首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Abstract The kinetics of sucrose uptake into maize scutellum slices showed that the uptake mechanism had a saturable component with a Km of l.5mol m?3 sucrose. Nevertheless, uptake rate was constant (zero order) over extended periods of time until the bathing solution was nearly depleted of sucrose. It is concluded that these anomalous uptake kinetics reflect sucrose influx across the plasmalemma because of the following results: (a) Efflux of sucrose into buffer was negligible compared with uptake rate, (b) When slices were incubated in fructose, sucrose was synthesized and there was a net release of sucrose to the bathing solution until a steady-state was reached when influx and efflux were equal in magnitude. After the steady-state was reached, efflux of sucrose from the slices was nearly the same in magnitude as the estimated rate of uptake that would have occurred from bathing solutions initially containing the steady-state sucrose concentration, (c) Exchange of sucrose between bathing solution and slices was negligible compared with uptake rate, (d) Pretreatment of slices with uranyl nitrate abolished sucrose uptake, but uptake rate was re-established in these slices after treatment with HCl (pH 2). Uptake rate was set by the initial sucrose concentration of the bathing solution, and was not influenced by the level of endogenous sucrose or by the rate at which the sucrose concentration of the bathing solution declined. Abrupt increases in sucrose concentration during the uptake period increased the rate of uptake only if the concentration was increased above that at the start of the uptake period. Following abrupt decreases in sucrose concentration, there was a lag of about 30 min before uptake rate decreased greatly. If slices were washed and replaced in a fresh sucrose solution during the uptake period, a new uptake rate was set to correspond to the new initial sucrose concentration. It is suggested that the sucrose carrier has a transport site with a relatively low Km (much below 1.5mol m?3) and that the measured Km (1.5mol m?3) is that of a site that binds sucrose and thereby controls the rate of uptake. The low Km suggested for the transport site would explain the zero order kinetics but a model of the uptake mechanism that includes the control site cannot, as yet, be constructed from the data.  相似文献   

2.
The inhibitory effects of sucrose on rates of sucrose synthesis by sucrose phosphate synthase (SPS) from the maize scutellum and on net rates of sucrose production in maize scutellum slices from added glucose or fructose were studied. Scutellum extracts were prepared by freezing and thawing scutellum slices in buffer. The extracts contained SPS and sucrose phosphate phosphatase, but were free of sucrose synthase. SPS activity was calculated from measurement of UDP formation in the presence of UDPG, fructose-6-P and sucrose. The ranges of metabolite concentrations used were those estimated to be in scutellum slices after incubation in water or fructose for periods up to 5 hr. UDPG and fructose-6-P also were added at concentrations that saturated SPS. At saturating substrate levels, sucrose inhibition of SPS was less than that when tissue levels of substrates were used. With tissue levels of substrates and sucrose concentrations up to ca 166 mM, sucrose inhibitions of sucrose synthesis in vitro by SPS were similar to those observed in vivo. However, as the sucrose concentration rose above 166 mM, SPS activity was not inhibited further, whereas there was a further sharp decline in sucrose production by the slices. It is concluded that sucrose synthesis in vivo is controlled by sucrose inhibition of SPS over a considerable range of internal sucrose concentrations.  相似文献   

3.
A search for source leaf sucrose pools that differed in their relation to export was carried out in photosynthesizing leaves of Beta vulgaris L. The time course of depletion of [14C]sucrose in a leaf in unlabeled CO2 following steady state labeling provided evidence for two distinct sucrose pools. After the start of the light period, leaf blade sucrose remained constant although it exchanged between the two pools. Newly synthesized sucrose destined for export passed through one pool more rapidly than through the other. All of the leaf blade sucrose appeared to exchange with export sucrose. Modeling and regression analysis of [14C]sucrose data provided a means for estimating the size of the two pools. From 20 to 40% of the sucrose was calculated to be present in the pool that provided the less direct path to export; this was likely vacuolar sucrose. The remainder of the sucrose in the blade was probably in the cytoplasm and veins. Added amounts of leaf blade sucrose, produced in response to elevated CO2, appeared to be stored mainly in the vacuolar compartment.  相似文献   

4.
The effects of sucrose on betacyanin accumulation and growth in suspension cultures of Phytolacca americana L. were investigated. Maximal betacyanin accumulation was observed at 88 m M sucrose on cell number basis and at 175 m M sucrose on fresh weight basis. This is because cell size decreased as the initial sucrose concentration was increased. Supplementary studies using mannitol indicated that sucrose itself caused increased cell number and that cell size was affected by both sucrose concentration and water potential. Betacyanin accumulation per cell and per fresh weight at a constant concentration of sucrose (88 m M ) decreased with decreasing water potential. When sucrose concentration increased at a constant water potential (–0.7 MPa), betacyanin accumulation per fresh weight increased up to 88 m M and remained at constant level at higher concentrations, while betacyanin accumulation per cell decreased remarkably, due to a dramatic increase in cell number.  相似文献   

5.
During the storage phase, cotyledons of developing pea seeds are nourished by nutrients released to the seed apoplasm by their maternal seed coats. Sucrose is transported into pea cotyledons by sucrose/H+ symport mediated by PsSUT1 and possibly other sucrose symporters. PsSUT1 is principally localised to plasma membranes of cotyledon epidermal and subepidermal transfer cells abutting the seed coat. We tested the hypothesis that endogenous sucrose/H+ symporter(s) regulate sucrose import into developing pea cotyledons. This was done by supplementing their transport activity with a potato sucrose symporter (StSUT1), selectively expressed in cotyledon storage parenchyma cells under control of a vicilin promoter. In segregating transgenic lines, enhanced [(14)C]sucrose influx into cotyledons above wild-type levels was found to be dependent on StSUT1 expression. The transgene significantly increased (approximately 2-fold) transport activity of cotyledon storage parenchyma tissues where it was selectively expressed. In contrast, sucrose influx into whole cotyledons through the endogenous epidermal transfer cell pathway was increased by only 23% in cotyledons expressing the transgene. A similar response was found for rates of biomass gain by intact cotyledons and by excised cotyledons cultured on a sucrose medium. These observations demonstrate that transport activities of sucrose symporters influence cotyledon growth rates. The attenuated effect of StSUT1 overexpression on sucrose and dry matter fluxes by whole cotyledons is consistent with a large proportion of sucrose being taken up at the cotyledonary surface. This indicates that the cellular location of sucrose transporter activity plays a key role in determining rates of sucrose import into cotyledons.  相似文献   

6.
Secor J 《Plant physiology》1987,83(1):143-148
Net sucrose efflux from discs of fully expanded leaves of soybean (Glycine max [L.] Merr.) plants was studied to characterize sucrose efflux into the apoplast. Net sucrose efflux had a Q10 of 2.3, was linear for at least 3.5 hours, and was selective for sucrose over glucose. Sulfhydryl group inhibitors reduced sucrose efflux by up to 80%. There was a biphasic promotion of sucrose efflux by KCl with an apparent saturable component up to about 20 millimolar, above which the effect was linear. Sucrose efflux was promoted by NaCl as a linear function of concentration. Monovalent cation ionophores did not affect sucrose efflux, regardless of external KCl concentration. Light in the absence of added HCO3-increased sucrose efflux by about 20%. Sucrose efflux was promoted by increasing pH from 4 to about 8, above which no additional effect was observed. When leaf discs were bathed at pH 6.0, the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) increased sucrose efflux by about 25%. CCCP in the presence of valinomycin had the same effect as CCCP alone. Inhibition of plasmalemma ATPase activity with N,N′-dicyclohexylcarbodiimide, diethylstilbestrol, or orthovanadate increased sucrose efflux. These data indicate that sucrose efflux from soybean leaf discs is not a result of simple leakage but is a regulated process.  相似文献   

7.
8.
Evidence for the uptake of sucrose intact into sugarcane internodes   总被引:3,自引:2,他引:1       下载免费PDF全文
Application of [14C]fructosyl sucrose was used to determine whether sucrose cleavage was necessary for sucrose uptake by sugarcane (Saccharum spp.) internode tissue. Although approximately 25% of 14C in the apoplast was present as fructose, indicating some sucrose cleavage, less than 15% of the label was randomized in the sucrose that remained in the tissue after a 30 minute osmoticum rinse. This is insufficient to support cleavage and resynthesis as the sole sucrose transport scheme. The lack of randomization of label between the glucose and fructose moieties of the sucrose molecule was taken as presumptive evidence that sucrose does not have to be cleaved prior to uptake by parenchyma cells in sugarcane internode tissue.  相似文献   

9.
Exudate was collected fromRicinus communis L. cotyledons after cutting the hypocotyl. It contained high levels of sucrose and potassium, a low level of calcium, and a pH of approx. 7.5. After application of [14C] sucrose to the cotyledons, radioactivity could be recovered from the exudate, indicating that the exudate was derived from the phloem. Using data from a number of individual seedlings, correlations between loading rates of sucrose, translocation rates, and sucrose and potassium contents were analyzed. A positive correlation was found between the rate of sucrose loading and the rate of sucrose exudation, whereas a negative correlation existed between the contents of sucrose and potassium in the phloem.  相似文献   

10.
Upon germination, the endosperm triacylglycerols and proteinswere converted to sucrose and amino acids. During early postgerminativegrowth, the rate of sucrose and amino acid production exceededthe rate of uptake by the cotyledons. As a result, the levelsof total amino acid and sucrose in the endosperm increased;maximum levels were reached at 7 d and 10 d after imbibition(DAI), respectively. Intact seedlings were used to measure thedevelopment of valine, arginine, glutamic acid, and sucroseuptake rate throughout the course of endosperm depletion. Maximumamino acid uptake rates were measured at around 9 DAI, the highestuptake rate for sucrose was obtained at 12 DAI (just beforedepletion of the endosperm). The daily increase of sucrose andamino acid uptake could be manipulated, by replacing the endospermwith a pre-incubation solution during 1 d. The increase in sucroseuptake in vitro was equal to that measured with intact seedlingswhen the cotyledons were pre-incubated in 10 mol m–3 sucrose.Higher sucrose concentrations reduced the increase of sucroseuptake; at 300 mol m–3 sucrose (corresponding to the meanendosperm sucrose concentration) sucrose uptake after pre-incubationwas even lower than before. This reduction was largely counteractedwhen the pre-incubation solution was supplemented with minerals.The development of the valine uptake was hardly affected bysucrose, but was inhibited by several amino acids. Key words: Euphorbia lathyris seedling, sucrose uptake, amino acid uptake, reserve mobilization  相似文献   

11.
We have examined the effect of sucrose on adventitious root formation in apple microcuttings and in 1-mm stem slices cut from apple microcuttings. The sucrose concentration influenced the number of adventitious roots, but at a broad range of sucrose concentrations (1–9%) the effect was small. In addition, there was an interaction between sucrose and auxin: increasing the sucrose concentration shifted the dose–response curve of auxin to the right. When slices were cultured on medium without sucrose for the initial period (0–48 h), rooting was reduced whereas 48-h culture without application of sucrose had hardly any effect or even a slight promotive effect in a later period (48–120 h). The results show that during adventitious root formation, applied sucrose is used as a source of energy and building blocks but they are also in accordance with a possible regulatory role of sucrose.  相似文献   

12.
A method was developed to estimate the relative contributions of paracellular and transcellular pathways to the total biliary clearance of sucrose in isolated perfused rat liver. When livers were perfused with a sucrose-containing medium (1 mM), biliary sucrose concentration reached an equilibrium of 165 +/- 27 microM within 10 min, without further significant change up to 40 min. After removal of sucrose from the perfusate, the decrease of the sucrose concentration in bile was found to obey biphasic first-order kinetics, showing a rapid initial decrease (half-life 3.3 +/- 0.5 min) and then a slower decrease (half-life 29.4 +/- 5.7 min). Both phases of decrease were further characterized. Pretreating rats with the cholestatic agents alpha-naphthyl isothiocyanate (ANIT), oestradiol valerate (OV) and colchicine increased the biliary equilibrium concentration and decreased the half-life of the fast phase of the biliary sucrose elimination. The slow phase was unaffected in the livers of ANIT- and OV-treated rats. The slow phase of biliary sucrose efflux was sensitive to colchicine treatment. A close correlation was observed between the slow-phase fraction of the biliary sucrose and the corresponding sucrose content of the liver. By quantitative analysis of the efflux kinetics the relative contribution of the paracellular pathway to the biliary clearance of sucrose was estimated to be 83 +/- 2% in control livers, which increased to about 90% in livers of pretreated animals. These results are important in view of the use of sucrose in evaluating the paracellular-pathway permeability in intra- and extra-hepatic cholestasis.  相似文献   

13.
Inhibition of sucrose phosphatase by sucrose   总被引:7,自引:2,他引:5       下载免费PDF全文
1. Partially purified sucrose phosphatase from immature stem tissue of sugarcane is inhibited by sucrose. The enzyme was also inhibited by maltose, melezitose and 6-kestose but not by eight other sugars, including glucose and fructose. 2. The relative effectiveness of sucrose, maltose and melezitose as inhibitors is different for sucrose phosphatase from different plants. 3. The inhibition of the sugar-cane enzyme by sucrose was shown to be partially competitive. The K(i) for sucrose is about 10mm. 4. Melezitose is also a partially competitive inhibitor of the enzyme but the inhibition by maltose is probably mixed. 5. The possibility that sucrose controls both the rate of accumulation of sucrose in stems of sugar-cane and sucrose synthesis in leaves by inhibiting sucrose phosphatase is discussed.  相似文献   

14.
Forager bees arriving at the hive after visiting a nectar source, unload the collected liquid food to recipient hivemates through mouth-to-mouth contact (trophallaxis). We analysed whether the main characteristics that define nectar in energetic terms, that is, rate of production (flow of solution), sucrose concentration and rate of sucrose production (sucrose flow) influence trophallactic behaviour. Individual bees trained to feed at a regulated-flow feeder offering sucrose solution were captured once the foraging visit was complete and placed in an acrylic arena with a recipient bee that had not been fed. The rate at which liquid was transferred during the subsequent trophallactic contact (transfer rate) was analysed as a function of the different solution flows and sucrose concentrations offered at the feeder. A relationship was found between transfer rate during trophallaxis and the flow of solution previously presented at the feeder. This relationship was independent of sucrose concentration when above a certain threshold value (ca. 22% weight on weight). We also analysed whether the rate of sucrose deliverance of the food source (sucrose flow) influenced the rate at which the solution was transferred. No clear relationship was found between the rate of sucrose deliverance during trophallactic events (sucrose transfer rate) and the sucrose flow presented at the feeder. The possibility that trophallaxis could be a communication channel through which quantitative information on food source profitability is transmitted among hivemates is discussed. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

15.
Consumption of 1% sucrose solution supplemented with 0.2% vanillin was studied in two experimental contexts in male mice living under chronic social stress induced by daily experience of defeats in agonistic interactions and leading to development of depression. In the first experiment, vanillin sucrose solution was made available as an option along with water during 10 days for mice living in group home cages. Then the mice were subjected to repeated social defeat stress and during exposure to stress they were provided with both vanillin sucrose solution and water using a free two-bottle choice paradigm. In the other experiment, vanillin sucrose solution was first offered to mice after 8 days of exposure to social defeat stress. Males familiar with vanillin sucrose solution showed vanillin sucrose preference while experiencing defeat stress: consumption of vanillin sucrose solution was about 70% of total liquid consumption. However, the consumption of vanillin sucrose solution per gram of body weight in mice exposed to social stress during 20 days was significantly lower than in control males. In the second experiment, males after 8 days of social defeat stress were found to consume significantly less vanillin sucrose solution as compared to control males. On average, during two weeks of measurements, vanillin sucrose solution intake was less than 20% of total liquid consumption in males. Consumption per gram of body weight also appeared to be significantly lower than in control group. The influence of experimental context on the development of anhedonia measured as a reduction of sucrose solution intake by chronically stressed male mice is discussed.  相似文献   

16.
Chemoenzymatic synthesis of sucrose-containing aromatic polymers.   总被引:1,自引:0,他引:1  
A chemoenzymatic approach was developed to prepare sucrose-containing aromatic polymers. The protease from Bacillus licheniformis catalyzed the transesterification of sucrose with a diester of terephthalic acid in pyridine to give the mono- and diester products. At 45 degrees C, >70% of sucrose was consumed after 1 day and sucrose diester began to form after 6 days when >95% of sucrose had been converted to sucrose monoester. The final yield of sucrose diester after 20 days was 13.8%. The sucrose monoester was identified as sucrose 1'-terephthalate and the diester products consisted of sucrose 6,1'-diterephthalate and sucrose 6',1'-diterephthalate in a ratio of 2:1. The sucrose diester products were polymerized with ethylene-glycol and ethylene-diamine to give poly(ethylene-terephthalate) and poly(ethylene-terephthalamide), with sucrose contained in the polymer backbone. The polycondensation reactions were carried out in dimethylsulfoxide (DMSO) at 70 degrees C using zinc acetate as a catalyst. The sucrose-containing polyester and polyamide were obtained at 65% yield for 24 h and at 73% yield for 12 h, respectively. End-group analysis of the polymers by (13)C-NMR or (1)H-NMR in DMSO provided a number average molecular weight of 3200 and 4300 Da, respectively. Structural analyses of the polymers were performed with (1)H-NMR, (13)C-NMR, and FTIR. On the basis of (13)C-NMR, acylation of the C1', C6, and C6' hydroxyls were maintained in the polymer backbones.  相似文献   

17.
1. By using EDTA in reaction mixtures it was possible to determine the activity of sucrose phosphate synthetase in freshly prepared leaf extracts without the complications caused by sucrose phosphatase. 2. EDTA was found also to increase the activity of sucrose phosphate synthetase by as much as 100%. 3. High sucrose phosphate synthetase activities were found in leaf preparations in which sucrose phosphatase was inhibited by EDTA. By contrast with previous reports, the activities were sufficient to allow sucrose synthesis in leaves during photosynthesis to occur via sucrose phosphate. 4. Sugar-cane plants having different rates of photosynthesis also had different activities of sucrose phosphate synthetase in their leaves. 5. It is suggested that the activity of sucrose phosphate synthetase in leaves may play a role in the control of the rate of photosynthesis.  相似文献   

18.
Hydroponic culture was used to comparatively investigate the copper (Cu)-induced alteration to sucrose metabolism and biomass allocation in two Elsholtzia haichowensis Sun populations with one from a Cu-contaminated site (CS) and the other from a non-contaminated site (NCS). Experimental results revealed that biomass allocation preferred roots over shoots in CS population, and shoots over roots in NCS population under Cu exposure. The difference in biomass allocation was correlated with the difference in sucrose partitioning between the two populations. Cu treatment (45 μM) significantly decreased leaf sucrose content and increased root sucrose content in CS population as a result of the increased activities of leaf sucrose synthesis enzymes (sucrose phosphate synthetase and sucrose synthase) and root sucrose cleavage enzyme (vacuolar invertase), which led to increased sucrose transport from leaves to roots. In contrast, higher Cu treatment increased sucrose content in leaves and decreased sucrose content in roots in NCS population as a result of the decreased activities of root sucrose cleavage enzymes (vacuolar and cell wall invertases) that led to less sucrose transport from leaves to roots. These results provide important insights into carbon resource partitioning and biomass allocation strategies in metallophytes and are beneficial for the implementation of phytoremediation techniques.  相似文献   

19.
Identification of actively filling sucrose sinks   总被引:36,自引:14,他引:22       下载免费PDF全文
Sung SJ  Xu DP  Black CC 《Plant physiology》1989,89(4):1117-1121
Certain actively filling plant sucrose sinks such as a seed, a tuber, or a root can be identified by measuring the uridine diphosphate and pyrophosphate-dependent metabolism of sucrose. Sucrolysis in both active and quiescent sucrose sinks was tested and sucrose synthase was found to be the predominant sucrose breakdown activity. Sucrolysis via invertases was low and secondary in both types of sinks. Sucrose synthase activity dropped markedly, greater than fivefold, in quiescent sinks. The tests are consistent with the hypothesis that the sucrose filling activity, i.e. the sink strength, of these plant sinks can be measured by testing the uridine diphosphate and pyrophosphate-dependent breakdown of sucrose. Measuring the initial reactions of sucrolysis shows much promise for use in agriculture crop and tree improvement research as a biochemical test for sink strength.  相似文献   

20.
Khuri  S.; Moorby  J. 《Annals of botany》1995,75(3):295-303
Sucrose has been the carbohydrate traditionally used for potatomicrotuber production. Added to nutrient media, sucrose canact solely as a carbon source, or as an osmoticum, or both.Preliminary tests showed that the osmolarity of sucrose solutionswas increased by autoclaving, indicating some breakdown of thesugar. This was taken into consideration in experiments whichinvolved supplementing 4% sucrose media with sucrose, maltose,glucose or fructose, while keeping the osmotic potential ofthe media constant. A medium concentration of about 400 mM withonly sucrose was more suitable for microtuber production thanmedia supplemented with maltose, glucose or fructose. However,a better microtuber yield was obtained when hexoses were addedthan with unsupplemented 4% sucrose media. When glucose wassupplied at concentrations which had the same number of carbonatoms as 8% sucrose, the high osmolarity inhibited microtuberisation.Sugar movement in the tubering plantlet was followed using radio-labelledsucrose, glucose and fructose. The sucrose was translocatedand used at a faster rate than the other sugars, which tendedto remain in the roots of the plantlets. Furthermore, therewas no difference in microtuber production on media to whichthe sucrose was added before or after autoclaving, indicatingthat levels of breakdown were not severe enough to affect theprocess. Therefore, it is concluded that sucrose acts primarilyas a suitable carbon source for uptake and utilization by theplantlets, but, at 8%, it also provides a favourable osmolarityfor the development of microtubers.Copyright 1995, 1999 AcademicPress Solanum tuberosum (L.), potato, microtuber, media, sugar, sucrose, osmolarity, pH  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号