首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
一种快速、高效的橡胶树胶乳总RNA提取方法   总被引:10,自引:0,他引:10  
胶乳是橡胶树(Hevea brasiliensis)乳管中特殊的细胞质,主要由橡胶粒子、黄色体、F-W粒子和普通细胞质成分构成,其中橡胶粒子占20%-40%,蛋白含量高达1%-2%。由于高比例橡胶粒子和蛋白质的干扰,目前使用的胶乳RNA提取方法都具有步骤繁琐、胶乳需求量大、操作技巧性强不易掌握等缺点。为快速、高效地获取高质量的胶乳RNA,我们在现有方法的基础上摸索出一套步骤简单、容易操作、快速、高效提取橡胶树胶乳总RNA的简易方法,获得了较好的实验效果。紫外分光光度计、RT-PCR和RACE分析结果表明,使用该方法提取的胶乳RNA质量完全能够满足相应的分子操作,但所需时间仅为目前常用方法的50%,RNA获得率提高了2-3倍,操作难度大大降低。  相似文献   

2.
为探明沉淀方法对胶乳总RNA提取及PCR扩增效率的影响,并寻求较好的RNA沉淀方法,针对胶乳中蛋白、多糖、橡胶粒子含量高的特点,在本实验室改进的SDS法的基础上,分别用Li Cl、Na Cl+异丙醇、Na Cl+Na Ac+无水乙醇和Na Ac+无水乙醇对橡胶树胶乳总RNA进行沉淀,并对所得RNA的完整性、纯度、含量和RT-PCR扩增效率进行比较。结果表明,4种方法均可获得完好的RNA,但其纯度、含量和PCR扩增效率随方法不同而有所差别,其中Na Cl+Na Ac+无水乙醇沉淀的橡胶树胶乳总RNA纯度、产率和18S、REF基因扩增效果均较高,故认为用Na Cl+Na Ac+无水乙醇沉淀胶乳总RNA是一种较为有效的方法。  相似文献   

3.
橡胶延长因子REF、小橡胶粒子蛋白SRPP、橡胶转移酶HRT1和HRT2是巴西橡胶树胶乳中的主要橡胶粒子蛋白,它们在橡胶生物合成中发挥重要作用,与橡胶树胶乳产量密切相关。为进一步探明REF、SRPP、HRT1和HRT2的基因表达与橡胶树胶乳产量之间的关系,以成龄未开割橡胶树无性系热研7-33-97胶乳为材料,通过实时荧光定量PCR的方法,对割胶伤害、外源乙烯利和茉莉酸刺激的处理条件下,橡胶树胶乳中的REF、SRPP、HRT1和HRT2的基因表达进行了分析。结果表明,随着割胶刀次的增加,REF基因在第4刀的表达量最高,而SRPP、HRT1和HRT2基因则在第6刀表达量达到最高;而在乙烯利和茉莉酸刺激处理下,REF、SRPP、HRT1和HRT2基因均在刺激8 h后表达量达到最高。因此,割胶(机械伤害)、外源乙烯利和茉莉酸刺激促进橡胶树产胶可能与它们提高橡胶生物合成相关橡胶粒子蛋白REF、SRPP、HRT1和HRT2的基因表达具有密切关系。  相似文献   

4.
橡胶粒子是巴西橡胶树(Hevea brasiliensis)乳管细胞内进行橡胶生物合成的亚细胞结构;对橡胶粒子的蛋白质组学研究,可为揭示天然橡胶生物合成机理提供线索。采用5种提取液分别提取橡胶粒子蛋白,并对橡胶粒子蛋白进行SDS—PAGE和16-BAC/SDS—PAGE电泳分离及MALDITOF/TOF串联质谱分析,证明不同提取液抽提的橡胶粒子蛋白具有不同组成,发现分子量较高的橡胶延伸因子家族蛋白更难从橡胶粒子上被洗脱和提取。通过检索橡胶树转录组数据库,鉴定了3个新的橡胶粒子蛋白,即醌氧化还原酶、含蓖麻毒素B链凝集素结构域蛋白及枯萎/脱水相关蛋白。本研究建立的橡胶粒子蛋白质提取和分离方法,为进一步鉴定低丰度和具有重要功能的橡胶粒子蛋白提供了参照体系。  相似文献   

5.
MADS-box转录因子在植物的生长发育、花器官的形成、信号传导、参与次生代谢物合成等方面发挥重要的作用。在前期研究中我们获得了一个在橡胶树自根幼态无性系和供体胶乳中差异表达的MADS-box转录因子基因HbMADS4,初步发现HbMADS4负调控小橡胶粒子蛋白基因(HbSRPP)的表达。为深入研究HbMADS4的生物学功能,以HbMADS4为诱饵蛋白,利用酵母双杂交从橡胶树胶乳cDNA文库中筛选与其相互作用的蛋白。通过阳性克隆的筛选、复筛、回转验证和生物信息学分析,初步获得了10个与诱饵蛋白相互作用的靶蛋白。对这些靶蛋白的功能分析,将为进一步研究HbMADS4在橡胶树乳管细胞中的生物学功能提供重要信息。  相似文献   

6.
果糖.1,6-双磷酸酯酶(FBPase)是糖异生途径中的关键酶,在糖代谢中起重要作用。本研究首次从橡胶树中克隆并获得胞质型HbFBPase基因,其全长cDNA序列1541bp,包含一个1017bp的开放阅读框,编码一个由338个氨基酸残基组成的蛋白质。氨基酸同源性分析发现,该蛋白含有保守的FBPase活性位点、腺嘌呤核糖核苷酸(AMP)结合位点及金属离子结合位点。生物信息学分析显示,HbFBPase蛋白无导肽酶切位点,不具有跨膜结构域,且为亲水蛋白,推测该蛋白可能在细胞质中发挥作用。实时荧光定量PCR分析表明,HbFBPase基因在叶中高表达,胶乳及种子次之。进一步分析HbFBPase基因在非光合库组织胶乳(产胶细胞的细胞质)中的表达模式,结果显示该基因表达受割胶、伤害处理调控,推测其在橡胶树胶乳糖代谢中发挥重要的调控作用,参与了橡胶烃的生物合成调控。此外,HbFBPase基因表达受多种植物激素如乙烯(ET)、脱落酸(ABA)、茉莉酸(JA)、植物生长素(2,4.D)、水杨酸(sA)及赤霉素(GA)的调控。本研究初步揭示HbFBPase是橡胶树胶乳糖异生作用的关键酶,是胶乳糖酵解及橡胶合成的负调控因子,为探讨胶乳糖异生与橡胶烃合成之间的关系提供理论基础,有助于进一步了解胶乳糖代谢的调控机理。  相似文献   

7.
利用酵母双杂交系统,以橡胶树(Hevea brasiliensis)橡胶延长因子基因REF的开放阅读框(ORF)构建无自激活性的诱饵表达载体pBD-GAL4-REF,并筛选以pAD-GAL4-2.1载体构建的橡胶树胶乳cDNA文库,对阳性克隆的cDNA插入片段进行测序及生物学功能分析。通过酵母双杂交筛选,共获得5种可能与REF互作的候选蛋白质,它们分别为与诱饵蛋白REF高度同源的REF家族成员、小橡胶粒子蛋白(SRPP)、翻译控制肿瘤蛋白(TCTP)、激发子响应蛋白和泛素耦联酶E2,这表明橡胶延长因子REF除了与自身高度同源蛋白质可能存在相互作用之外,还可能与TCTP和激发子响应蛋白等其它蛋白质发生相互作用。这些结果有助于揭示橡胶粒子的生物学功能。  相似文献   

8.
为了揭示天然橡胶生物合成酶互作蛋白结构及其在天然橡胶生物合成过程中的功能。本研究以橡胶树胶乳橡胶粒子总蛋白为研究对象,采用免疫共沉淀实验技术以天然橡胶合成关键酶顺式-异戊二烯基转移酶(CPT)抗体从胶乳中捕获了1个含DUF1262结构域的未知功能蛋白。生物信息学分析表明橡胶树基因组中包含50个编码含DUF1262结构域蛋白的基因序列;蛋白质相互作用网络分析表明DUF1262结构域蛋白可能参与调节信号转导或转录调控等过程;荧光定量PCR结果表明编码该蛋白基因的转录本在根、叶、花、枝和胶乳等组织中广泛分布,但在胶乳中表达较低,在树皮表达较高;水杨酸、脱落酸、过氧化氢及干旱处理可增强该基因在叶片中的转录水平。本研究证明DUF1262参与橡胶树逆境反应等生理过程,为揭示胶乳生物合成调控机制提供新线索。  相似文献   

9.
孟春晓  高政权 《广西植物》2008,28(4):539-543
初步研究了不同浓度的(1%,5%,10%)KI、饱和浓度的大环内酯作为微丝骨架解聚剂对橡胶树的刺激排胶效果.2%的甲基纤维素处理的橡胶树作为空白.测定了各处理橡胶树的胶乳产量及胶乳的6种生理参数,即干胶含量、总固形物含量、蔗糖含量、无机磷含量、硫醇含量以及镁离子含量.结果表明施用1%KI和饱和浓度大环内酯的橡胶树胶乳产量大量增加,其增产幅度与作为天然橡胶常用刺激采胶剂--0.3%的乙烯利的增产幅度大致相当.比较通过1%KI和饱和浓度大环内酯刺激采胶的胶乳和0.3%的乙烯利刺激采胶的胶乳的各生理参数发现,3种处理得来的胶乳干胶含量和总固形物含量并没有明显的差别,但各处理的其它4个生理参数却差别明显,这意味着KI和饱和浓度大环内酯使橡胶树胶乳增产机制可能与乙烯利的机制不同.值得一提的是,高浓度的KI对橡胶树有明显的副作用,长时间的使用会引起橡胶树死皮病的发生.  相似文献   

10.
巴西橡胶树(Hevea brasiliensis)的黄色体在胶乳凝固和保护植株过程中有重要作用。本文比较使用三氯醋酸/丙酮(TCA/ ACE)、Tris缓冲液、磷酸缓冲液提取橡胶树胶乳黄色体总蛋白的双向电泳效果。确定一种适合双向电泳的蛋白提取方法。结果表明Tris缓冲液提取法得到的双向电泳图谱可以达到300个,尤其是低丰度蛋白呈现性较好,适合提取黄色体蛋白以进行双向电泳。  相似文献   

11.
Isolating high-quality RNA from latex of H. brasiliensis is a prerequisite to elucidating the molecular mechanisms of rubber biosynthesis and its regulation. Here, an improved protocol was developed for latex collection, transportation, storage, and RNA isolation. Compared with existing ones, our protocol eliminated liquid nitrogen for latex collection and subsequent low-temperature (-70 degrees C) condition for latex storage, making it more convenient and feasible when latex was collected in remote sampling sites, and latex storage and RNA isolation were conducted in poorly-equipped laboratories. Different methods (UV absorbance scans, denaturing gel electrophoresis, autoradiograph monitoring of cDNA synthesis) were used to confirm the high quality of the RNA prepared with this protocol, whose usefulness was further verified by several practical applications, including construction of one high-quality cDNA library, cloning of the full-length cDNAs of 3 novel Hevea sucrose transporter genes, and semi-quantitative RT-PCR analysis of two rubber-biosynthesis essential genes and one sucrose transporter gene.  相似文献   

12.
The presence of a protein, rubber elongation factor (REF), which is tightly bound to serum-free rubber particles purified from Hevea brasiliensis latex, is necessary for prenyltransferases from a number of sources to add multiple cis-isoprene units to rubber molecules. These prenyltransferases show normal farnesyl pyrophosphate synthase activity (two trans additions of isopentenyl pyrophosphate to dimethylallyl pyrophosphate) in the absence of REF bound to rubber particles. REF bound to rubber molecules can be highly purified from all other proteins in whole latex by treatment of rubber particles with low concentrations of detergent. Treatment of rubber particles with trypsin which hydrolyzes bound REF, removal of REF with high concentrations of various detergents, or treatment of whole latex with polyclonal antibodies specific for REF all prevent prenyltransferase from adding [14C]isopentenyl pyrophosphate to rubber molecules. However, we have not been successful using detergent-solubilized REF in the reconstitution of in vitro rubber biosynthesis with either REF-depleted rubber particles or allylic pyrophosphate primers. REF has a molecular mass of 14,600 Da and is associated specifically with rubber particles in whole latex. It makes up between 10-60% of the total protein in whole latex but is absent in C-serum, the supernatant fluid obtained when rubber particles are removed by centrifugation. The amount of REF in whole latex is proportional to the rubber content. Based on a number average molecular mass of 500,000 Da for rubber and the content of rubber and REF in whole latex or serum-free rubber particles, the stoichiometry of REF molecules to rubber molecules is 1:1 in both cases. There is sufficient REF to form a monomolecular protein layer coating large rubber particles (700-1,000 nm). In the electron microscope, serum-free rubber particle preparations contain particles with diameters from 800 to as small as 10 nm. In the presence of 1% sodium dodecyl sulfate no particles smaller than 100 nm are observed. We suggest that the smaller particles may be mainly composed of REF molecules.  相似文献   

13.
Isolating high-quality RNA from latex of H. brasiliensis is a prerequisite to elucidating the molecular mechanisms of rubber biosynthesis and its regulation. Here, an improved protocol was developed for latex collection, transportation, storage, and RNA isolation. Compared with existing ones, our protocol eliminated liquid nitrogen for latex collection and subsequent low-temperature (− 70 °C) condition for latex storage, making it more convenient and feasible when latex was collected in remote sampling sites, and latex storage and RNA isolation were conducted in poorly-equipped laboratories. Different methods (UV absorbance scans, denaturing gel electrophoresis, autoradiograph monitoring of cDNA synthesis) were used to confirm the high quality of the RNA prepared with this protocol, whose usefulness was further verified by several practical applications, including construction of one high-quality cDNA library, cloning of the full-length cDNAs of 3 novel Hevea sucrose transporter genes, and semi-quantitative RT-PCR analysis of two rubber-biosynthesis essential genes and one sucrose transporter gene.  相似文献   

14.
As the living cytoplasm of laticiferous cells, Hevea brasiliensis latex is a rich blend of organic substances that include a mélange of proteins. A small number of these proteins have given rise to the problem of latex allergy. The salient characteristics of H. brasiliensis latex allergens that are recognized by the International Union of Immunological Societies (IUIS) are reviewed. These are the proteins associated with the rubber particles, the cytosolic C-serum proteins and the B-serum proteins that originate mainly from the lutoids. Procedures for the isolation and purification of latex allergens are discussed, from latex collection in the field to various preparative approaches adopted in the laboratory. As interest in recombinant latex allergens increases, there is a need to validate recombinant proteins to ascertain equivalence with their native counterparts when used in immunological studies, diagnostics, and immunotherapy.  相似文献   

15.
An in vitro aggregation of washed lutoid membrane and rubber particles, respectively, prepared from the bottom (lutoid) fraction and rubber layer of centrifuged fresh latex, leading to the formation of rubber coagulum necessary for a latex coagulation was demonstrated. A Triton X-100 extract of washed lutoid membrane proteins, isolated and prepared from the bottom fraction of centrifuged fresh latex was examined for its role in the latex coagulation process. It induced agglutination of rabbit erythrocytes, indicating the presence of a lectin-like protein. Hevea latex lectin-like protein (HLL) was purified to homogeneity by active chitin binding separation, followed by DEAE-Sepharose chromatography. Its M(r) analyzed by SDS-PAGE was 17 kDa, whereas that determined by gel filtration was 267 kDa. The HLL had a pI value of 7.2. Several glycoproteins were shown to inhibit the HLL-induced hemagglutination. The hemagglutinin activity of HLL was enhanced by Ca(2+). Of most interest was the finding that HLL strongly induced aggregation of the Hevea latex rubber particles (RP). This strong RP aggregation leads to latex coagulation, indicating the possibility that it is involved in the formation of the coagulum that plugs the latex vessel ends and stops the flow of latex upon tapping. In addition, the purified HLL also induced aggregation of RP taken from several other non-Hevea latex producing plants. This might indicate either a common or universal role of this lectin-like protein in RP aggregation and hence latex coagulation. This paper, for the first time, provides clear and unequivocal evidence for either a key biological role or physiological function of an endogenous latex lectin-like protein in the sequential process of latex coagulation.  相似文献   

16.
Discrete independent protein-RNA particles with a sedimentation constant of about 24S have been isolated from the cytoplasm of unfertilized sea urchin eggs or developing embryos. They contain about 8% of the total protein of the egg/embryo. The particles are 3–4% RNA by weight. Therefore, these particles bind the amount of RNA equal to about 4% of the total RNA of the egg/embryo. On the basis of labeling kinetics and sedimentation properties we tentatively conclude that this RNA represents the nonpolyribosome-bound RNA of the cytoplasm.  相似文献   

17.
We have purified "rubber transferase" from latex of the commercial rubber tree Hevea brasiliensis and find that it is a dimer with a monomeric molecular mass of 38,000 Da, requires Mg2+, and is stabilized by thiols in agreement with studies of a partially purified preparation previously described (Archer, B. L., and Cockbain, E. G. (1969) Methods Enzymol. 15, 476-480). Greater than 90% of the [1-14C]isopentenyl pyrophosphate which is incorporated into deproteinated rubber particles by the purified prenyltransferase is added to high molecular mass polyisoprene (greater than 20,000 Da). Purified prenyltransferase and deproteinated rubber particles reconstitute 40-60% of the biosynthetic activity of whole latex in samples matched for rubber content. Incorporation is linear with added rubber particles up to at least 10 mg/ml rubber or 20 microM rubber molecules (based on a number average molecular mass of 500,000 Da). Prenyltransferase concentrations estimated in whole latex (0.37% or 160 nM) are sufficient to saturate all elongation sites in whole latex, and addition of purified prenyltransferase does not increase [1-14C]isopentenyl pyrophosphate incorporation. Deproteinated rubber particles can be titrated with the pure enzyme (Kd = 9 nM) demonstrating that the fraction of rubber molecules available for addition is low (approximately 0.01%). An estimated 7,000 isoprene units are added per complex at a rate of 1/s in a typical assay. Hevea prenyltransferase catalyzes the formation of cis-isoprene in the presence of rubber particles. However, in the absence of rubber particles and in the presence of dimethylallyl pyrophosphate, the purified prenyltransferase catalyzes the formation of geranyl pyrophosphate and all trans-farnesyl pyrophosphate as demonstrated by thin layer chromatography, gas chromatography, and molecular exclusion chromatography.  相似文献   

18.
Martin MN 《Plant physiology》1991,95(2):469-476
The latex of the commercial rubber tree, Hevea brasiliensis, was fractionated by ultracentrifugation as described by G. F. J. Moir ([1959] Nature 184: 1626-1628) into a top layer of rubber particles, a cleared cytoplasm, and a pellet that contains primarily specialized vacuoles known as lutoids. The proteins in each fraction were resolved by two-dimensional gel electrophoresis. Both the pellet fraction and cleared cytoplasm contained large amounts of relatively few proteins, suggesting that laticifers serve a very specialized function in the plant. More than 75% of the total soluble protein in latex was found in the pellet fraction. Twenty-five percent of the protein in the pellet was identified as chitinases/lysozymes, which are capable of degrading the chitin component of fungal cell walls and the peptidoglycan component of bacterial cell walls. Both the chitinase and lysozyme activities were localized exclusively in the pellet or lutoid fraction. The chitinases/lysozymes were resolved into acidic and basic classes of proteins and further purified. An acidic protein (molecular mass 25.5 kD) represented 20% of the chitinase activity in latex; this protein lacked the low level of lysozyme activity that is associated with many plant chitinases. Six basic proteins, having both chitinase and lysozyme activities in various ratios and molecular mass of 27.5 or 26 kD, were resolved. Two of the basic proteins had very high lysozyme specific activities which were comparable to the specific activities reported for animal lysozymes. Like animal lysozymes, but unlike previously characterized plant chitinases/lysozymes, these basic chitinases/lysozymes were also capable of completely lysing or clearing suspensions of bacterial cell walls. These results suggest that laticifers may serve a defensive role in the plant.  相似文献   

19.
Certain Taraxacum species, such as Taraxacum koksaghyz and Taraxacum brevicorniculatum, produce large amounts of high-quality natural rubber in their latex, the milky cytoplasm of specialized cells known as laticifers. This high-molecular mass biopolymer consists mainly of poly(cis-1,4-isoprene) and is deposited in rubber particles by particle-bound enzymes that carry out the stereospecific condensation of isopentenyl diphosphate units. The polymer configuration suggests that the chain-elongating enzyme (rubber transferase; EC 2.5.1.20) is a cis-prenyltransferase (CPT). Here, we present a comprehensive analysis of transgenic T. brevicorniculatum plants in which the expression of three recently isolated CPTs known to be associated with rubber particles (TbCPT1 to -3) was heavily depleted by laticifer-specific RNA interference (RNAi). Analysis of the CPT-RNAi plants by nuclear magnetic resonance, size-exclusion chromatography, and gas chromatography-mass spectrometry indicated a significant reduction in rubber biosynthesis and a corresponding 50% increase in the levels of triterpenes and the main storage carbohydrate, inulin. Transmission electron microscopy revealed that the laticifers in CPT-RNAi plants contained fewer and smaller rubber particles than wild-type laticifers. We also observed lower activity of hydroxymethylglutaryl-coenzyme A reductase, the key enzyme in the mevalonate pathway, reflecting homeostatic control of the isopentenyl diphosphate pool. To our knowledge, this is the first in planta demonstration of latex-specific CPT activity in rubber biosynthesis.  相似文献   

20.
Upon centrifugation, rubber latex is divided into a layer of rubber particles, the cytosol, and the lutoid-body fraction, which is of vacuolar origin. One of the proteins isolated from the lutoid-body fraction is a protein with a molecular mass of 43 kDa, which has esterase activity on p-nitrophenylpalmitate and which shows significant sequence similarity with patatin, a vacuolar protein with esterase activity from potato (Solanum tuberosum). This protein is a major allergen in rubber latex products (Hev b 7) and can also be isolated from the cytosol fraction of rubber latex. The mature protein isolated from lutoid-bodies has no structural features expected for a vacuolar protein: the N-terminal methionine in the cDNA-derived sequence is cleaved off, the second residue is N-acetylated, and the C-terminal sequence is identical to that in the cDNA-derived sequence. Thus the patatin-like protein in Hevea brasiliensis is not a vacuolar protein, but may be associated with not yet characterized particles in the cytoplasm, which either sediment with lutoid-bodies or remain in the cytosol fraction, depending on the centrifugation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号