首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
2.
Expansion of DNA trinucleotide repeats causes at least 15 hereditary neurological diseases, and these repeats also undergo contraction and fragility. Current models to explain this genetic instability invoke erroneous DNA repair or aberrant replication. Here we show that CAG/CTG tracts are stabilized in Saccharomyces cerevisiae by the alternative clamp loader/unloader Ctf18-Dcc1-Ctf8-RFC complex (Ctf18-RFC). Mutants in Ctf18-RFC increased all three forms of triplet repeat instability--expansions, contractions, and fragility--with effect over a wide range of allele lengths from 20-155 repeats. Ctf18-RFC predominated among the three alternative clamp loaders, with mutants in Elg1-RFC or Rad24-RFC having less effect on trinucleotide repeats. Surprisingly, chl1, scc1-73, or scc2-4 mutants defective in sister chromatid cohesion (SCC) did not increase instability, suggesting that Ctf18-RFC protects triplet repeats independently of SCC. Instead, three results suggest novel roles for Ctf18-RFC in facilitating genomic stability. First, genetic instability in mutants of Ctf18-RFC was exacerbated by simultaneous deletion of the fork stabilizer Mrc1, but suppressed by deletion of the repair protein Rad52. Second, single-cell analysis showed that mutants in Ctf18-RFC had a slowed S phase and a striking G2/M accumulation, often with an abnormal multi-budded morphology. Third, ctf18 cells exhibit increased Rad52 foci in S phase, often persisting into G2, indicative of high levels of DNA damage. The presence of a repeat tract greatly magnified the ctf18 phenotypes. Together these results indicate that Ctf18-RFC has additional important functions in preserving genome stability, besides its role in SCC, which we propose include lesion bypass by replication forks and post-replication repair.  相似文献   

3.
Homologous recombination was shown to enable the expansion of CTG.CAG repeat sequences. Other prior investigations revealed the involvement of replication and DNA repair in these genetic instabilities. Here we used a genetic assay to measure the frequency of homologous intermolecular recombination between two CTG.CAG tracts. When compared with non-repeating sequences of similar lengths, long (CTG.CAG)(n) repeats apparently recombine with an approximately 60-fold higher frequency. Sequence polymorphisms that interrupt the homogeneity of the CTG.CAG repeat tracts reduce the apparent recombination frequency as compared with the pure uninterrupted repeats. The orientation of the repeats relative to the origin of replication strongly influenced the apparent frequency of recombination. This suggests the involvement of DNA replication in the recombination process of triplet repeats. We propose that DNA polymerases stall within the CTG.CAG repeat tracts causing nicks or double-strand breaks that stimulate homologous recombination. The recombination process is RecA-dependent.  相似文献   

4.
Synthetic lethality is inviability of a double-mutant combination of two fully viable single mutants, commonly interpreted as redundancy at an essential metabolic step. The dut-1 defect in Escherichia coli inactivates dUTPase, causing increased uracil incorporation in DNA and known synthetic lethalities [SL(dut) mutations]. According to the redundancy logic, most of these SL(dut) mutations should affect nucleotide metabolism. After a systematic search for SL(dut) mutants, we did identify a single defect in the DNA precursor metabolism, inactivating thymidine kinase (tdk), that confirmed the redundancy explanation of synthetic lethality. However, we found that the bulk of mutations interacting genetically with dut are in DNA repair, revealing layers of damage of increasing complexity that uracil-DNA incorporation sends through the chromosomal metabolism. Thus, we isolated mutants in functions involved in (i) uracil-DNA excision (ung, polA, and xthA); (ii) double-strand DNA break repair (recA, recBC, and ruvABC); and (iii) chromosomal-dimer resolution (xerC, xerD, and ftsK). These mutants in various DNA repair transactions cannot be redundant with dUTPase and instead reveal “defect-damage-repair” cycles linking unrelated metabolic pathways. In addition, two SL(dut) inserts (phoU and degP) identify functions that could act to support the weakened activity of the Dut-1 mutant enzyme, suggesting the “compensation” explanation for this synthetic lethality. We conclude that genetic interactions with dut can be explained by redundancy, by defect-damage-repair cycles, or as compensation.  相似文献   

5.
Features of trinucleotide repeat instability in vivo   总被引:5,自引:0,他引:5  
Unstable repeats are associated with various types of cancer and have been implicated in more than 40 neurode-generative disorders. Trinucleotide repeats are located in non-coding and coding regions of the genome. Studies of bacteria, yeast, mice and man have helped to unravel some features of the mechanism of trinucleotide expansion. Looped DNA structures comprising trinucleotide repeats are processed during replication and/or repair to generate deletions or expansions. Most in vivo data are consistent with a model in which expansion and deletion occur by different mechanisms. In mammals, microsatellite instability is complex and appears to be influenced by genetic, epigenetic and developmental factors.  相似文献   

6.
Microsatellite instability induced by hydrogen peroxide in Escherichia coli   总被引:1,自引:0,他引:1  
Damage to DNA by reactive oxygen species may be a significant source of endogenous mutagenesis in aerobic organisms. Using a selective assay for microsatellite instability in E. coli, we have asked whether endogenous oxidative mutagenesis can contribute to genetic instability. Instability of repetitive sequences, both in intronic sequences and within coding regions, is a hallmark of genetic instability in human cancers. We demonstrate that exposure of E. coli to low levels of hydrogen peroxide increases the frequency of expansions and deletions within dinucleotide repetitive sequences. Sequencing of the repetitive sequences and flanking non-repetitive regions in mutant clones demonstrated the high specificity for alterations with the repeats. All of the 183 mutants sequenced displayed frameshift alterations within the microsatellite repeats, and no base substitutions or frameshift mutations occurred within the flanking non-repetitive sequences. We hypothesize that endogenous oxidative damage to DNA can increase the frequency of strand slippage intermediates occurring during DNA replication or repair synthesis, and contribute to genomic instability.  相似文献   

7.
《Epigenetics》2013,8(7):862-869
The etiologic paradigm of complex human disorders such as autism is that genetic and environmental risk factors are independent and additive, but the interactive effects at the epigenetic interface are largely ignored. Genomic technologies have radically changed perspective on the human genome and how the epigenetic interface may impact complex human disorders. Here, I review recent genomic, environmental, and epigenetic findings that suggest a new paradigm of “integrative genomics” in which genetic variation in genomic size may be impacted by dietary and environmental factors that influence the genomic saturation of DNA methylation. Human genomes are highly repetitive, but the interface of large-scale genomic differences with environmental factors that alter the DNA methylome such as dietary folate is under-explored. In addition to obvious direct effects of some environmental toxins on the genome by causing chromosomal breaks, non-mutagenic toxin exposures correlate with DNA hypomethylation that can lead to rearrangements between repeats or increased retrotransposition. Since human neurodevelopment appears to be particularly sensitive to alterations in epigenetic pathways, a further focus will be on how developing neurons may be particularly impacted by even subtle alterations to DNA methylation and proposing new directions towards understanding the quixotic etiology of autism by integrative genomic approaches.  相似文献   

8.
The clustered regularly interspaced short palindromic repeats(CRISPR)-associated endonuclease 9(CRISPR/Cas9) system has emerged as a promising technology for specific genome editing in many species. Here we constructed one vector targeting eight agronomic genes in rice using the CRISPR/Cas9 multiplex genome editing system. By subsequent genetic transformation and DNA sequencing, we found that the eight target genes have high mutation efficiencies in the T_0 generation. Both heterozygous and homozygous mutations of all editing genes were obtained in T_0 plants. In addition, homozygous sextuple, septuple, and octuple mutants were identified. As the abundant genotypes in T_0 transgenic plants, various phenotypes related to the editing genes were observed. The findings demonstrate the potential of the CRISPR/Cas9 system for rapid introduction of genetic diversity during crop breeding.  相似文献   

9.
Inverted repeats are important genetic elements for genome instability. In the current study we have investigated the role of inverted repeats in a DNA rearrangement reaction using a linear DNA substrate. We show that linear DNA substrates with terminal inverted repeats can efficiently transform Escherichia coli. The transformation products contain circular inverted dimers in which the DNA sequences between terminal inverted repeats are duplicated. In contrast to the recombination/rearrangement product of circular DNA substrates, which is exclusively one particular form of the inverted dimer, the rearrangement products of the linear DNA substrate consist of two isomeric forms of the inverted dimer. Escherichia coli mutants defective in RecBCD exhibit much reduced transformation efficiency, suggesting a role for RecBCD in the protection rather than destruction of these linear DNA substrates. These results suggest a model in which inverted repeats near the ends of a double-strand break can be processed by a helicase/exonuclease to form hairpin caps. Processing of hairpin capped DNA intermediates can then yield inverted duplications. Linear DNA substrates containing terminal inverted repeats can also be converted into inverted dimers in COS cells, suggesting conservation of this type of genome instability from bacteria to mammalian cells.  相似文献   

10.
While the mechanisms governing DNA damage response and repair are fundamentally conserved, cross-kingdom comparisons indicate that they differ in many aspects due to differences in life-styles and developmental strategies. In photosynthetic organisms these differences have not been fully explored because gene-discovery approaches are mainly based on homology searches with known DDR/DNA repair proteins. Here we performed a forward genetic screen in the green algae Chlamydomonas reinhardtii to identify genes deficient in DDR/DNA repair. We isolated five insertional mutants that were sensitive to various genotoxic insults and two of them exhibited altered efficiency of transgene integration. To identify genomic regions disrupted in these mutants, we established a novel adaptor-ligation strategy for the efficient recovery of the insertion flanking sites. Four mutants harbored deletions that involved known DNA repair factors, DNA Pol zeta, DNA Pol theta, SAE2/COM1, and two neighbouring genes encoding ERCC1 and RAD17. Deletion in the last mutant spanned two Chlamydomonas-specific genes with unknown function, demonstrating the utility of this approach for discovering novel factors involved in genome maintenance.  相似文献   

11.
The exploration of microbial metabolism is expected to support the development of a sustainable economy and tackle several problems related to the burdens of human consumption. Microorganisms have the potential to catalyze processes that are currently unavailable, unsustainable and/or inefficient. Their metabolism can be optimized and further expanded using tools like the clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR‐Cas) systems. These tools have revolutionized the field of biotechnology, as they greatly streamline the genetic engineering of organisms from all domains of life. CRISPR‐Cas and other nucleases mediate double‐strand DNA breaks, which must be repaired to prevent cell death. In prokaryotes, these breaks can be repaired through either homologous recombination, when a DNA repair template is available, or through template‐independent end joining, of which two major pathways are known. These end joining pathways depend on different sets of proteins and mediate DNA repair with different outcomes. Understanding these DNA repair pathways can be advantageous to steer the results of genome engineering experiments. In this review, we discuss different strategies for the genetic engineering of prokaryotes through either non‐homologous end joining (NHEJ) or alternative end joining (AEJ), both of which are independent of exogenous DNA repair templates.  相似文献   

12.
13.
14.
Trinucleotide repeats (TNRs) undergo frequent mutations in families affected by TNR diseases and in model organisms. Much of the instability is conferred in cis by the sequence and length of the triplet tract. Trans-acting factors also modulate TNR instability risk, on the basis of such evidence as parent-of-origin effects. To help identify trans-acting modifiers, a screen was performed to find yeast mutants with altered CTG.CAG repeat mutation frequencies. The RTG2 gene was identified as one such modifier. In rtg2 mutants, expansions of CTG.CAG repeats show a modest increase in rate, depending on the starting tract length. Surprisingly, contractions were suppressed in an rtg2 background. This creates a situation in a model system where expansions outnumber contractions, as in humans. The rtg2 phenotype was apparently specific for CTG.CAG repeat instability, since no changes in mutation rate were observed for dinucleotide repeats or at the CAN1 reporter gene. This feature sets rtg2 mutants apart from most other mutants that affect genetic stability both for TNRs and at other DNA sequences. It was also found that RTG2 acts independently of its normal partners RTG1 and RTG3, suggesting a novel function of RTG2 that helps modify CTG.CAG repeat mutation risk.  相似文献   

15.
Facioscapulohumeral muscular dystrophy (FSHD) is a common hereditary myopathy causally linked to reduced numbers (≤8) of 3.3 kilobase D4Z4 tandem repeats at 4q35. However, because individuals carrying D4Z4-reduced alleles and no FSHD and patients with FSHD and no short allele have been observed, additional markers have been proposed to support an FSHD molecular diagnosis. In particular a reduction in the number of D4Z4 elements combined with the 4A(159/161/168)PAS haplotype (which provides the possibility of expressing DUX4) is currently used as the genetic signature uniquely associated with FSHD. Here, we analyzed these DNA elements in more than 800 Italian and Brazilian samples of normal individuals unrelated to any FSHD patients. We find that 3% of healthy subjects carry alleles with a reduced number (4–8) of D4Z4 repeats on chromosome 4q and that one-third of these alleles, 1.3%, occur in combination with the 4A161PAS haplotype. We also systematically characterized the 4q35 haplotype in 253 unrelated FSHD patients. We find that only 127 of them (50.1%) carry alleles with 1–8 D4Z4 repeats associated with 4A161PAS, whereas the remaining FSHD probands carry different haplotypes or alleles with a greater number of D4Z4 repeats. The present study shows that the current genetic signature of FSHD is a common polymorphism and that only half of FSHD probands carry this molecular signature. Our results suggest that the genetic basis of FSHD, which is remarkably heterogeneous, should be revisited, because this has important implications for genetic counseling and prenatal diagnosis of at-risk families.  相似文献   

16.
Mutagen hypersensitivity (MHS) has been found to be associated with abnormalities in DNA metabolic processes in many prokaryotic and eukaryotic organisms. The study of fibroblasts derived from humans with genetic diseases believed to have altered DNA metabolism, has also revealed patterns of MHS. In this paper results are presented that suggest MHS patterns unrelated to obvious disease can be inherited in a dominant fashion. As these individuals exhibiting MHS patterns have been observed in families with poor reproductive history, new syndromes, or ontogenetic problems (including malignancies) there may be a causal relationship between these events and the MHS. These events which may have a genetic basis appear as maternal or paternal effect mutants as the consequences are observed in reduced reproductive fitness or abnormal progeny. Since these effects are similar to the events precipitated by the meiotic or mutator mutants in Drosophila, it is speculated that the MHS patterns may be the hallmarks of such mutants in man.  相似文献   

17.
The catalytic DNA primase subunit of the DNA polymerase alpha-primase complex is encoded by the essential PRI1 gene in Saccharomyces cerevisiae. To identify factors that functionally interact with yeast DNA primase in living cells, we developed a genetic screen for mutants that are lethal at the permissive temperature in a cold-sensitive pril-2 genetic background. Twenty-four recessive mutations belonging to seven complementation groups were identified. Some mutants showed additional phenotypes, such as increased sensitivity to UV irradiation, methyl methanesulfonate, and hydroxyurea, that were suggestive of defects in DNA repair and/or checkpoint mechanisms. We have cloned and characterized the gene of one complementation group, PIP3, whose product is necessary both for delaying entry into S phase or mitosis when cells are UV irradiated in G1 or G2 phase and for lowering the rate of ongoing DNA synthesis in the presence of methyl methanesulfonate. PIP3 turned out to be the MEC3 gene, previously identified as a component of the G2 DNA damage checkpoint. The finding that Mec3 is also required for the G1- and S-phase DNA damage checkpoints, together with the analysis of genetic interactions between a mec3 null allele and several conditional DNA replication mutations at the permissive temperature, suggests that Mec3 could be part of a mechanism coupling DNA replication with repair of DNA damage, and DNA primase might be involved in this process.  相似文献   

18.
Observations of inherited phenotypes that cannot be explained solely through genetic inheritance are increasing. Evidence points to transmission of non-DNA molecules in the gamete as mediators of the phenotypes. However, in most cases it is unclear what the molecules are, with DNA methylation, chromatin proteins, and small RNAs being the most prominent candidates. From a screen to generate novel mouse mutants of genes involved in epigenetic reprogramming, we produced a DNA methyltransferase 3b allele that is missing exon 13. Mice that are homozygous for the mutant allele have smaller stature and reduced viability, with particularly high levels of female post-natal death. Reduced DNA methylation was also detected at telocentric repeats and the X-linked Hprt gene. However, none of the abnormal phenotypes or DNA methylation changes worsened with multiple generations of homozygous mutant inbreeding. This suggests that in our model the abnormalities are reset each generation and the processes of transgenerational epigenetic reprogramming are effective in preventing their inheritance.  相似文献   

19.
Brucella species are gram-negative bacteria which belong to alpha-Proteobacteria family. These organisms are zoonotic pathogens that induce abortion and sterility in domestic mammals and chronic infections in humans known as Malta fever. The virulence of Brucella is dependent upon its ability to enter and colonize the cells in which it multiplies. The genetic basis of this aspect is poorly understood. Signature-tagged mutagenesis (STM) was used to identify potential Brucella virulence factors. PCR amplification has been used in place of DNA hybridization to identify the STM-generated attenuated mutants. A library of 288 Brucella melitensis 16M tagged mini-Tn5 Km2 mutants, in 24 pools, was screened for its ability to colonize spleen, lymph nodes and liver of goats at three weeks post-i.v. infection. This comparative screening identified 7 mutants (approximately 5%) which were not recovered from the output pool in goats. Some genes were known virulence genes involved in biosynthesis of LPS (lpsA gene) or in intracellular survival (the virB operon). Other mutants included ones which had a disrupted gene homologous to flgF, a gene coding for the basal-body rod of the flagellar apparatus, and another with a disruption in a gene homologous to ppk which is involved in the biosynthesis of inorganic polyphosphate (PolyP) from ATP. Other genes identified encoded factors involved in DNA metabolism and oxidoreduction metabolism. Using STM and the caprine host for screening, potential virulence determinants in B. melitensis have been identified.  相似文献   

20.
1. Three methods are described for the genetic analysis of yeast cytoplasmic mutants (mit- mutants) lacking cytochrome oxidase or coenzyme QH2-cytochrome c reductase. The procedures permit mutations in mitochondrial DNA to be mapped relative to each other and with respect to drug-resistant markers. The first method is based upon the finding that crosses of mit- mutants with some but not other isonuclear q- mutants lead to the restoration of respiratory functions. Thus a segment of mitochondrial DNA corresponding to a given mit- mutation or to a set of mutations can be delineated. The second method is based on the appearance of wild-type progeny in mit- X mit- crosses. The third one is based on the analysis of various recombinant classes issued from crosses between mit-, drug-sensitive and mit+, drug-resistant mutants. Representative genetic markers of the RIBI, OLII, OLI2 and PAR1 loci were used for this purpose. 2. The three methods when applied to the study of 48 mit- mutants gave coherent results. At least three distinct regions on mitochondrial DNA in which mutations cause loss of functional cytochrome oxidase have been established. A fourth region represented by closely clustered mutants lacking coenzyme QH2-cytochrome c reductase and spectrally detectable cytochrome b has also been studied. 3. The three genetic regions of cytochrome oxidase and the cytochrome b region were localized by the third method on the circular map, in spans of mitochondrial DNA defined by the drug-resistant markers. The results obtained by this method were confirmed by analysis of the crosses between selected mit- mutants and a large number of q- clones whose retained segments of mitochondrial DNA contained various combinations of drug-resistant markers. 4. All the genetic data indicate that the various regions studied are dispersed on the mitochondrial genome and in some instances regions or clusters of closely linked mutations involved in the same respiratory function (cytochrome oxidase) are separated by other regions which code for entirely different functions such as ribosomal RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号