首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article attempts to explain that parasitoids provide the evolutionary pressure responsible for relationships between habitat use and larval food plant use in herbivorous insects. Three species of butterflies of the genus Pieris, P. rapae, P. melete, and P. napi use different sets of cruciferous plants. They prefer different habitats composed of similar sets of cruciferous plants. In our study, P. rapae used temporary habitats with ephemeral plants, P. melete used permanent habitat with persistent plants, although they also used temporary habitats, and P. napi used only permanent habitat. The choice experiment in the field cages indicated that each of the three butterfly species avoided oviposition on plants usually unused in its own habitat, but accepted the unused plants which grew outside its own habitat. Their habitat use and plant use were not explained by intrinsic plant quality examined in terms of larval performance. Pieris larvae collected from persistent plants or more long lasting habitats were more heavily parasitized by two specialist parasitoids, the braconid wasp Cotesia glomerata and the tachinid fly Epicampocera succincta. The results suggest that Pieris habitat and larval food plant use patterns can be explained by two principles. The evolution of habitat preference may have been driven by various factors including escape from parasitism. Once habitat preference has evolved, selection favors the evolution of larval food plant preferences by discriminating against unsuitable plants, including those which are associated with high parasitism pressures. Received: December 3, 1998 / Accepted: January 20, 1999  相似文献   

2.
The adult populations of three Pieris butterflies, P. rapae, P. melete and P. napi, were studied in an area of their coexistence throughout the flight seasons by using the mark-and-recapture method. The study area, about 3×1.5 km, was set up in a farm village surrounded by the mountainous area in Inabu, Aichi Prefecture. The habitats were qualified by the four factors, i. e., oviposition plants, adult nector plants, roosting-sites and light conditions. Between P. rapae and P. napi, there were sharp differences with regards to overall habitat preferences. P. melete had the widest preferences for all the habitat resources, which overlapped greately with requirements of P. rapae and P. napi. P. melete and P. rapae showed similar preferences for oviposition plants, but the former preferred shaded habitats while the latter preferred sunny places. P. melete and P. napi, having similar preferences for shaded situations, showed differences in the preferences for oviposition plants. Moreover, three species of Pieris were different in their preferences for adult nector plants. Thus, they were more likely to partition habitat resources rather than competing for them. The habitat structures of each species in respect of time, space and stability to weather changes were much different each other in the same area. The habitat of P. rapae was temporary, localized and unstable. While, that of P. melete was more permanent, widespread and stable than that of P. rapae. P. napi seemed to live in the intermediate habitat, i. e., permanent, localized and stable one.  相似文献   

3.
We investigated the causes of among-plant variation in the parasitism rate of Pieris melete larvae (Lepidoptera: Pieridae) by the parasitoid fly Epicampocera succincta (Diptera: Tachinidae). The rate of parasitism by E. succincta was much higher on the bitter cress Cardamine appendiculata than on any other cruciferous plants. Adult female flies were found to be more attracted to C. appendiculata than to other cruciferous plants for searching for hosts. The parasitoid appeared to be unable to distinguish P. melete from an alternative host, Pieris rapae larvae, that coexisted with P. melete on most crucifer plants. Similarly, E. succincta failed to avoid P. rapae parasitized by the braconid wasp Cotesia glomerata. C. glomerata is a superior competitor to E. succincta if occupying the same host, killing the host before the E. succincta larva can grow and depriving the larva of the chance to survive. E. succincta attacked P. rapae larvae on most cruciferous plants, many of which were already occupied by C. glomerata; only on Cardamine appendiculata was E. succincta free from interspecific competition, because only P. melete was found on this particular plant. However, the strong preference for the hosts on C. appendiculata incurred heavy intraspecific competition among larvae on this plant, killing as great a proportion of larvae as interspecific competition did on the other plants. The balance between the strength of intraspecific competition on the preferred plant and of interspecific competition on the other plants appeared to maintain plant preference by E. succincta. Received: November 13, 2000 / Accepted: April 27, 2001  相似文献   

4.
Utilization of patchy habitats by adult populations of three Pieris butterflies, P. rapae, P. melete and P. napi was studied throughout the flight season in an area of their coexistence, about 3×1.5 km, in a farm village in the mountains in Inabu, Aichi Prefecture. Field study was by the mark-recapture method. Results were analyzed by dispersal distances and recapture duration decay curves for adults of different age-classes estimated on the basis of physical condition of their wings, together with supplementary information of daliy egg-laying rate of females, obtained in field cages. Sexually immature, mated femals of P. rapae after teneral stage showed a migratory flight. On the other hand, reproductive females and all males of P. rapae were strongly resident within suitable habitats, and reproductive females begun to lay eggs abundantly at sunny places of newly suitable areas within a short period. P. melete seemed to disperse gradually from emerged stites and females of this species continued to lay some constant numbers of eggs for more than ten days over a wider area. P. napi appeared more like P. melete than P. rapae. The habitats of the three species can be characterized as follows:P. rapae, temporary, continued for pre-reproductive females but localized for reproductive females and all males, and unstable;P. melete, permanent, widespread, and stable;P. napi, permanent, localized, and stable. The numbers of generations of P. rapae, P. melete and P. napi were estimated to be about six, three and three, respectively. Seasonal fluctuations in the number of adults were influenced by the stability of their habitats, i. e., the population size fluctuated sharply in P. rapae, but it was much more stable in P. melete and P. napi. In view of these results, it can be said that P. rapae fits the general characteristics of a r-strategist whereas P. melete and P. napi are more K-strategic than P. rapae.  相似文献   

5.
Intra- and interspecific larval interactions that take place in a host body were investigated for two tachnid fliesEpicampocera succincta andCompsilura concinnata (Diptera: Tachinidae) parasitizingPieris butterfly larvae.E. succincta, a specialist onPieris butterflies, showed contest-type intraspecific competition, eliminating all the other conspecific larvae. On the other hand, an extreme generalist parasitoidC. concinnata exhibited scramble-type competition, sharing the host with other conspecifics and suffering reduced body size as a result. However, when these two species occurred together in a single host,C. concinnata had a much higher chance of survival. Moreover,C. concinnata could often survive in the presence of a parasitoid waspCotesia glomerata (Hymenoptera: Braconidae) whileE. succincta could not. The high tolerance ofC. concinnata could be attributable to its being an extreme generalist: To attack and survive on many different hosts, one has to be able to deal with various competitors. The competitive inferiority of the specialistE. succincta, on the other hand, may be a result of relatively recent encounter with, those competitors.  相似文献   

6.
1. Often, closely related insect species feed on different host plant species, and the tremendous diversity of phytophagous insects is therefore attributed to host plant‐driven speciation. However, for most taxa, host use information comes from field observations of egg‐laying females or feeding caterpillars, which means that the underlying reason for a particular host‐affiliation is not easily determined. 2. Therefore, it is often unclear whether an insect feeds on a certain host because it prefers that plant to alternative hosts, or because the host distribution overlaps with the habitat requirements of the insect. 3. We ask to what extent a divergent host use in the field mirrors the host plant preferences of two closely related butterflies, Pieris napi and Pieris rapae (Pieridae). In nature, P. napi typically occurs in moister habitats than P. rapae. 4. We scanned several microhabitats at a field site in Southern Sweden during multiple years, and collected Pieris eggs from three different plants, Cardamine pratensis (wet meadows), Barbarea vulgaris (drier micro‐habitats) and Alliaria petiolata (intermediate areas). 5. As predicted, P. rapae eggs were more common than P. napi eggs on B. vulgaris, whereas all of the 358 individuals collected from C. pratensis were P. napi, indicating a divergence in host use between the Pieris species. However, under controlled laboratory conditions, both species had virtually identical oviposition preferences, laying eggs on all three plants, notably P. rapae also laying eggs on C. pratensis, indicating that habitat use, not plant preference, drives host plant use in nature.  相似文献   

7.
Behavioural thermoregulation of 3Pieris butterfly species,P. rapae, P. melete andP. napi, was examined in relation to the intensity of solar radiation. To evaluate solar radiation intensity, the temperature (Twr) was measured with a mercury thermometer whose bulb was covered with white cloth and exposed to direct sunlight. On clear days, the diurnal air temperature was between 16 and 28°C. The Twt varied between 18 and 45°C, while the temperature in the shade was under 25°C. When the Twt was under 28°C, the body temperatures (Th) of butterflies closely coincided with it. Butterflies with Tb's under 26°C were resting, while those with Tb's between 26 and 28°C were basking. When Twr was between 28 and 40°C, the butterflies were active and their Tb's were always lower than Twr, never exceeding 36°C, though body temperatures could be artificially elevated easily up to the level of Twr. When Twr exceeded 40°C, butterflies showed species-specific heat-avoiding behaviour.P. rapae, whose habitat resources exist in the sun, intercepted solar radiation by closing the wings over the body.P. melete andP. napi, however, whose main habitat resources exist in the shade, moved into the shade. Strictly speaking, it is concluded that both butterflies, in many cases, leave shaded habitats for sunny habitats to elevate their Tb rather than enter the shaded habitats for heat-avoiding.  相似文献   

8.
We studied the attraction of a tachinid fly, Gymnosoma rotundatum (Linnaeus) to the male-produced aggregation pheromone of the brown-winged green bug, Plautia stali Scott, its parasitism on the bug, and its seasonal occurrence in the field. The tachinid fly was continuously attracted to the aggregation pheromone from spring to autumn and utilized the bugs as hosts. Our field experiment to clarify the effect of the pheromone on parasitism demonstrated that parasitism occurred only in female bugs baited with synthetic aggregation pheromone and did not occur in females without the pheromone. The parasitoid flies therefore appeared to use the bug’s pheromone as a host-finding kairomone. The pheromone attracted not only female flies but also males. Male flies may increase their chance of encountering pheromone-attracted females by waiting near pheromone sources. The tachinid develops multiple generations in active hosts from spring to autumn and overwinters in dormant hosts. Thus, G. rotundatum seems to be highly adapted to using P. stali as its host, and it is a potentially important biological control agent of P. stali populations in the field.  相似文献   

9.
The main objective of this study was to determine the extent to which host acceptance behaviour as related to host species, age, and defensive behaviour might explain the differences in host use that exist between two congeneric and sympatric species of parasitic wasps. Cotesia glomerata (L.) (Hymenoptera: Braconidae) is gregarious and generalist on several species of Pieridae, whereas C. rubecula (Marshall) is solitary and specific to Pieris rapae (L.). Cotesia species differed in their responses to host species (P. brassicae (L.), P. napi (L.) and P. rapae) and developmental stage (early and late 1st, 2nd and 3rd instars). In no-choice tests, host acceptance by C. rubecula was higher for p. rapae and females did not distinguish among the 6 host ages. In contrast, when foraging for P. brassicae and P. napi, C. rubecula females more readily attacked early first instar. Cotesia glomerata showed a higher degree of behavioural plasticity towards acceptance of Pieris host species and host age than did C. rubecula. Cotesia glomerata females parasitized the three Pieris species and showed higher acceptance of first and second instars over third instar. Oviposition success was also influenced by host defensive behaviour. The frequency and the effectiveness of defensive behaviour rose with increasing age of the host, P. brassicae being the most aggressive Pieris species. Furthermore, the mean duration of C. glomerata oviposition was significantly reduced by the defensive reactions of P. brassicae, which would likely affect parasitoid fitness as oviposition time is positively correlated to clutch size in C. glomerata. Acceptance frequencies corresponded well to field reports of Pieris-Cotesia associations and to patterns of parasitoid larval performance, suggesting that the acceptance phase might be used as a reliable indicator of Cotesia host-specificity.  相似文献   

10.
Field experiments with foraging parasitoids are essential to validate the conclusions from laboratory studies and to interpret differences in searching and host selection behaviour of parasitoid species. Furthermore, field experiments can indicate whether the parameters measured in the laboratory are relevant to elucidation of the ecological processes under study, such as adaptation or species interactions. In previous extensive laboratory studies we studied plant- and host-searching behaviour, host acceptance, host suitability; host plant preference, and learning of two congeneric parasitoids of Pieris caterpillars: the generalist Cotesia glomerata, which has been reported to attack several Pieridae species, and C. rubecula, a specialist of the small cabbage white Pieris rapae. In the present field study our aim was to verify the importance of these previous laboratory findings for explaining the performance of these two species in the field. We investigated experimentally whether parasitism on three Pieris species varied with parasitoid species and with food plant of the caterpillars. We exposed different types of host plants, infested with different Pieris species, to parasitism by natural populations of Cotesia species, by setting the experimental plants out in Brussels sprouts cabbage fields. Furthermore we made direct observations of parasitoid foraging in the field. In general, the field results confirmed our predictions on the range of host plant and host species used in the field. The two Cotesia species appear to coexist through niche segregation, since C. glomerata was mainly recovered from P. brassicae and C. rubecula from P. rapae. Although C. glomerata is a generalist at the species level, it can be a specialist at the population level under certain ecological circumstances. Our study shows the importance of variation in host plant attraction and host species acceptance in restricting host plant and host diet in the field. Furthermore the results suggest that, at least in the Netherlands, specialisation of C. glomerata on P. brassicae may occur as a result of C. rubecula outcompeting C. glomerata in P. rapae larvae. Received: 8 July 1999 / Accepted: 31 January 2000  相似文献   

11.
12.
Female butterflies should distinguish conspecific males from males of different species. The aim of the present study was to evaluate the female role in avoiding allospecific mating between 2 sympatric pierids,Pieris rapae crucivora (P. rapae hereafter) andP. melete. Since it is relatively rate to observe responses of a wild female to a courting male of different species, we substituted the wings of a female with those of a female of the other species. Such a female attracted allospecific males. FemaleP. melete took “mate-refusal posture” to courting males, regardless whether the male belonged to different species or not. FemaleP. melete discontinued the posture only when the male was conspecific. Such a behavioural difference indicates that the female discriminated its conspecific male. On the other hand, when only the mate-refusal posture was taken into account, a femaleP. rapae did not differently respond to courlship of males of bothP. melete andP. rapae. Having once approached, the maleP. melete attempted more frequently to copulate with its conspecific females than with allospecific ones, while the maleP. rapae indiscriminately attempted to copulate with both allospecific and conspecific females. The maleP. melete tended to persist in its courtship to females of bothP. rapae andP. melete who took the mate-refusal posture. The mate recognition system by male and female in these 2 species is discussed in connexion with the difference in mating behaviour pattern of the species.  相似文献   

13.
The reproductive compensation hypothesis suggests that recently parasitized animals could offset future reproductive losses by increasing their current reproductive effort. We test this hypothesis by determining how male Texas field crickets (Gryllus texensis) alter their mate attraction displays following parasitism by acoustically orienting female parasitoid flies Ormia ochracea (Diptera, Tachinidae, Ormiini). Larval tachinid parasitoids cause little damage in phase I of host infestation. However, substantial host damage occurs in phase II, which results in parasitoid emergence and host death. We predicted that recently parasitized crickets would increase their mate attraction behaviour over pre‐parasitism levels to enhance their abilities to attract a mate in phase I. Contrary to our prediction, during phase I neither total signalling time, trilling bout duration, trilling bout rate or amplitude changed from pre‐parasitism levels. During phase II male crickets had significantly reduced total signalling times, and produced calls of significantly shorter duration at significantly slower trilling bout rates. Our results suggest that male Texas field crickets do not compensate for their shortened lifespan by increasing their reproductive effort following parasitism.  相似文献   

14.
Trybliographa rapae (Westwood) is an important parasitoid of Delia radicum (L.). Parasitism of D. radicum larvae by T. rapae in relation to host density on canola (oilseed rape) and cauliflower roots was examined at 10 field sites in Germany and Switzerland. For roots with host larvae, the proportion of roots with one or more parasitized hosts increased with increasing host density. However, for these infested roots, the parasitism of individual larvae was not consistently related to host density. When considering only roots on which there were parasitized larvae and the opportunity for multiple attacks, the proportion of larvae that were parasitized decreased with increasing host density in the field locations, and in a cage study under controlled conditions. A model of patch‐finding and number of attacks by female parasitoids suggests that patch‐finding is density‐dependent, but that low attack rate and interference effects limit numbers of attacks to three or less per visit to a host patch; the reduced number of attacks per visit leads to the inverse relationship of larval parasitism with host density in the host patches visited. The interplay of the density‐dependent and inversely density‐dependent processes appears to be responsible for the inconsistency of density dependence of overall larval parasitism in this and previous studies. In the laboratory, adult female T. rapae parasitized hosts at ≤4 cm deep in soil, but not at 6 cm deep. From the depth distribution of larval feeding sites in the field, we infer that between 4% and 20% of Delia larvae may be in a physical refuge from T. rapae parasitism, which may have a stabilizing influence on the host–parasitoid interaction.  相似文献   

15.
The co‐occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects (1) plant volatiles emitted in response to damage by a specialist herbivore, Pieris brassicae; (2) the attraction of the parasitic wasp Cotesia glomerata and (3) the performance of P. brassicae and C. glomerata. Plant volatiles were significantly induced by herbivory in both healthy and mildew‐infected plants, but were quantitatively 41% lower for mildew‐infected plants compared to healthy plants. Parasitoids strongly preferred Pieris‐infested plants to dually‐infested (Pieris + mildew) plants, and preferred dually infested plants over only mildew‐infected plants. The performance of P. brassicae was unaffected by powdery mildew, but C. glomerata cocoon mass was reduced when parasitized caterpillars developed on mildew‐infected plants. Thus, avoidance of mildew‐infested plants may be adaptive for C. glomerata parasitoids, whereas P. brassicae caterpillars may suffer less parasitism on mildew‐infected plants in nature. From a pest management standpoint, the concurrent presence of multiple plant antagonists can affect the efficiency of specific natural enemies, which may in turn have a negative impact on the regulation of pest populations.  相似文献   

16.
An overwintering population of the mushroom phorid fly Megaselia halterata parasitized by Howardula husseyi was studied in an attempt to explain the winter decline in incidence of parasitism that has been observed in flies from mushroom farms. Fly larvae from eggs hatching in November developed into pupae in December and flies emerged in May. No selective mortality of parasitized specimens of larvae, pupae, or flies was observed. Dead parasites were found in only 10% of parasitized flies. The incidence of parasitism in the emerging flies (50%) was five times that of their parental generation and although parasitism significantly delayed fly emergence the delay was only 2–3 days. There was no evidence of winter decline in parasitism; instead there was strong evidence that parasitism enhanced phorid survival through the winter.  相似文献   

17.
In this study we address the question of how much of the covariation among phenotypic characters observed in natural populations is adaptive. We examine covariation among a set of phenotypic characters that describe the wing-melanization pattern of Pieris butterflies. Previous functional analyses of thermoregulatory performance allow us to predict a priori whether and how different wing melanic characters should be correlated. We quantify and analyze the variation in the wing-melanization pattern within species for a series of Pieris populations from relatively cool environments in North America and compare these results with the predictions based on our adaptive hypothesis. We consider adaptive covariation both for biogeographic variation among populations and for seasonal polyphenism (phenotypic plasticity) within populations. Our hypothesis correctly predicts many of the qualitative features of covariation in melanization among major regions of the wings, at the level of biogeographic variation among populations, for both males and females of Pieris occidentalis. When within-population variation is considered, agreement with the adaptive predictions varies considerably in different populations for both P. occidentalis and P. napi males and females. Agreement for P. napi, particularly the females, is generally poorer than for P. occidentalis. In both species, there is a consistent difference in melanization pattern between alpine and arctic sites; this difference is discussed in relation to the differences in the radiative environment between these two types of “cold” habitats. Our results suggest that some important aspects of phenotypic correlation among wing melanic characters in Pieris are adaptive. We emphasize the important distinction between covariation and co-occurrence of characters, and we discuss these results in relation to the extensive biogeographic variation and phenotypic plasticity (seasonal polyphenism) in Pieris wing-melanization patterns.  相似文献   

18.
Oviposition responses ofPieris rapae L. andP. napi oleracea Harris to nine crucifers, one Capparidaceae and one Tropaeolaceae were directly compared under controlled conditions. Chemical fractions from these plants were also tested on both insects for the presence of oviposition stimulants or deterrents. The results showed that plant chemistry is a key factor in differential selection of potential hosts by thesePieris species. Some plant species were equally acceptable to bothPieris species. However,P. rapae preferred cabbage over most test plants whereasP. napi oleracea strongly preferred plant species that were avoided byP. rapae. The observed preferences were explained in most cases by the presence of stimulants and deterrents in extracts of the plants. The twoPieris species have apparently evolved differential sensitivities to the chemical stimuli that trigger or deter oviposition. The balance of positively and negatively interpreted sensory signals evoked by plant chemicals obviously plays an important role in acceptance or rejection of a plant by both species. The role of specific glucosinolates and differing structure-activity relationships is suggested.  相似文献   

19.
Studies on populations of Brevicoryne brassicae (L.), its parasites and hyperparasites were carried out by actual counting in the sprouts field and by sticky and water traps. B. brassicae was found to be attacked by one primary parasite, Diaretiella rapae (McIntosh ), which in turn is parasitized by Alloxysta brassicae (Ashm. ),Asaphes vulgarisWalker ,A. suspensus (Nees ),Pachyneuron minutissimum (Förster ) and Dendrocerus carpenterii (Curtis ). The aphid population in the field was started by immigrant alates which were found flying too early to be synchronized with the sprouts plants. Similarly D. rapae was not synchronized with the aphids although many individuals could have been carried into a plot through parasitized immigrant alates, of which less than 30% were found parasitized. Because of high hyperparasitism (especially by A. brassicae)D. rapae was not able to maintain a high rate of parasitism to curb the aphid population growth. The maximum percentage mummies being 27.8%, while the maximum, percentage parasitism being 56.6% recorded only during the early 1974 season (mean=12.9%). The decline of aphid population from September onwards was largely due to the cold weather, Syrphid predation and occasionally fungal attack. The high rate of hyperparasitism by A. brassicae is attributed to its better synchronization with D. rapae. The mean percentage of parasite that emerged from mummies collected during 1973–74 were D. rapae 31.3%,A. brassicae 64.3%,A. vulgaris and A. suspensus 4.3%,D. carpenterii 0.2% and P. minutissimum 0.1%.  相似文献   

20.
The entomogenous nematode Neoaplectana carpocapsae and its associated bacterium, Xenorhabdus nematophilus, could not infect the pupal stage of the tachinid Compsilura concinnata through the puparium. N. carpocapsae had an adverse effect on 1-, 2- and 3-day-old C. concinnata larvae within the armyworm host in petri dish tests. All 1-day-old larvae treated with nematodes died in their hosts, whereas 61% and 69% of 2- and 3-day-old larvae treated with nematodes, respectively, died. However, the survivors developed to adults. Nine to thirty-seven percent of adult tachinids which emerged from nematode-treated soil (50 nematodes/cm²) were infected with N. carpocapsae. The nematode adversely affects C. concinnata directly by the frank infection of the tachinid and indirectly by causing the premature death of the host which results in tachinid death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号