首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
2.
In Dictyostelium discoideum stalk cell formation is induced by cyclic AMP and differentiation-inducing factor (DIF) when cells are plated in in vitro monolayers (Kay et al., 1979, Differentiation 13: 7-14). The in vivo developmental stages at which cells became independent of these factors were determined. Independence was defined as the stage at which dispersed cells no longer required the factors for stalk cell formation in low density monolayers. Cyclic AMP independent cells were first detected at around 12 hr of development, a time that corresponds to the transition between the tipped aggregate and the first finger stages. In contrast cells did not become independent of DIF until late culmination. The prestalk cell-specific isozyme acid phosphatase II and a stalk cell-specific 41,000 Mr antigen (ST 41) were expressed during differentiation in low density monolayers in the presence of both cyclic AMP and DIF, but neither component was expressed in the presence of cyclic AMP alone. This result implies that DIF is essential for both prestalk and stalk cell formation. The two components were expressed within 2 hr of each other during differentiation in vitro, whereas during development in vivo acid phosphatase II was first detected at the first finger stage and ST 41 was first detected during late culmination, 8-12 hr later. These contrasting results suggest that the conversion of prestalk cells to stalk cells is unrestrained in monolayers, following directly after prestalk cell induction, but restrained in vivo until the culmination stage. This interpretation is consistent with the finding that cells become independent of DIF early during in vitro differentiation (A. Sobolewski, N. Neave, and G. Weeks, 1983, Differentiation 25, 93-100), but do not become independent of DIF until the culmination stage when differentiating in vivo.  相似文献   

3.
T Kawata  A Early    J Williams 《The EMBO journal》1996,15(12):3085-3092
The ecmA gene is expressed in Dictyostelium prestalk cells and is inducible by differentiation-inducing factor (DIF), a low-molecular-weight lipophilic substance. The ecmB gene is expressed in stalk cells and is under negative control by two repressor elements. Each repressor element contains two copies of the sequence TTGA in an inverted relative orientation. There are activator elements in the ecmA promoter that also contain two TTGA sequences, but in the same relative orientation. Gel retardation assays suggest that the same protein binds to the ecmB repressor and the ecmA activator. We propose that DIF induces prestalk cell differentiation by activating this protein and that the protein also binds to the promoters of stalk-specific genes, acting as a repressor that holds cells in the prestalk state until culmination is triggered.  相似文献   

4.
Previous work has shown that multicellular morphogenesis of submerged Dictyostelium cells is inhibited when they bind to glucosides covalently linked to polyacrylamide gels. The amoebae aggregate normally, but then the aggregates repeatedly disperse and reaggregate, whereas control cells go on to form tight aggregates. We have investigated the role of the stalk cell differentiation inducing factors (DIFs) in this process. In the presence of cyclic AMP, amoebae submerged at high cell density accumulate DIF and differentiate into stalk cells. We find that stalk cell differentiation is inhibited by interaction of the cells with glucoside gels in these conditions, but can be restored by the addition of exogenous DIF-1. Since the responsiveness of cells to DIF-1 is not altered, it appears likely that the effect of the glucoside gel is to block DIF-1 production. Further, the addition of DIF-1 or DIF-2 stimulates the formation of tight aggregates by cells developing on glucoside gels in the absence of cyclic AMP, thus preventing the rounds of aggregation and disaggregation otherwise seen. This suggests a role for DIF in morphogenesis as well as in controlling cell differentiation. We propose a model in which immobilized glucosides activate a specific receptor ("food sensor") which drives the amoebae toward the vegetative state and inhibits DIF accumulation. DIF, on the other hand, induces tight aggregate formation and so locks the amoebae into the developmental program.  相似文献   

5.
Abstract. Depending upon environmental conditions, developing cells of the cellular slime mold Dictyostelium discoideum may enter a slug stage in which the cell mass migrates in response to gradients of light and temperature. This developmental stage has often been used to study the divergent differentiation of the cells that will subsequently form spores and stalk in the mature fruiting body. However, still debated is the extent to which the differentiation evident in slug cells is a precondition for development of the mature cells in fruits. Using two-dimensional gel electrophoresis of polypeptides, we have examined the proteins made by prespore and prestalk cells of migrating slugs and by maturing spore and stalk cells. The data indicate that many of the cell-type specific polypeptides in prespore cells of slugs persist as cell-type specific polypeptides of mature spores. Prestalk slug cells, in contrast, do not contain significant amounts of stalk-specific proteins; these proteins appear only during culmination. The precursor cell types also differ in the times and rates of synthesis of cell-specific proteins: prestalk proteins appear much earlier in development than do the prespore, but never reach the levels of expression that the prespore proteins do later in culmination. These findings may explain the well established ability of prespore cells to regulate their cell type more rapidly than do prestalk cells. There are also implications for our general understanding of what is a 'prestalk' gene product.  相似文献   

6.
Stalk cell formation in low-cell-density monolayers of Dictyostelium discoideum, strain V12-M2, occurs following the sequential addition of cyclic AMP and the differentiation-inducing factor (DIF). Both cyclic AMP and DIF are essential for the appearance of the prestalk-specific isozyme alkaline phosphatase-II, which suggests that both factors are necessary for prestalk cell formation. The available evidence suggests that the cyclic AMP requirement for stalk cell formation is mediated through the cell surface cyclic AMP receptor. However, stalk cell formation is inhibited by caffeine and this inhibition is reversed by the cell-permeable analogue 8-Br-cyclic AMP, which suggests in addition a possible involvement for elevated intracellular cyclic AMP concentrations in stalk cell formation. During in vivo development cells first become independent of cyclic AMP at the tipped aggregate stage, but the acquisition of cyclic AMP independence is advanced by several hours when cells are incubated in the presence of cyclic AMP for 2 hours. Cells do not become independent of DIF until the culmination stage of development, which suggests the possibility that DIF is required for the conversion of prestalk cells to stalk cells. There is an absolute requirement for DIF for stalk cell formation in low-density monolayers of prestalk cells but only part of population exhibits a requirement for cyclic AMP, which suggests that the prestalk cell population consists of two distinct cell types. Stalk cell formation from prespore cells is totally dependent on both cyclic AMP and DIF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
Nature and distribution of the morphogen DIF in the Dictyostelium slug   总被引:11,自引:0,他引:11  
The Dictyostelium slug contains a simple anterior-posterior pattern of prestalk and prespore cells. It is likely that DIF, the morphogen which induces stalk cells, is involved in establishing this pattern. Previous work has shown that a number of distinct species of DIF are released by developing cells and that cell-associated DIF activity increases rapidly during the slug stage of development. In this paper we describe a comparison of the DIF extracted from slugs with the DIF released into the medium. Analysis by high-pressure liquid chromatography (HPLC) using different solvent systems shows that the major species of DIF activity extracted from slugs coelutes with DIF-1, the major species of released DIF and is similarly sensitive to sodium borohydride reduction. Since DIF specifically induces the differentiation of prestalk cells, the anterior cells of the slug, it could be anticipated that DIF is localized in the prestalk region. We have therefore determined the distribution of DIF within the slug. Migrating slugs from strain V12M2 were manually dissected into anterior one-third and posterior two-third fragments and the DIF activity extracted. Surprisingly, we found that DIF was not restricted to the prestalk fragment. Instead there appears to be a reverse gradient of DIF in the slug with at least twice the specific activity of total DIF in the prespore region than in the prestalk region.  相似文献   

10.
We have identified a novel gene, trishanku (triA), by random insertional mutagenesis of Dictyostelium discoideum. TriA is a Broad complex Tramtrack bric-a-brac domain-containing protein that is expressed strongly during the late G2 phase of cell cycle and in presumptive spore (prespore (psp)) cells. Disrupting triA destabilizes cell fate and reduces aggregate size; the fruiting body has a thick stalk, a lowered spore: stalk ratio, a sub-terminal spore mass and small, rounded spores. These changes revert when the wild-type triA gene is re-expressed under a constitutive or a psp-specific promoter. By using short- and long-lived reporter proteins, we show that in triA(-) slugs the prestalk (pst)/psp proportion is normal, but that there is inappropriate transdifferentiation between the two cell types. During culmination, regardless of their current fate, all cells with a history of pst gene expression contribute to the stalk, which could account for the altered cell-type proportion in the mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号