首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Citrate Cycle and Related Metabolism of Listeria monocytogenes   总被引:8,自引:1,他引:7       下载免费PDF全文
The growth response of Listeria monocytogenes strains A4413 and 9037-7 to carbohydrates was determined in a defined medium. Neither pyruvate, acetate, citrate, isocitrate, alpha-ketoglutarate, succinate, fumarate, nor malate supported growth. Furthermore, inclusion of any of these carbohydrates in the growth medium with glucose did not increase the growth of Listeria over that observed on glucose alone. Resting cell suspensions of strain A4413 oxidized pyruvate but not acetate, citrate, isocitrate, alpha-ketoglutarate, succinate, fumarate, or malate. Cell-free extracts of strain A4413 contained active citrate synthase, aconitate hydratase, isocitrate dehydrogenase, malate dehydrogenase, fumarate hydratase, fumarate reductase, pyruvate dehydrogenase system, and oxidases for reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate. The alpha-ketoglutarate oxidation system, succinate dehydrogenase, isocitrate lyase, and malate synthase were not detected. Cytochromes were not detected. The data suggest that strain A4413, under these conditions, utilizes a split noncyclic citrate pathway which has an oxidative portion (citrate synthase, aconitate hydratase, and isocitrate dehydrogenase) and a reductive portion (malate dehydrogenase, fumarate hydratase, and fumarate reductase). This pathway is probably important in biosynthesis but not for a net gain in energy.  相似文献   

2.
The synthesis of isocitrate lyase was induced by the presence of ethanol in the chemostat reaching a specific activity of 200 mU·mg-1 at this induced state. In glucoselimited, derepressed cells, 20 mU·mg-1 were detected and under repressed conditions isocitrate lyase activity was not detected.The sensitivity of gluconeogenic enzymes: cytoplasmic malate dehydrogenase; fructose 1,6-bisphosphatase and isocitrate lyase as well as the mitochondrial enzymes NADH dehydrogenase and succinate cytochrome c oxidase to glucose and galactose repression were studied in chemostat cultures. Our results show that galactose was less effective as a repressor than glucose. Malate dehydrogenase was completely inactivated by glucose, whereas galactose only produced a 78% decrease of specific activity. Fructose 1,6-bisphosphatase and isocitrate lyase were completely inactivated by both sugars but at different rate. Glucose produced an 85% decrease of specific activity of the mitochondrial enzymes whereas galactose only decrease an 67%.  相似文献   

3.
The authors studied the effect of native ACTH on dehydrogenase activity of isolated strips of rat diaphragm and suspension of E. coli cells, serotype O III:B4, grown on beef extract agar in a medium with different dehydrogenation substrates. ACTH activated dehydrogenase of rat diaphragm in a medium containing pyruvate, alpha-ketoglutarate, malate, beta-hydroxybutyrate, D-aspartic acid and did not alter it in a medium containing succinate. In contradistinction to rat diaphragm, ACTH activated dehydrogenase of E. coli cells whatever the substrates used (oxaloacetate, isocitrate, alpha-ketoglutarate, succinate, fumarate, malate, pyruvate, lactate, beta-hydroxybutyrate, glucose, D-aspartic acid. Synacthen (ACTH1-24) exerted a similar effect. It is suggested that the effects of ACTH are mediated via its influence on adenylate cyclase in the absence of receptors.  相似文献   

4.
This paper describes experiments conducted with membranous and soluble fractions obtained from Escherichia coli that had been grown on succinate, malate, or enriched glucose media. Oxidase and dehydrogenase activities were studied with the following substrates: nicotinamide adenine dinucleotide, reduced form (NADH), nicotinamide adenine dinucleotide phosphate, reduced form (NADPH), succinate, malate, isocitrate, glutamate, pyruvate, and α-ketoglutarate. Respiration was virtually insensitive to poisons that are commonly used to inhibit mitochondrial systems, namely, rotenone, antimycin, and azide. Succinate dehydrogenase and NADH, NADPH, and succinate oxidases were primarily membrane-bound whereas malate, isocitrate, and NADH dehydrogenases were predominantly soluble. It was observed that E. coli malate dehydrogenase could be assayed with the dye 2,6-dichlorophenol indophenol, but that porcine malate dehydrogenase activity could not be assayed, even in the presence of E. coli extracts. The characteristics of E. coli NADH dehydrogenase were shown to be markedly different from those of a mammalian enzyme. The enzyme activities for oxidation of Krebs cycle intermediates (malate, succinate, isocitrate) did not appear to be under coordinate genetic control.  相似文献   

5.
Transfer of Euglena gracilis Klebs Z cells from phototrophic to organotrophic growth on acetate results in derepression of the key enzymes of the glyoxylate cycle, malate synthase and isocitrate lyase, which appear coordinately regulated. The derepression of malate synthase and isocitrate lyase was accompanied by increased specific activities of succinate dehydrogenase, fumarase, and malate dehydrogenase, but hydroxypyruvate reductase activity was unaltered.  相似文献   

6.
During the ischemic shock caused by the removal of tourniquets placed on the hind paws of the rat, a marked decrease in the enzyme activities of Krebs cycle yielding ATP (malate dehydrogenase, isocitrate dehydrogenase, succinate dehydrogenase) at the level of the gastrocnemius muscle and the liver, was observed together with a plasma increase of these enzymes. The intraperitoneal injection of ATP diminishes significantly the variations observed.  相似文献   

7.
8.
The activities of the mitochondrial enzymes citrate synthase (citrate oxaloacetatelyase, EC 4.1.3.7), NADP-linked isocitrate dehydrogenase (threo-Ds-isocitrate:NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42), and succinate dehydrogenase (succinate: FAD oxidoreductase, EC 1.3.99.1) as well as their kinetic behavior in the two developmental forms of Trypanosoma cruzi at insect vector stage, epimastigotes and infective metacyclic trypomastigotes, were studied. The results presented in this work clearly demonstrate a higher mitochondrial metabolism in the metacyclic forms as is shown by the extraordinary enhanced activities of metacyclic citrate synthase, isocitrate dehydrogenase, and succinate dehydrogenase. In epimastigotes, the specific activities of citrate synthase at variable concentrations of oxalacetate and acetyl-CoA were 24.6 and 26.6 mU/mg of protein, respectively, and the Michaelis constants were 7.88 and 6.84 microM for both substrates. The metacyclic enzyme exhibited the following kinetic parameters: a specific activity of 228.4 mU/mg and Km of 3.18 microM for oxalacetate and 248.5 mU/mg and 2.75 microM, respectively, for acetyl-CoA. NADP-linked isocitrate dehydrogenase specific activities for epimastigotes and metacyclics were 110.2 and 210.3 mU/mg, whereas the apparent Km's were 47.9 and 12.5 microM, respectively. No activity for the NAD-dependent isozyme was found in any form of T. cruzi differentiation. The particulated succinate dehydrogenase showed specific activities of 8.2 and 39.1 mU/mg for epimastigotes and metacyclic trypomastigotes, respectively, although no significant changes in the Km (0.46 and 0.48 mM) were found. The cellular role and the molecular mechanism that probably take place during this significant shift in the mitochondrial metabolism during the T. cruzi differentiation have been discussed.  相似文献   

9.
In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards glyoxylate would increase, leading to excess formation of malate and succinate compared to the wild-type. However, metabolic network analysis showed that an increased icl expression did not result in an increased glyoxylate bypass flux. The analysis did show a global response with respect to gene expression, leading to an increased flux through the oxidative part of the TCA cycle. Instead of an increased production of succinate and malate, a major increase in fumarate production was observed.The effect of malonate, a competitive inhibitor of succinate dehydrogenase (SDH), on the physiological behaviour of the cells was investigated. Inhibition of SDH was expected to lead to succinate production, but this was not observed. There was an increase in citrate and oxalate production in the wild-type strain. Furthermore, in the strain with over-expression of icl the organic acid production shifted from fumarate towards malate production when malonate was added to the cultivation medium.Overall, the icl over-expression and malonate addition had a significant impact on metabolism and on organic acid production profiles. Although the expected succinate and malate formation was not observed, a distinct and interesting production of fumarate and malate was found.  相似文献   

10.
Syntheses of the key enzymes of the glyoxylate cycle, in Candida lipolytica, were highly repressed by glucose. Syntheses of the key enzymes of the methylcitric acid cycle were also slightly repressed by glucose but the degrees of repression in the syntheses of these enzymes were nearly equal to those of repression in the syntheses of several enzymes of the citric acid cycle. All enzyme syntheses repressed by glucose were derepressed during incubation with succinate as well as with n-alkanes: enzyme syntheses of the methylcitric acid cycle did not necessitate the addition of propionate or odd-carbon n-alkanes. The enzymes of the methylcitric acid cycle seem to be constitutive, similarly as those of the citric acid cycle.

In the parent strain, the respective enzyme levels of the cells grown on an odd-numbered n-alkane were similar to those of the cells grown on an even-numbered n-alkane. But in the mutant strain lacking 2-methylisocitrate lyase, the cells grown on the odd-numbered alkane contained aconitate hydratase, NADP-Iinked isocitrate dehydrogenase, isocitrate lyase, 2- methylcitrate synthase and 2-methylaconitate hydratase all at higher levels than the cells grown on the even-numbered alkane. Both the parent cells and the mutant cells grown on the same carbon source contained at individually similar levels of the following six enzymes; citrate synthase, NAD-linked isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, malate dehydrogenase, and malate synthase. The pleiotropic changes of enzyme activities in the mutant cells grown on the odd-numbered alkane seem to be ascribable to direct or indirect stimulation caused by threo-ds-2-methylisocitric acid accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号