首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为研究间伐改形对红富士成龄乔化密植果园树体冠层特征、生育后期叶片生理特性、养分积累分配规律、光合生产力和土壤水分时空分布动态的影响,以18年生‘红富士’苹果密闭园为试材,对苹果树单株结构参数、枝量、枝类组成、覆盖率、叶片光合速率等参数进行测定.结果表明: 密闭果园叶片光合作用受非气孔因素限制,导致PSII最大光化学效率、PSII光合潜能、光合性能指数下降了1.2%、11.5%、13.9%.间伐改形后,叶面积指数、树冠覆盖率有所降低,使得冠层直射光透过系数增加了79.0%,树形结构有所改善.苹果园总枝数降低到约1100400条·hm-2,单株枝量增加了5.0%,短枝比例提高至73.0%.由于冠层光照条件的改善,叶面积、比叶质量、百叶重、叶绿素含量有不同程度的提高.叶片光合速率的提高促进了光合产物的积累,淀粉、蛋白质含量为密闭果园的143.5%、107.8%.叶片的发育质量与其所处的光照辐射环境有着密切联系,密闭果园经间伐、改形后,果园群体结构和冠层光照得以改善,促进了叶片生长发育,提高了叶片光合效能,降低了果园土壤水分的无效消耗,是陇东旱塬苹果产区密闭果园适宜的调整、优化方案.  相似文献   

2.
为了研究间伐改形对成龄乔化密闭红富士苹果园冠层微域环境、叶片显微结构、叶片生理特性和光合能力的影响,以16年生密闭红富士苹果园为研究对象,对果园冠层相对光照强度、温度、相对湿度、叶片叶绿素含量、显微结构、叶片光合和荧光等参数进行了测定。结果表明: 间伐改形后树体冠层相对光照强度、温度得到显著改善,分布更均衡,>30%的有效光强是对照(未间伐改形,CK)的1.57倍,温度比CK平均高1.1 ℃;间伐树体叶片叶绿素、叶片厚度、栅栏组织厚度显著提高,分别比CK提高了8.7%、5.4%、9.2%;叶片净光合速率、蒸腾速率、气孔导度也显著提高,分别比CK提高了12.6%、17.1%和7.3%。间伐果园和密闭果园叶片光合作用均受非气孔因素限制,间伐树体叶片的PSⅡ最大荧光产量和非光化学猝灭系数比CK提高了1.5%和2.1%。间伐改形后,叶片并未发生强光抑制,叶片单位反应中心吸收的光能、捕获的用于电子传递的能量和用于还原QA的能量得到显著提高。叶片生理特性与所处的光照、温度环境密切相关,密闭果园间伐改形后,果园冠层光照、温度得到改善,促进了叶片生长发育,改善了叶片显微结构,提高了叶片光合效能,是适宜陇东高原苹果产区密闭红富士果园调整和优化的关键措施。  相似文献   

3.
太岳山典型阔叶乔木冠层叶片性状的分布格局   总被引:1,自引:1,他引:0  
以太岳山4种阔叶乔木不同冠层高度的叶片为研究对象,用LI-3000A叶面积仪和Li-6400便携式光合作用测定系统分别测定了这4种乔木不同冠层高度叶片的叶面积大小和单位面积的叶光饱和速率(Aarea);同时测定了其叶氮含量;计算了其比叶面积(SLA)、单位面积叶氮含量(Narea)、单位重量叶氮含量(Nmass)、单位重量的叶光饱和速率(Amass)和光合氮素利用效率(PNUE),对植株不同冠层高度叶片的SLA、叶氮和光合特性的空间分布格局进行了比较研究,结果表明:Aarea、Amass、Nmass、PNUE、SLA和Narea在树冠上层、中层和下层的差异均达到了极显著水平(P<0.001),表明树冠不同高度的叶片性状参数差异较大;在相同SLA下,Nmass和Narea在冠层中的分布均表现为中层>上层>下层,并出现平行位移现象;Aarea和Nmass都以中层值最大,表明冠层光合能力分布格局以中层相对较高。  相似文献   

4.
棉花叶片氮含量的空间分布与光合特性   总被引:2,自引:0,他引:2  
张雪松  申双和  宋洁 《生态学报》2009,29(4):1893-1898
在棉花生长旺季,将冠层按高度分多层测定了田间叶片含氮量和叶片净光合速率对光合有效辐射通量密度的响应(光响应曲线,Pn-PPFD response curve)及相应的生物指标.结果表明,各层叶片氮含量与光合作用关系密切,各层平均值大小依次为上层>中层>下层,对应层叶片的最大净光合速率Pmax、表观暗呼吸速率Rd、光补偿点LCP及光饱和点LSP均从上到下依次递减,与氮含量分布一致,而表观光合量子效率AQY则略有不同;氮含量的指数衰减系数 kn =0.762(R2=0.593),根据观测结果,棉田叶片氮含量(N)空间分布可以用相对累积叶面积指数(Lc/Lt)为自变量的指数方程来模拟,从而为建立光合作用机理模型与进行生产力奠定基础.  相似文献   

5.
应用建立的人工同龄林辐射场模型对杉木 (Cunninghamialanceolata)人工林冠层辐射场进行了模拟 ,以实测的冠层辐射数据对模型进行了验证 ,对模型的不确定性以及叶面积密度和叶片散射的影响进行了计算和分析。结果表明 ,模拟和实测辐射场及日总量无显著差异 ,所建模型适于对杉木人工林冠层辐射的模拟。模型可能的误差来源包括树冠形状的不规则性、树冠大小和高低的不一致性、叶片在小范围内的簇生性等。考虑二维叶面积密度 (LAD)分布的模拟结果优于平均LAD。叶片的散射辐射约占总辐射的 3%~ 11%,且越靠近树冠里层和下部 ,散射作用越大。  相似文献   

6.
不同辐射条件下苹果叶片净光合速率模拟   总被引:2,自引:0,他引:2  
以富士苹果(Malus domestica Borkh.cv.‘Fuji’)为试材,将C3植物光合生化模型、气孔导度半机理模型、叶片最大光合速率和相对光合有效辐射(RPAR)之间的经验公式相耦合,能够模拟出不同RPAR(或树冠不同部位)下叶片净光合速率(Pn)对小气候因子和叶水势(Ψl)的响应,及Pn日变化。模拟表明,不同RPAR下Pn变化主要依赖于光合有效辐射(PAR)大小,并对CO2浓度有很高敏感性。不同RPAR下叶片Pn最适温度约为20—30℃,并随PAR或CO2浓度的升高而升高。相对湿度(RH)和Ψl对不同RPAR下叶片Pn影响不大,Pn只随RH和Ψl的减小而略有降低。数值模拟表明,当RPAR减小时Pn随之迅速减小,从冠层3 m到1 m处,叶片RPAR从57.18%减少到16.22%,而最大Pn从16.65μmol.m-.2s-1减小到4.24μmol.m-.2s-1。在平均气象条件下,树冠顶部单位面积叶片每天固定CO2为420 mmol.m-.2d-1,而下层叶片只有40 mmol.m-.2d-1。当苹果树冠内叶片接受RPAR低于12%时,全天净光合总量为0,这类叶片可称为无效叶,其所在树冠空间为无效光区。果树整形修剪的主要目的就是尽量减少无效枝叶,利用该模型可确定出这类枝叶在树冠中的位置。  相似文献   

7.
栲树冠层光合生理特性的空间异质性   总被引:3,自引:0,他引:3  
森林冠层在能量传输、光合有效辐射和微气象等方面的差异可导致冠层光合生产力空间分布的变化.叶片光合生理特性在空间上的差异对精确估算森林冠层的初级生产力十分重要.本文以亚热带常绿阔叶林优势种---栲树(Castanopsis fargesii)为对象,研究叶片光合生理特性在冠层空间上的变化.结果表明:1)在垂直方向上,冠层北向叶的饱和光合速率(Amax)、光饱和点(LSP)和CO2羧化效率(CCE)均表现为上部>中部>底部,且依次平均降低19.4%、18.1%和37.1%;光补偿点(LCP)、光下暗呼吸(Rd)以及冠层南向叶的饱和光合速率、光饱和点和CO2羧化效率均表现为上部>底部>中部,上部比中部和底部高出12.3%~71.4%;表观量子效率(AQY)表现为底部>上部>中部,底部分别是顶部和中部叶的1.2和1.3倍;2)在水平方向上,冠层上部和底部南向叶的饱和光合速率、光饱和点和CO2羧化效率比北向叶高0.9%~31.5%;冠层中部北向叶的饱和光合速率等6个参数比南向叶高9.6%~63.2%.因此,在冠层水平上模拟和估算植物生产力时,必须考虑冠层光合生理特性的空间差异.  相似文献   

8.
人工同龄纯林冠层辐射场模拟模型II 应用与验证   总被引:2,自引:0,他引:2       下载免费PDF全文
 应用建立的人工同龄林辐射场模型对杉木(Cunninghamia lanceolata)人工林冠层辐射场进行了模拟,以实测的冠层辐射数据对模型进行了验证,对模型的不确定性以及叶面积密度和叶片散射的影响进行了计算和分析。结果表明,模拟和实测辐射场及日总量无显著差异,所建模型适于对杉木人工林冠层辐射的模拟。模型可能的误差来源包括树冠形状的不规则性、树冠大小和高低的不一致性、叶片在小范围内的簇生性等。考虑二维叶面积密度(LAD)分布的模拟结果优于平均LAD。叶片的散射辐射约占总辐射的3%~11%,且越靠近树冠里层  相似文献   

9.
在横断山北段台地选取5株甜樱桃植株,应用Li-6400XP光合测定系统和用CI-700AB/HR2000光纤光谱仪研究其不同植株冠层部位对生理辐射光谱、光合特性及果实品质的影响。结果表明:(1)甜樱桃树冠下层和内部表观量子效率(α)最高,且光补偿点(LCP)最低,对弱光的利用能力强,而在树冠上层和外层光饱和点(LSP)极显著高于下层和内部,利用强光的能力强。(2)甜樱桃植株冠层的生理辐射由树冠的下层至上层、以及由内部至外部逐渐增强,短波光所占比例增大,说明甜樱桃对环境强光和相对弱光都具有一定的适应能力。(3)甜樱桃植株树冠上层叶片的最大光合速率(Pmax)、暗呼吸速率(Rd)、LCP和LSP均极显著高于下层,其光合同化以及代谢能力强;且生理辐射强、短波光多,利于甜樱桃果实可溶性固形物(TSS)、Vc及糖积累,但不利于有机酸积累。  相似文献   

10.
冠层结构是影响果树生长发育及丰产优质的重要因素。该研究以20年生‘玉露香’梨大冠分层树形为对照(CK),以冠层整形修剪后的3、4和5个主枝的开心树形为处理(分别记为OCC_(3b)、OCC_(4b)和OCC_(5b)),测定了冠层截获的光合有效辐射、叶片的气体交换、叶绿素荧光和果实品质特性,探讨不同冠层结构内光环境的变化对梨树叶片光合特性及果实品质的影响,探讨果树的光合调控和结实规律,为西北黄土高原产区果树的标准化整形修剪提供理论依据。结果表明:(1)OCC_(3b)、OCC_(4b)和OCC_(5b)的冠层不同方位和不同时刻截获的光合有效辐射(PAR)均高于CK。与CK和OCC_(5b)相比,OCC_(3b)和OCC_(4b)叶片光响应的最大净光合速率(P_(nmax))和羧化效率(CE)显著提高。(2)在强光胁迫下,开心树形叶片光呼吸速率(P_r)占总光合速率(P_g)的比例(P_r/P_g)和非光化学淬灭(NPQ)中可恢复组分r(qE)提高,同时不可恢复组分r(qI)降低。(3)OCC_(3b)和OCC_(4b)比OCC_(5b)和CK的单果重、果面红晕面积、果皮花青苷含量、可溶性固形物含量和可溶性总糖含量均显著提高,而可滴定酸含量显著降低。(4)PAR与果面着色面积和果皮花青苷含量呈极显著正相关关系,P_(nmax)与单果重呈极显著正相关关系,而PAR和P_(nmax)均与可滴定酸呈极显著负相关关系。研究发现,OCC_(3b)和OCC_(4b)的梨树冠层内可截获更多的光能,叶片光合能力更强,遭遇强光胁迫时能够通过更高效的热耗散和光呼吸进行自我保护,而且开心形树冠结构还能显著提升果实品质。  相似文献   

11.
This paper deals with changes in leaf photosynthetic capacity with depth in a rose (Rosa hybrida cv. Sonia) plant canopy. Measurements of leaf net CO2 assimilation (Al) and total nitrogen content (Nl) were performed in autumn under greenhouse conditions on mature leaves located at different layers within the plant canopy, including the flower stems and the main shoots. These leaves were subjected (i) to contrasting levels of CO2 partial pressure (pa) at saturating photosynthetic photon flux density (I about 1000 μ mol m ? 2 s ? 1) and (ii) to saturating CO2 partial pressure (pa about 100 Pa) and varying I, while conditions of temperature were those prevailing in the greenhouse (20–38 °C). A biochemical model of leaf photosynthesis relating Al to intercellular CO2 partial pressure (pi) was parameterized for each layer of leaves, supplying corresponding values of the photosynthetic Rubisco capacity (Vlm) and the maximum rate of electron transport (Jm). The results indicated that rose leaves growing at the top of the canopy had higher values of Jm and Vlm, which resulted from a higher allocation of nitrogen to the uppermost leaves. Mean values of total leaf nitrogen, Nl, decreased about 35% from the uppermost leaves of flower stem to leaves growing at the bottom of the plant. The derived values of non‐photosynthetic nitrogen, Nb, varied from 76 mmolN m ? 2leaf (layer 1) to 60 mmolN m ? 2leaf (layer 4), representing a large fraction of Nl (50 and 60% in layer 1 and 4, respectively). Comparison of leaf photosynthetic nitrogen (Np = NlNb) and I profiles supports the hypothesis that rose leaves acclimate to the time‐integrated absorbed I. The relationships between I and Np, obtained during autumn, spring and summer, indicate that rose leaves seem also to acclimate their photosynthetic capacity seasonally, by allocating more photosynthetic nitrogen to leaves in autumn and spring than in summer.  相似文献   

12.
Shifts in canopy structure associated with nonnative plant invasions may interact with species-specific patterns of canopy resource allocation to reinforce the invasion process. We documented differences in canopy light availability and canopy resource allocation in adjacent monospecific and mixed stands of Phragmites australis and Typha spp. in a Great Lakes coastal wetland presently undergoing Phragmites invasion to better understand how light availability influences leaf nitrogen content (Nmass) and photosynthetic capacity (Amax) in these species. Due to their horizontally oriented leaves, light attenuates more rapidly in monospecific stands of Phragmites than in monospecific stands of Typha, where leaves are more vertically-oriented. Whereas Typha canopies followed our prediction that patterns of Nmass and Amax should closely parallel patterns of canopy light availability, Nmass and Amax were consistent throughout Phragmites’ canopies. Moreover, we observed overall greater Nmass and lower photosynthetic nitrogen use efficiency in leaves of Phragmites than in leaves of Typha. Improved understanding of the link between Nmass and Amax in these canopies should improve our understanding of carbon and nitrogen cycling consequences of Phragmites invasion in wetland ecosystems.  相似文献   

13.
I. Nijs  I. Impens  T. Behaeghe 《Planta》1989,177(3):312-320
The relationship between leaf photosynthetic capacity (p n, max), net canopy CO2- and H2O-exchange rate (NCER and E t, respectively) and canopy dry-matter production was examined in Lollium perenne L. cv. Vigor in ambient (363±30 l· l-1) and elevated (631±43 l·l-1) CO2 concentrations. An open system for continuous and simultaneous regulation of atmospheric CO2 concentration and NCER and E t measurement was designed and used over an entire growth cycle to calculate a carbon and a water balance. While NCERmax of full-grown canopies was 49% higher at elevated CO2 level, stimulation of p n, max was only 46% (in spite of a 50% rise in one-sided stomatal resistance for water-vapour diffusion), clearly indicating the effect of a higher leaf-area index under high CO2 (approx. 10% in one growing period examined). A larger amount of CO2-deficient leaves resulted in higher canopy dark-respiration rates and higher canopy light compensation points. The structural component of the high-CO2 effect was therefore a disadvantage at low irradiance, but a far greater benefit at high irradiance. Higher canopy darkrespiration rates under elevated CO2 level and low irradiance during the growing period are the primary causes for the increase in dry-matter production (19%) being much lower than expected merely based on the NCERmax difference. While total water use was the same under high and low CO2 levels, water-use efficiency increased 25% on the canopy level and 87% on a leaf basis. In the course of canopy development, allocation towards the root system became greater, while stimulation of shoot dry-matter accumulation was inversely affected. Over an entire growing season the root/shoot production ratio was 22% higher under high CO2 concentration.Abbreviations and symbols C350 ambient CO2, 363±30 l·l-1 - C600 high CO2, 631±43 l·l-1 - c a atmospheric CO2 level - c i CO2 concentration in the intracellular spaces of the leaf - Et canopy evapotranspiration - I o canopy light compensation point - NCER canopy CO2-exchange rate - p n leaf photosynthetic rate - PPFD photosynthetic photon flux density - r a leaf boundary-layer resistance - RD canopy dark-respiration rate - r s stomatal resistance - WUE water use efficiency  相似文献   

14.

Background and Aims

Theory for optimal allocation of foliar nitrogen (ONA) predicts that both nitrogen concentration and photosynthetic capacity will scale linearly with gradients of insolation within plant canopies. ONA is expected to allow plants to efficiently use both light and nitrogen. However, empirical data generally do not exhibit perfect ONA, and light-use optimization per se is little explored. The aim was to examine to what degree partitioning of nitrogen or light is optimized in the crowns of three tropical canopy tree species.

Methods

Instantaneous photosynthetic photon flux density (PPFD) incident on the adaxial surface of individual leaves was measured along vertical PPFD gradients in tree canopies at a frequency of 0·5 Hz over 9–17 d, and summed to obtain the average daily integral of PPFD for each leaf to characterize its insolation regime. Also measured were leaf N per area (Narea), leaf mass per area (LMA), the cosine of leaf inclination and the parameters of the photosynthetic light response curve [photosynthetic capacity (Amax), dark respiration (Rd), apparent quantum yield (ϕ) and curvature (θ)]. The instantaneous PPFD measurements and light response curves were used to estimate leaf daily photosynthesis (Adaily) for each leaf.

Key Results

Leaf Narea and Amax changed as a hyperbolic asymptotic function of the PPFD regime, not the linear relationship predicted by ONA. Despite this suboptimal nitrogen partitioning among leaves, Adaily did increase linearly with PPFD regime through co-ordinated adjustments in both leaf angle and physiology along canopy gradients in insolation, exhibiting a strong convergence among the three species.

Conclusions

The results suggest that canopy tree leaves in this tropical forest optimize photosynthetic use of PPFD rather than N per se. Tropical tree canopies then can be considered simple ‘big-leaves’ in which all constituent ‘small leaves’ use PPFD with the same photosynthetic efficiency.Key words: Optimal resource allocation, nitrogen, photosynthetic capacity, leaf mass per area, tropical trees, radiation use efficiency, scaling, leaf angle, canopy architecture, big leaf model  相似文献   

15.
Monitoring leaf photosynthesis with canopy spectral reflectance in rice   总被引:3,自引:0,他引:3  
Non-destructive and rapid method for assessment of leaf photosynthetic characteristics is needed to support photosynthesis modelling and growth monitoring in crop plants. We determined the quantitative relationships between leaf photosynthetic characteristics and canopy spectral reflectance under different water supply and nitrogen application rates. The responses of reflectance at red radiation (wavelength 680 nm) to different water contents and nitrogen rates were parallel to those of leaf net photosynthetic rate (P N). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red, NIR/R) to P N of different leaf positions and leaf layers in rice indicated that the top two full leaves were the best leaf positions for quantitative monitoring of leaf P N with remote sensing technique, and the ratio index R(810,680) was the best ratio index for evaluating leaf photosynthetic characteristics in rice. Testing of the models with independent data sets indicated that R(810,680) could well estimate P N of top two leaves and canopy leaf photosynthetic potential in rice, with the root mean square error of 0.25, 0.16, and 4.38, respectively. Hence R(810,680) can be used to monitor leaf photosynthetic characteristics at different growth stages of rice under diverse growing conditions.  相似文献   

16.
The fractional absorption of photosynthetically active radiation (fPAR) is frequently a key variable in models describing terrestrial ecosystem–atmosphere interactions, carbon uptake, growth and biogeochemistry. We present a novel approach to the estimation of the fraction of incident photosynthetically active radiation absorbed by the photosynthetic components of a plant canopy (fChl). The method uses micrometeorological measurements of CO2 flux and incident radiation to estimate light response parameters from which canopy structure is deduced. Data from two Ameriflux sites in Oklahoma, a tallgrass prairie site and a wheat site, are used to derive 7‐day moving average estimates of fChl during three years (1997–1999). The inverse estimates are compared to long‐term field measurements of PAR absorption. Good correlations are obtained when the field‐measured fPAR is scaled by an estimate of the green fraction of total leaf area, although the inverse technique tends to be lower in value than the field measurements. The inverse estimates of fChl using CO2 flux measurements are different from measurements of fPAR that might be made by other, more direct, techniques. However, because the inverse estimates are based on observed canopy CO2 uptake, they might be considered more biologically relevant than direct measurements that are affected by non‐physiologically active components of the canopy. With the increasing number of eddy covariance sites around the world the technique provides the opportunity to examine seasonal and inter‐annual variation in canopy structure and light harvesting capacity at individual sites. Furthermore, the inverse fChl provide a new source of data for development and testing of fPAR retrieval using remote sensing. New remote sensing algorithms, or adjustments to existing algorithms, might thus become better conditioned to ‘biologically significant’ light absorption than currently possible.  相似文献   

17.
The spatial patterns of photosynthetic characteristics and leaf physical traits of 171 plants belonging to nine life-forms or functional groups (trees, shrubs, herbs, evergreen trees, deciduous trees, C3 and C4 herbaceous plants, leguminous and non-leguminous species) and their relationships with environmental factors in seven sites, Yangling, Yongshou, Tongchuan, Fuxian, Ansai, Mizhi and Shenmu, ranging from south to north in the Loess Plateau of China were studied. The results showed that the leaf light-saturated photosynthetic rate (Pmax), photosynthetic nitrogen use efficiency (PNUE), chlorophyll content (Chl), and leaf mass per area (LMA) of all the plants in the Loess Plateau varied significantly among three life-form groups, i.e., trees, shrubs and herbs, and two groups, i.e., evergreen trees and deciduous trees, but leaf nitrogen content differed little among different life-form groups. For the 171 plants in the Loess Plateau, leaf Pmax was positively correlated with PNUE. The leaf nitrogen content per unit area (Narea) was positively correlated but Chl was negatively correlated with the LMA. When controlling the LMA, the Narea was positively correlated with the Chl (partial r = 0.20, P < 0.05). With regard to relationships between photosynthetic characteristics and leaf physical traits, the Pmax was positively correlated with N area, while the PNUE was positively correlated with the Chl and negatively correlated with the Narea and LMA. For all the species in the Loess Plateau, the PNUE was negatively correlated with the latitude and annual solar radiation (ASR), but positively correlated with the mean annual rainfall (MAR) and mean annual temperature (MAT). With regard to the leaf physical traits, the leaf Chl was negatively correlated with the latitude and ASR, but positively correlated with the MAR and MAT. However, the Narea and LMA were positively correlated with the latitude and ASR, but negatively correlated with the MAR and MAT. In general, leaf Narea and LMA increased, while PNUE and Chl decreased with increases in the latitude and ASR and decreases in MAR and MAT. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

18.
Needle nitrogen partitioning and photosynthesis of Norway spruce were studied in a forest chronosequence in Järvselja Experimental Forest, Estonia. Current- and previous-year shoots were sampled from upper and lower canopy positions in four stands, ranging in age from 13 to 82 years. A/c i curves were determined to obtain maximum carboxylation rate (V cmax) and maximum rate of electron transport (J max), whereas needle nitrogen partitioning into carboxylation (P R), bioenergetics associated with electron transport (P B) and thylakoid light harvesting components (P L) was calculated from the values of V cmax, J max and leaf chlorophyll concentration. The greatest changes in studied needle characteristics took place between tree ages of 13 and 26 years, and this pattern was independent of needle age and canopy position. Needle mass per projected area (LMA) was lowest in the 13-year-old stand and mass-based nitrogen concentration (NM) was generally highest in that stand. The values of LMA were significantly higher and those of NM lower in the 26-year-old stand. Mass-based V cmax and J max were highest in the 13-year-old stand. Area-based photosynthetic capacity was independent of tree age. The proportion of photosynthetic nitrogen (P R, P B and P L) was highest and that of non-photosynthetic nitrogen lowest in the 13-year-old stand. Current-year needles had lower LMA and P L, but higher photosynthetic capacity compared to 1-year-old foliage. Needles from lower canopy positions exhibited lower LMA, area-based nitrogen concentration and photosynthetic capacity than needles from upper canopy. The period of substantial reductions in needle photosynthetic capacity and changes in nitrogen partitioning coincides with the onset of reproductive phase during tree ontogeny.  相似文献   

19.
While leaves typically emerge near shoot apices around the outer surface of a plant canopy, their relative position “moves” deeper into the canopy as additional leaves emerge. The photosynthetic capacity (A max) of a given leaf can be expected to decline over time as its relative position (P r) in the canopy becomes progressively deeper; this can be observed as a spatial gradient with the A max of leaves declining distally from the shoot apex. As a consequence, we propose that the photosynthetic capacity averaged over a single leaf’s lifespan is equivalent to the average photosynthetic capacity of the entire plant canopy at a given time; in other words, there is an ergodic time to space averaging in the organization and development of plant canopies. We tested this “canopy ergodic hypothesis” in two woody (Alnus sieboldiana and Mallotus japonica) and two herbaceous (Polygonum sachalinensis and Helianthus tuberosus) species by following the photosynthetic capacity in 100 individual leaves from the time of their emergence until their death. We compared the average photosynthetic capacity of individual leaves through time (time-average) to the average photosynthetic capacity of all the leaves along a shoot at the time of emergence of the focal leaf (space-average). We found that A max and P r were positively correlated and that the time-averages of three plant species (Alnus, Mallotus, and Helianthus) were not significantly different from the corresponding space-averages, although the averages differed among individual plants. Polygonum, however, did show significant differences between time and space averages. Ergodicity appears to apply to the leaf–canopy relationship, at least approximately—the average photosynthetic capacity of a single leaf through time (time-average) can represent the average photosynthetic capacity of the entire canopy.  相似文献   

20.
Seedlings of Eucalyptus grandis were grown at five different rates of nitrogen supply. Once steady‐state growth rates were established, a detailed set of CO2 and water vapour exchange measurements were made to investigate the effects of leaf nitrogen content (N), as determined by nitrogen supply rate, on leaf structural, photosynthetic, respiratory and stomatal properties. Gas exchange data were used to parametrize the Farquhar–von Caemmerer photosynthesis model. Leaf mass per area (LMA) was negatively correlated to N. A positive correlation was observed between both day (Rd) and night respiration (Rn) and N when they were expressed on a leaf mass basis, but no correlation was found on a leaf area basis. An Rd/Rn ratio of 0·59 indicated a significant inhibition of dark respiration by light. The maximum net CO2 assimilation rate at ambient CO2 concentration (Amax), the maximum rate of potential electron transport (Jmax) and the maximum rate of carboxylation (Vcmax) significantly increased with N, particularly when expressed on a mass basis. Although the maximum stomatal conductance to CO2 (gscmax) was positively correlated with Amax, there was no relationship between gscmax and N. Leaf N content influenced the allocation of nitrogen to photosynthetic processes, resulting in a decrease of the Jmax/Vcmax ratio with increasing N. It was concluded that leaf nitrogen concentration is a major determinant of photosynthetic capacity in Eucalyptus grandis seedlings and, to a lesser extent, of leaf respiration and nitrogen partitioning among photosynthetic processes, but not of stomatal conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号