首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Temperature effects on circadian clocks   总被引:2,自引:0,他引:2  
Periodic temperature changes represent one of the most effective entraining (Zeitgeber) signals for circadian clocks in many organisms. Different constant temperatures affect the circadian amplitude and ultimately the expression of circadian clocks, while the circadian period length (tau) remains approximately constant (temperature compensation). Experimental results and theoretical models are presented that may serve to explain these effects. After introducing the physico-chemical basis of temperature on enzyme-catalyzed and physiological reactions, and after describing mechanisms for temperature adaptation of physiological reactions to different thermal environments, general effects of temperature on chemical and biological oscillators are described. Kinetic models for circadian clocks and temperature compensation are presented and compared with experimental results. Special attention is given to the question how constant but different temperature levels affect clock amplitude, period length and phase. Influences of single and periodic temperature variations (steps or pulses) on circadian clocks are presented together with models which may explain the resulting phase response curves and entrainment patterns. Because temperature compensation is only one aspect of a general homeostatic mechanism that keeps the circadian period rather constant, the influence of other environmental variables and their relationship to temperature are discussed.  相似文献   

2.
We know that entrainment, a stable phase relationship with an environmental cycle, must be established for a biological clock to function properly. Phase response curves (PRCs), which are plots of phase shifts that result as a function of the phase of a stimulus, have been created to examine the mode of entrainment. In circadian rhythms, single-light pulse PRCs have been obtained by giving a light pulse to various phases of a free-running rhythm under continuous darkness. This successfully explains the entrainment to light-dark cycles. Some organisms show circannual rhythms. In some of these, changes in photoperiod entrain the circannual rhythms. However, no single-pulse PRCs have been created. Here we show the PRC to a long-day pulse superimposed for 4 weeks over constant short days in the circannual pupation rhythm in the varied carpet beetle Anthrenus verbasci. Because the shape of that PRC closely resembles that of the Type 0 PRC with large phase shifts in circadian rhythms, we suggest that an oscillator having a common feature in the phase response with the circadian clock, produces a circannual rhythm.  相似文献   

3.
Constant red light (RR) influences the Gonyaulax clock in several ways: (1) Phase resetting by white or blue light pulses is stronger under background RR than in constant white light (WW); (2) frequency of the rhythm is less in RR than in WW; and (3) the amplitude of the spontaneous flashing rhythm is greater in RR than in WW. The phase response curve (PRC) to 4-hr white or blue light pulses is of high amplitude (Type 0) for cells in RR, but is of lower amplitude (Type 1) for cells in WW. In all cases, the PRC is highly asymmetrical: The magnitude of advance phase resetting is far higher than that of delay resetting. Consistent with this PRC, Gonyaulax cells in RR (free-running period greater than 24 hr) will entrain to T cycles of between 21 and 26.5 hr. The bioluminescence rhythms exhibit "masking" by blue light pulses while entrained to these T cycles. The fluence response of phase resetting to light-pulse intensity is not linear or logarithmic--rather, it is discontinuous. This feature is consistent with a limit cycle interpretation of Type 0 resetting of circadian clocks. Light pulses that cause large phase shifts also shorten the subsequent free-running period. The phase angle difference between the clock and the previous LD cycle is within 2 hr of the same phase between 16 degrees C and 25 degrees C, as determined from the light PRCs at various temperatures. Several drugs that inhibit mitochondria and/or electron transport will partially inhibit the phase shift by light.  相似文献   

4.
The effect of light intensity on the phase response curve (PRC) and the period response curve (τRC) of the nocturnal field mouse Mus booduga was studied. PRCs and τRCs were constructed by exposing animals free-running in constant darkness (DD), to fluorescent light pulses (LPs) of 100 lux and 1000 lux intensities for 15min duration. The waveform of the PRCs and τRCs evoked by high light intensity (1000 lux) stimuli was significantly different compared to those constructed using low light intensity (100 lux). Moreover, a weak but significant correlation was observed between phase shifts and period changes when light stimuli of 1000 lux intensity were used; however, the phase shifts and period changes in the 100 lux PRC and τRC were not correlated. This suggests that the intensity of light stimuli affects both phase and period responses in the locomotor activity rhythm of the nocturnal field mouse M. booduga. These results indicate that complex mechanisms are involved in entrainment of circadian clocks, even in nocturnal rodents, in which PRC, τRC, and dose responses play a significant role.  相似文献   

5.
A new mutation, designated as psi-mutant, affecting the timing of the circadian oviposition rhythm was discovered the in natural population of Aedes krombeini . This mutation advanced the phase of the oviposition median in an entraining light-dark cycle of 12:12 h by ca. 7.0 h and shortened the free running period t in constant darkness (DD) by ca. 4.0 h. Early oviposition in psi-mutants was also observed when while free-running in DD they were subjected to 24-h temperature cycles (29°C for 12 h and l8°C for l2 h). When the phase response curves (PRCs) for light pulses against DD as background were measured, the PRC for the psi-mutant had large delaying phase shifts, whereas, that of the wild strain had small delaying phase shifts.  相似文献   

6.
A new mutation, designated as psi-mutant, affecting the timing of the circadian oviposition rhythm was discovered the in natural population of Aedes krombeini. This mutation advanced the phase of the oviposition median in an entraining light-dark cycle of 12:12 h by ca. 7.0 h and shortened the free running period t in constant darkness (DD) by ca. 4.0 h. Early oviposition in psi-mutants was also observed when while free-running in DD they were subjected to 24-h temperature cycles (29°C for 12 h and l8°C for l2 h). When the phase response curves (PRCs) for light pulses against DD as background were measured, the PRC for the psi-mutant had large delaying phase shifts, whereas, that of the wild strain had small delaying phase shifts.  相似文献   

7.
The effect of light intensity on the phase response curve (PRC) and the period response curve (τRC) of the nocturnal field mouse Mus booduga was studied. PRCs and τRCs were constructed by exposing animals free-running in constant darkness (DD), to fluorescent light pulses (LPs) of 100 lux and 1000 lux intensities for 15min duration. The waveform of the PRCs and τRCs evoked by high light intensity (1000 lux) stimuli was significantly different compared to those constructed using low light intensity (100 lux). Moreover, a weak but significant correlation was observed between phase shifts and period changes when light stimuli of 1000 lux intensity were used; however, the phase shifts and period changes in the 100 lux PRC and τRC were not correlated. This suggests that the intensity of light stimuli affects both phase and period responses in the locomotor activity rhythm of the nocturnal field mouse M. booduga. These results indicate that complex mechanisms are involved in entrainment of circadian clocks, even in nocturnal rodents, in which PRC, τRC, and dose responses play a significant role.  相似文献   

8.
The circadian rhythm of locomotor activity of the field mouse Mus booduga was studied and single animal phase response curves (PRCs) (n = 8) were constructed for 15-min daylight pulses of 1000 lux intensity. The light pulses, presented at different phases of the circadian cycle, evoked advancing and delaying phase shifts (ΔPHs) depending on the circadian time (CT) of light pulse application. ΔPHs by light pulses applied at the same phase are strongly correlated with the animals' circadian period (τ). The results indicate a significant correlation between (i) τ and the area under the advance zone of the PRC (A) (r = +0.72, p > 0.05), (ii) τ and the area under the delay zone of the PRC (D) (r = -0.98, p > 0.00001), (iii) τ and the difference between the area under delay and advance zone of PRC (D-A) (r = -0.97, p > 0.00001), and (iv) between τ and ΔpHs (at various phases of the circadian cycle) and further suggest that the waveform and time course of PRC depend on the animals' endogenous period (τ). (Chronobiology International, 13(6), 401–409, 1996)  相似文献   

9.
Summary Experiments using various light-dark (LD) conditions demonstrated that an endogenous circadian clock controls gut-purge timing in the saturniid mothSamia cynthia ricini. A phase-response curve (PRC) based on the application of brief (15 min) light pulses is used to characterize the underlying pacemaking oscillation. The entrainment of the pacemaker to various LD cycles is interpreted in terms of this PRC. The effect of light immediately preceding gut purge was analyzed to account for the deviation of the actual gut-purge rhythm from the prediction made by considering only the action of the oscillation. Lack of precision in gut-purge timing in LD cycles with a very short scotophase has been explained by the failure of the oscillation in these conditions to attain the specific phase-point at which the clock information dictating gut-purge timing is released.Abbreviations AZT arbitrary Zeitgeber time - CT circadian time - PRC phase response curve  相似文献   

10.
Photic phase response curves (PRCs) have been extensively studied in many laboratory-bred diurnal and nocturnal rodents. However, comparatively fewer studies have addressed the effects of photic cues on wild diurnal mammals. Hence, we studied the effects of short durations of light pulses on the circadian systems of the diurnal Indian Palm squirrel, Funambulus pennanti. Adult males entrained to a light–dark cycle (12?h–12?h) were transferred to constant darkness (DD). Free-running animals were exposed to brief light pulses (250 lux) of 15?min, 3 circadian hours (CT) apart (CT 0, 3, 6, 9, 12, 15, 18 and 21). Phase shifts evoked at different phases were plotted against CT and a PRC was constructed. F. pennanti exhibited phase-dependent phase shifts at all the CTs studied, and the PRC obtained was of type 1 at the intensity of light used. Phase advances were evoked during the early subjective day and late subjective night, while phase delays occurred during the late subjective day and early subjective night, with maximum phase delay at CT 15 (?2.04?±?0.23?h), and maximum phase advance at CT 21 (1.88?±?0.31?h). No dead zone was seen at this resolution. The free-running period of the rhythm was concurrently lengthened (deceleration) during the late subjective day and early subjective night, while period shortening (acceleration) occurred during the late subjective night. The maximum deceleration was noticed at CT 15 (?0.40?±?0.09?h) and the maximum acceleration at CT 21 (0.39?±?0.07?h). A significant positive correlation exists between the phase shifts and the period changes (r?=?0.684, p?=?0.001). The shapes of both the PRC and period response curve (τRC) qualitatively resemble each other. This suggests that the palm squirrel’s circadian system is entrained both by phase and period responses to light. Thus, F. pennanti exhibits robust clock-resetting in response to light pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号