首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using an intracellularly trapped dye, quin 2, effects of K+-depolarization on cytosolic free calcium concentrations were recorded microfluorometrically in rat aorta vascular smooth muscle cells in primary culture. When the cells were exposed to high extracellular K+ in Ca+-free media containing 2mM EGTA, there was a transient and dose-dependent elevation of cytosolic Ca2+ concentrations. However, the concentration of the cytosolic Ca2+ was not elevated when the intracellularly stored Ca2+ was depleted by the repetitive treatment with caffeine prior to the application of high K+. Thus depolarization of plasma membrane, per se, directly induces a release of Ca2+ from intracellular storage sites in vascular smooth muscle cells, and the main fraction of this released Ca2+ is derived from the caffeine sensitive storage sites; perhaps from the sarcoplasmic reticulum.  相似文献   

2.
Histamine, released from mast cells, can modulate the activity of intrinsic neurons in the guinea pig cardiac plexus. The present study examined the ionic mechanisms underlying the histamine-induced responses in these cells. Histamine evokes a small membrane depolarization and an increase in neuronal excitability. Using intracellular voltage recording from individual intracardiac neurons, we were able to demonstrate that removal of extracellular sodium reduced the membrane depolarization, whereas inhibition of K+ channels by 1 mM Ba2+, 2 mM Cs+, or 5 mM tetraethylammonium had no effect. The depolarization was also not inhibited by either 10 microM Gd3+ or a reduced Cl- solution. The histamine-induced increase in excitability was unaffected by K+ channel inhibitors; however, it was reduced by either blockage of voltage-gated Ca2+ channels with 200 microM Cd2+ or replacement of extracellular Ca2+ with Mg2+. Conversely, alterations in intracellular calcium with thapsigargin or caffeine did not inhibit the histamine-induced effects. However, in cells treated with both thapsigargin and caffeine to deplete internal calcium stores, the histamine-induced increase in excitability was decreased. Treatment with the phospholipase C inhibitor U73122 also prevented both the depolarization and the increase in excitability. From these data, we conclude that histamine, via activation of H1 receptors, activates phospholipase C, which results in 1) the opening of a nonspecific cation channel, such as a transient receptor potential channel 4 or 5; and 2) in combination with either the influx of Ca2+ through voltage-gated channels or the release of internal calcium stores leads to an increase in excitability.  相似文献   

3.
45Ca2+ release from a heavy fraction of rabbit skeletal muscle microsomes was induced by chemical depolarization (replacement of 0.15 M K gluconate with 0.15 M choline Cl), or addition of Ca2+ plus caffeine, or both. The time courses of Ca2+ release were investigated with a multimixing chemical quench apparatus by quenching the Ca2+ release reaction using 10 mM EGTA and 5 microM ruthenium red. At low ATP (e.g. 0.2 mM) and low extravesicular [Ca2+] (e.g. 0.1 microM), the time course of depolarization-induced Ca2+ release was similar to that determined by a spectrophotometric method (Ikemoto, N., Antoniu, B., and Kim, D.H. (1984) J. Biol. Chem. 259, 13151-13158). An increase of the extravesicular [Ca2+] up to 5 microM, or addition of high concentrations of ATP (e.g. 7.5 mM), shortened the lag phase that precedes depolarization-induced Ca2+ release and increased the amount of Ca2+ released. On the other hand, upon addition of several millimolars ATP the rate of (Ca2+ plus caffeine)-induced Ca2+ release was increased, resulting in the same time course as that of depolarization-induced Ca2+ release. Induction of Ca2+ release by combined application of chemical depolarization and Ca2+ plus caffeine resulted in the same time course as that induced by either method alone, suggesting that both types of Ca2+ release are mediated by a common channel rather than separate channels.  相似文献   

4.
The transmitter releasing action of caffeine was studied in the absence of extracellular Ca2+ from the peripheral sympathetic nerves of the rabbit main pulmonary artery. Caffeine (10 mM) increased the release of [3H]-noradrenaline moderately, but not significantly in Ca2(+)-free (+1 mM EGTA) Krebs solution. When peripheral nerve endings/varicosities were depolarized by elevating extracellular K+ to 47.2 mM and 70.8 mM in Ca2(+)-free solution, the transmitter releasing effect of 10 mM caffeine became significant. Ca2+ removal itself transiently increased the [3H]-noradrenaline outflow. In the individual experiments the amount of the caffeine evoked transmitter release at 47.2 mM and 70.8 mM K(+)-depolarization was inversely correlated to the release evoked by Ca2(+)-removal. Our results suggest that caffeine-sensitive calcium stores are present in peripheral nerve terminals of rabbit pulmonary artery, and part of the caffeine sensitive calcium stores may discharge during Ca2(+)-removal from the extracellular solution.  相似文献   

5.
We evaluated changes in cytosolic calcium concentration (Ca++) and steroidogenesis in rat adrenal glomerulosa cells (GC) stimulated with potassium (K+) or angiotensin II (AII). Cytosolic Ca++ concentration was determined using the Ca++-sensitive, fluorescent dye QUIN 2. Raising extracellular K+ increased cytosolic Ca++ from 267 +/- 23 nM at 3.7 mM K+ to a maximum of 377 +/- 40 nM at 8.7 mM K+ (p less than 0.01, N = 23). AII also increased cytosolic Ca++ from 238 +/- 20 nM to a maximum of 427 +/- 42 nM at 10(-7) M (p less than 0.01, N = 16). In parallel studies, K+ and AII stimulated aldosterone secretion from QUIN 2-loaded GC at concentrations similar to those which raised cytosolic Ca++. QUIN 2-loaded cells were as responsive steroidogenically as unloaded cells and showed trypan blue exclusion of 98% suggesting that QUIN 2 did not compromise cellular viability. These results provide direct support for a role of cytosolic Ca++ as a second messenger during stimulation of aldosterone secretion by both K+ and AII.  相似文献   

6.
Effects of pertussis toxin on Ca2+ transients in rat arterial smooth muscle cells in primary culture were monitored, using quin 2-microfluorometry. In the presence or the absence of extracellular Ca2+, norepinephrine, histamine, caffeine and high extracellular K+ induced elevations in cytosolic Ca2+ concentration. Cytosolic Ca2+ elevations induced by norepinephrine and histamine were inhibited by pretreatment of the cells with pertussis toxin, time- and dose-dependently. However, elevations induced by caffeine and K+-depolarization were unaffected by the pretreatment with this toxin. Thus, it is suggested that GTP binding protein, a pertussis toxin substrate and involved in the receptor-mediated cytosolic Ca2+ transients, is not involved in transient elevations in cytosolic Ca2+ induced by caffeine and K+-depolarization in cultured vascular smooth muscle cells.  相似文献   

7.
Chen KY  Zhu PH 《生理学报》1999,(2):153-160
用蛙胫前肌小束为材料, 研究了提高胞外钾[K+]O对咖啡因挛缩的作用.[K+]O从2 mmol/L提高到10或25 mmol/L, 由3 mmol/L咖啡因引起的挛缩明显增强.以PKC/PC (PKC和PC分别为在高钾和正常钾条件下的咖啡因挛缩)表示的咖啡因挛缩增强, 依赖[K+]O和高钾作用时间.随着10 mmol/L [K+]O作用时间延长, 直至10 min, 增强逐渐增加.但是, 25 mmol/L [K+]O作用1 min时增强达到最大, 然后下降到对照.PKC/PC变化时程不能用高钾引起的去极化解释, 而与由相似[K+]O引起的胞浆自由钙变化时程相符.提示, 至少在蛙骨骼肌, 高钾引起的咖啡因挛缩增强主要是由胞浆自由钙升高引起的.  相似文献   

8.
The effects of calcium release blocker dantrolene was tested on electrically evoked twitches and on contractures induced by potassium depolarization, by acetylcholine or caffeine. It was shown that the first: developmental, stage of potassium or acetylcholine contracture is inhibited by dantrolene and is not influenced by calcium free medium, therefore we may interpret it as based on a "voltage-dependent Ca release" (VDCR) mechanism of activation, whereas depolarization directly opens the rhyanodin receptor calcium channels. On the contrary, the next stage: the long-lasting plateau of contracture, is directly dependent on external Ca2+ and inhibited by dantrolene, and therefore can be described as "calcium induced Ca-release" (CICR) activation mechanism. In this case stored calcium is also released by rhyanodine receptors, although by means of entering the extracellular Ca2+. Finally, the last stage of low amplitude is not influenced by dantrolene nor by calcium-free medium. Therefore the activation of contraction on this stage is not based on the Ca2+ release through the rhyanodin receptor calcium channels.  相似文献   

9.
The effect of extracellular calcium on the release of calcitonin gene-related peptide (CGRP) induced by electrical field stimulation from enteric nerves of isolated rat ileum was studied; the effect of high potassium, veratridine and caffeine was also examined. Release of endogenous substance P from enteric nerves was also measured for comparison. Electrical field stimulation (10 Hz, 0.3 ms for 2 min) of the ileum preparation caused a significant (P less than 0.001) increase in the release of CGRP and substance P from enteric nerves. The evoked, but not the basal, release of both CGRP and substance P was inhibited in the presence of tetrodotoxin (TTX). The release of CGRP and substance P induced by electrical stimulation was abolished in Ca2+-free medium containing CDTA and also in normal medium containing the calcium channel blocker cadmium chloride (CdCl2), with no change in the level of the basal release of both peptides. However, potassium depolarization (76 and 110 mM) failed to evoke an increase in the release of endogenous CGRP, although it did cause an increase in the release can be induced by mobilization of calcium from intracellular Ca2+ stores. Veratridine, on the other hand, did not cause an increase in CGRP release, although substance P and VIP release was induced by veratridine from the same preparations. The results of the present study have demonstrated that CGRP release from enteric nerves requires the presence of extracellular calcium but, unlike substance P and most other transmitters reported to show calcium-dependent release, potassium depolarization does not induce CGRP release from enteric nerves of rat ileum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Extracellular ATP has vasodilatory and inotropic effects in the heart. We have demonstrated that extracellular ATP, in a concentration-dependent manner (10 nM-0.1 mM), increased [Ca2+]i in suspensions of isolated fura-2-loaded rat cardiac ventricular myocytes (maximum 96 +/- 10% increase over basal levels, SEM, n = 12, P less than 0.01). The increase in [Ca2+]i was often biphasic, with an initial fast phase (less than 1 s) of low amplitude, followed by a slower phase of higher amplitude. A second application of ATP had little effect, and ATP abolished the effect of subsequent electrical stimulations, even through the cells were still able to respond with an increase in [Ca2+]i to KCl-induced depolarization or stimulation by caffeine. Pretreatment of cells with nifedipine, verapamil, caffeine, ryanodine, or 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride attenuated the effect of extracellular ATP on [Ca2+]i, and binding of extracellular free calcium by excess EGTA completely abolished the effects of extracellular ATP and electrical stimulation. Extracellular ATP increased bisoxonol fluorescence in ventricular myocytes, indicating depolarization of the sarcolemma. Pretreatment of the myocytes with tetrodotoxin (50 microM), or replacement of NaCl in the incubation buffer with the impermeant cation N-methyl-D-glucamine, suppressed the extracellular ATP effect on [Ca2+]i. ADP and AMP had smaller effects on [Ca2+]i than ATP; adenosine had no effect. ATP analogues showed the following rank order of potency in increasing [Ca2+]i or bisoxonol fluorescence: ATP greater than or equal to 2-methylthioATP much greater than adenosine 5'-O-[3-thio]triphosphate greater than adenosine 5'-[alpha, beta-methylene]triphosphate approximately adenosine 5'-[beta, gamma-methylene]triphosphate approximately adenosine 5'-[beta, gamma-imino]triphosphate greater than adenosine. These data are consistent with the presence of purinoceptors (P2Y subtype) on the sarcolemma of cardiac ventricular myocytes of the rat, which upon activation lead to depolarization and activation of cation channels of the sarcolemma and flux of extracellular Ca2+ into the cells. This may result in further flux of Ca2+ into the cytosol from intracellular stores. The effects of extracellular ATP on [Ca2+]i in rat cardiac ventricular myocytes may, in part, explain the direct inotropic effects of extracellular ATP on the mammalian heart.  相似文献   

11.
In bovine adrenal glomerulosa cells, angiotensin II and extracellular K+ stimulate aldosterone secretion in a calcium-dependent manner. In these cells, physiological concentrations of extracellular potassium activate both T-type (low threshold) and L-type (high threshold) voltage-operated calcium channels. Paradoxically, the cytosolic calcium response to 9 mM K+ is inhibited by angiotensin II. Because K+-induced calcium changes observed in the cytosol are almost exclusively due to L-type channel activity, we therefore studied the mechanisms of L-type channel regulation by angiotensin II. Using the patch-clamp method in its perforated patch configuration, we observed a marked inhibition (by 63%) of L-type barium currents in response to angiotensin II. This effect of the hormone was completely prevented by losartan, a specific antagonist of the AT1 receptor subtype. Moreover, this inhibition was strongly reduced when the cells were previously treated for 1 night with pertussis toxin. An effect of pertussis toxin was also observed on the modulation by angiotensin II of the K+ (9 mM)-induced cytosolic calcium response in fura-2-loaded cells, as well as on the angiotensin II-induced aldosterone secretion, at both low (3 mM) and high (9 mM) K+ concentrations. Finally, the expression of both Go and Gi proteins in bovine glomerulosa cells was detected by immunoblotting. Altogether, these results strongly suggest that in bovine glomerulosa cells, a pertussis toxin-sensitive G protein is involved in the inhibition of L-type channel activity induced by angiotensin II.  相似文献   

12.
Using the microfluorometry of an intracellularly trapped calcium indicator dye, quin2, characteristics of intracellular Ca2+ store sites sensitive to histamine, norepinephrine, or caffeine were investigated using rat vascular smooth muscle cells in primary culture at 25 degrees C. With similar time courses, both histamine- and the norepinephrine-sensitive Ca2+ store sites were readily depleted in Ca2(+)-free medium and almost completely replenished by loading the cells with 1.0 mM Ca2+ solution for 3 min, while the caffeine-sensitive Ca2+ store site was little affected. In the absence of extracellular Ca2+, transient elevations of cytosolic Ca2+ repeatedly appeared in response to repetitive applications of histamine, norepinephrine, or caffeine, with progressive reductions in peak levels. Histamine released Ca2+ from the norepinephrine-sensitive store site and norepinephrine released Ca2+ from the histamine-sensitive one. On the other hand, caffeine had little effect on the histamine- and/or the norepinephrine-sensitive Ca2+ store site in Ca2(+)-free medium, and vice versa. We propose that the location and mechanisms of release of Ca2+ of the histamine-sensitive Ca2+ store site are identical with events at the norepinephrine-sensitive site, and differ from the caffeine-sensitive one, in vascular smooth muscle cells in primary culture.  相似文献   

13.
Temporal changes in the phosphorylation level of synaptosomal phosphoproteins following depolarization of synaptosomes were investigated under conditions restricting calcium influx. High-K+ depolarization in media of low [Na+]o (32 mM during preincubation and depolarization) at pH 6.5 resulted in a pronounced fall in the cytosolic free calcium concentration transient, and in a reduction in the initial K(+)-stimulated 45Ca2+ uptake and endogenous acetylcholine release relative to the values obtained with control synaptosomes (preincubated and depolarized in Na(+)-based media). This reduction was paralleled by a decrease in the rate of dephosphorylation of the synaptosomal protein P96. A slower dephosphorylation of P96 also was observed on exposure to 20 microM veratridine at 0.5 mM external calcium. Our results indicate that, similar to synapsin I phosphorylation, P96 dephosphorylation shows a graded response to the amount of calcium entering the presynaptic terminal. Depolarization of synaptosomes under conditions restricting the influx of calcium revealed a transient dephosphorylation (reversed within 10 s) of the phosphoprotein P65. The possible significance of this finding to the process of neurotransmitter release is discussed.  相似文献   

14.
Rat brain slices, prelabeled with [3H]noradrenaline, were superfused and exposed to K+ depolarization (10-120 mM K+) or to veratrine (1-25 microM). In the absence of extracellular Ca2+ veratrine, in contrast to K+-depolarization, caused a substantial release of [3H]noradrenaline, which was completely blocked by tetrodotoxin (0.3 microM). The Ca2+ antagonist Cd2+ (50 microM), which strongly reduced K+-induced release in the presence of 1.2 mM Ca2+, did not affect release induced by veratrine in the absence of extracellular Ca2+. Ruthenium red (10 microM), known to inhibit Ca2+-entry into mitochondria, enhanced veratrine-induced [3H]noradrenaline release. Compared with K+ depolarization in the presence of 1.2 mM Ca2+, veratrine in the absence of Ca2+ caused a somewhat delayed release of [3H]noradrenaline. Further, in contrast to the fractional release of [3H]noradrenaline induced by continuous K+ depolarization in the presence of 1.2 mM Ca2+, that induced by prolonged veratrine stimulation in the absence of Ca2+ appeared to be more sustained. The data strongly suggest that veratrine-induced [3H]noradrenaline release in the absence of extracellular Ca2+ is brought about by a mobilization of Ca2+ from intracellular stores, e.g., mitochondria, subsequent to a strongly increased intracellular Na+ concentration. This provides a model for establishing the site of action of drugs that alter the stimulus-secretion coupling process in central noradrenergic nerve terminals.  相似文献   

15.
Changes in calcium levels in organelles of the plasmodium of the myxomycete Physarum polycephalum were analyzed using the fluorescent calcium indicator chlortetracycline (CTC). Both the Ca2+-ATPase inhibitor 2,5;-di(tert-butyl)-1,4-benzohydroquinone (BHQ) (100 microM) and the calcium ionophore ionomycin (1 microM) induce a significant decrease in fluorescence level (by 30%) in CTC-stained microplasmodia; this is caused by release of calcium from intracellular storage compartments. An activator of ryanodine receptors, caffeine (10-50 mM), is less effective on Ca2+ release than BHQ or ionomycin, and their inhibitor, ryanodine (100 microM), almost completely blocks the response to caffeine, but only slightly decreases the effects of BHQ or ionomycin. Procaine, another inhibitor of ryanodine receptors, at 10 mM concentration completely abolishes both the BHQ and the ionomycin responses, but 50 mM is necessary to block the effect of 25 mM caffeine. These results suggest that both the BHQ- and the ionomycin-dependent Ca2+ releases occur through the ryanodine receptor and are to be considered as calcium-induced Ca2+ release (CICR). Both the ionomycin and the BHQ responses persist in the presence of Cd2+, which blocks Ca2+ channels of the plasmalemma. In most cases, Cd2+ itself induces release of Ca2+ from the CTC-stained calcium pool; the more effective Cd2+ is, the less the following ionomycin or BHQ responses occur. This indicates that Ca2+ entry through plasmalemma plays no significant role in the ionomycin- or BHQ-evoked initiation of CICR, and that the Cd2+- and BHQ/ionomycin-depleted Ca2+ stores overlap.  相似文献   

16.
The cytosolic Ca2+ activity of insulin-releasing clonal cells (RINm5F) was studied with the intracellular fluorescent indicator quin-2. When the extracellular Ca2+ concentration was 1 mM, the basal cytosolic Ca2+ activity was 101 +/- 5 nM. Depolarization with 25 mM K+ increased this Ca2+ activity to at least 318 nM, an effect completely reversed by the voltage-dependent channel blocker D-600. In the presence of K+ alone these channels appeared to have a half-life of 6.7 +/- 0.8 min. In contrast to the action of K+, exposure of the RINm5F cells to 4 mM glucose resulted in a reduction of the cytosolic Ca2+ activity. This effect was observed during K+ depolarization but was more pronounced under basal conditions when it amounted to 20%. The data provide the first direct evidence that glucose can decrease the cytosolic Ca2+ activity in beta-cells. Unlike the case in normal beta-cells the glucose effect on the voltage-dependent Ca2+ channels in the RINm5F cells is apparently not sufficient to overcome the intracellular buffering of Ca2+. A defective depolarization is therefore a probable cause of the failing insulin secretion of RINm5F cells exposed to glucose.  相似文献   

17.
When the extracellular concentration of glucose was raised from 3 mM to 7 mM (the concentration interval in which beta-cell depolarization and the major decrease in K+ permeability occur), the cytosolic free [NADPH]/[NADP+] ratio in mouse pancreatic islets increased by 29.5%. When glucose was increased to 20 mM, a 117% increase was observed. Glucose had no effect on the cytosolic free [NADH]/[NAD+] ratio. Neither the cytosolic free [NADPH]/[NADP+] ratio nor the corresponding [NADH]/[NAD+] ratio was affected when the islets were incubated with 20 mM-fructose or with 3 mM-glucose + 20 mM-fructose, although the last-mentioned condition stimulated insulin release. The insulin secretagogue leucine (10 mM) stimulated insulin secretion, but lowered the cytosolic free [NADPH]/[NADP+] ratio; 10 mM-leucine + 10 mM-glutamine stimulated insulin release and significantly enhanced both the [NADPH]/[NADP+] ratio and the [NADH]/[NAD+] ratio. It is concluded that the cytosolic free [NADPH]/[NADP+] ratio may be involved in coupling beta-cell glucose metabolism to beta-cell depolarization and ensuing insulin secretion, but it may not be the sole or major coupling factor in nutrient-induced stimulation of insulin secretion.  相似文献   

18.
The secretion of catecholamines and ATP induced by cholinergic agonists and its dependence on extracellular Ca2+ were studied in cultured porcine adrenal chromaffin cells. Both nicotine and methacholine (a selective muscarinic agonist) induced secretion and increases in cytosolic free Ca2+ concentration ([Ca2+]in), although the activation of nicotinic receptors produced responses that were larger than those produced by activation of muscarinic receptors. The secretion and the increase in [Ca2+]in evoked by nicotine were completely dependent on extracellular Ca2+ and were blocked by prior depolarization of the cells with high extracellular K+ levels. In addition, nicotine induced significant 45Ca2+ influx. In contrast, the secretion and the increase in [Ca2+]in evoked by methacholine were partially dependent on extracellular Ca2+; methacholine also induced 45Ca2+ influx. Prior depolarization of the cells with high extracellular K+ levels did not block methacholine-induced secretion. In general, nicotinic responses were mediated by Ca2+ influx through voltage-dependent pathways. In contrast, muscarinic responses were dependent on both Ca2+ influx through an unknown mechanism that could not be inactivated by high K+ concentration-induced depolarization and presumably also intracellular Ca2+ mobilization.  相似文献   

19.
The involvement of calcium, ATP, and cyclic AMP-dependent protein kinase activity in the release of amylase from rat parotid glands was examined. Pretreatment of the glandular tissue in 11.25 mM Ca2+ medium potentiated the secretory responses to: dibutyryl cyclic AMP, elevation of the extracellular K+ concentration, reduction of the H+ concentration, La3+, and caffeine. Uncoupling of oxidative phosphorylation blocked release induced by dibutyryl cyclic AMP, K+, and reduction of H+, but had no effect on La3+, caffeine or tolbutamide-stimulated release. Inhibition of cyclic AMP-dependent protein kinase activity blocked only dibutyryl cyclic AMP-induced release and did not inhibit the responses to K+, reduction of H+ or caffeine. The loss of lactate dehydrogenase was used to access the integrity of the tissue during amylase release. No significant increase in the release of lactate dehydrogenase was observed during the secretory responses to: dibutyryl cyclic AMP, La3+, caffeine, or tolbutamide. Triton X-100 and ethanol increased the efflux of both amylase and lactate dehydrogenase. The differential involvement of Ca2+, ATP, and cyclic AMP-dependent protein kinase activity in amylase release induced by the various secretagogues suggests that three types of reactions are involved in the release of amylase.  相似文献   

20.
Changes in extracellular potassium concentration ([K+]o) modulate a variety of neuronal functions. However, whether axonal transport, which conveys materials to the appropriate destination for morphogenesis and other neuronal functions, depends on the extracellular K+ environment remains unclear. We therefore examined the effects of changes in [K+]o on axonal transport of particles visualized by video-enhanced microscopy in cultured mouse dorsal root gan-glion neurites. Increases in [K+]o (delta[K+]o > or = 2.5 mM) from control concentration (5 mM) inhibited both anterograde and retrograde axonal transport within a few minutes in a concentration-dependent manner. Conversely, removal of extracellular K+ induced the rapid facilitation of transport in both directions. These inhibitory and facilitatory responses were completely blocked by the K+ channel blocker tetraethylammonium (TEA), suggesting that the effect of changes in [K+]o involves the TEA-sensitive K+ channels. Increases in [K+]o provoked membrane depolarization in the absence and presence of TEA. Another depolarizing agent, veratridine, did not produce an effect on axonal transport. These results suggest that the extracellular K+-mediated inhibition of axonal transport does not depend on membrane depolarization. The inhibitory effect of increasing [K+]o on axonal transport was retained in calcium (Ca2+)-free extracellular medium, indicating that the inhibitory effect of extracellular K+ does not result from Ca2+ influx through voltage-dependent Ca2+ channels. In chloride (CI-)-free medium, increasing [K+]o failed to inhibit axonal transport, implying that the extracellular K+-mediated inhibition of axonal transport may be due to an increase in intracellular Cl- concentration associated with increases in the net inward movement of K+ and CI- across the membrane. Our results suggest that the extracellular K+ environment is involved in the rapid modulation of axonal transport of particles in dorsal root ganglion neurites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号