-deficient mutants. ABA levels increase in plants in dry or saline soils, suggesting a regulating role in leaf and root growth in soils of low water potential. In nitrogen-deficient or compacted soils, or soils of restricted volume, ABA only sometimes increases, and in these situations its accumulation may be of secondary importance. Use of ABA-deficient mutants has so far indicated that ABA influences leaf and root growth in unstressed plants, and plants in dry soils, but not in soils that are compacted, of restricted volume, or are nitrogen-deficient.For ABA to determine the relationship between the rate of leaf growth and the rate of root growth, there must be long-distance transport of either ABA itself or a compound that controls ABA synthesis in the growing cells of leaves and roots. ABA invariably increases in xylem sap as the soil becomes dry or saline, and sometimes when it becomes nitrogen-deficient or compacted, however the ABA is of too low a concentration to affect leaf growth. There may be a compound in xylem sap that controls the synthesis of ABA in the leaf, but no such compound has been identified. ABA accumulates in phloem sap of plants in dry or saline soil, but its function in controlling root or leaf growth is unknown.We conclude that ABA affects the ratio of root growth to leaf growth via its independent effects on root and leaf growth, and may regulate the ratio of root to leaf growth via feedforward signals in xylem or phloem, but there is no satisfactory explanation of its mechanism of control.  相似文献   

8.
脱落酸(abscisic acid,ABA)是一种重要的植物激素,在调控种子发育、种子休眠与萌发、抑制生长、促进落花落果、参与植物应对外界环境胁迫等过程中发挥着重要的生理功能。ABA还能与其他植物激素(如生长素、乙烯等)互作进而精细调控植物根系的生长。本文以模式植物拟南芥(Arabidopsis thaliana(L.)Heynh)为主要对象,对近年来国内外在ABA调控植物根系生长方面的研究成果、ABA与其他植物激素(如GA等)互作调控根系生长及调控非生物逆境下根系发育的机理等进行综述,并对其未来的研究方向进行了展望。  相似文献   

9.
Interactions between water deficit, ABA, and provenances in Picea asperata   总被引:1,自引:0,他引:1  
The effects of exogenous abscisic acid (ABA) on the acclimation of Picea asperata to water deficit were investigated in two populations originating from wet and dry climate regions of China. Exogenous ABA was sprayed onto the leaves, and changes in plant growth and structure, gas exchange, water use efficiency (WUE), endogenous ABA content, and antioxidant enzyme levels were monitored. The results demonstrated that ABA application affected the two P. asperata populations in different ways during the water deficit. ABA application resulted in significantly lower CO(2) assimilation rates (A) under water deficit in plants from the wet climate population, whereas there were no significant changes in this parameter in the dry climate population. On the other hand, ABA application significantly decreased the dry shoot biomass, stomatal conductance (g(s)), transpiration rate (E), and malondialdehyde (MDA) content, and it significantly increased the leaf mass per area (LMA), root/shoot ratio (Rs), fine root/total root ratio (Ft), WUE, ABA content, and the superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) activities under water-deficit conditions in the dry climate population, whereas ABA application did not significantly affect these parameters in the wet climate population. The results clearly demonstrated that sensitivity to an exogenous ABA application is population-dependent in P. asperata. Direct evidence is presented that variation in physiological mechanisms rather than different rates of ABA absorption explain the population differentiation in the sensitivity to exogenous ABA, and that the physiological basis for the amplified response to water deficit caused by exogenous ABA, present mainly in the dry climate population, is related to internal ABA accumulation. These results provide evidence for adaptive differentiation between populations of P. asperata, and they support the expected relationship between environmental heterogeneity and the magnitude of plastic responses in plant populations.  相似文献   

10.
Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号