首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The long-term interaction between elevated CO2 and soil water deficit was analysed in N2-fixing alfalfa plants in order to assess the possible drought tolerance effect of CO2. Elevated CO2 could delay the onset of drought stress by decreasing transpiration rates, but this effect was avoided by subjecting plants to the same soil water content. Nodulated alfalfa plants subjected to ambient (400 μmol mol?1) or elevated (700 μmol mol?1) CO2 were either well watered or partially watered by restricting water to obtain 30% of the water content at field capacity (ampproximately 0.55 g water cm?3). The negative effects of soil water deficit on plant growth were counterbalanced by elevated CO2. In droughted plants, elevated CO2 stimulated carbon fixation and, as a result, biomass production was even greater than in well-watered plants grown in ambient CO2. Below-ground production was preferentially stimulated by elevated CO2 in droughted plants, increasing nodule biomass production and the availability of photosynthates to the nodules. As a result, total nitrogen content in droughted plants was higher than in well-watered plants grown in ambient CO2. The beneficial effect of elevated CO2 was not correlated with a better plant water status. It is concluded that elevated CO2 enhances growth of droughted plants by stimulating carbon fixation, preferentially increasing the availability of photosynthates to below-ground production (roots and nodules) without improving water status. This means that elevated CO2 enhances the ability to produce more biomass in N2-fixing alfalfa under given soil water stress, improving drought tolerance.  相似文献   

2.
Elevated atmospheric carbon dioxide (Ca) usually reduces stomatal conductance, but the effects on plant transpiration in the field are not well understood. Using constant‐power sap flow gauges, we measured transpiration from Quercus myrtifolia Willd., the dominant species of the Florida scrub‐oak ecosystem, which had been exposed in situ to elevated Ca (350 µmol mol ? 1 above ambient) in open‐top chambers since May 1996. Elevated Ca reduced average transpiration per unit leaf area by 37%, 48% and 49% in March, May and October 2000, respectively. Temporarily reversing the Ca treatments showed that at least part of the reduction in transpiration was an immediate, reversible response to elevated Ca. However, there was also an apparent indirect effect of Ca on transpiration: when transpiration in all plants was measured under common Ca, transpiration in elevated Ca‐grown plants was lower than that in plants grown in normal ambient Ca. Results from measurements of stomatal conductance (gs), leaf area index (LAI), canopy light interception and correlation between light and gs indicated that the direct, reversible Ca effect on transpiration was due to changes in gs caused by Ca, and the indirect effect was caused mainly by greater self‐shading resulting from enhanced LAI, not from stomatal acclimation. By reducing light penetration through the canopy, the enhanced self‐shading at elevated Ca decreased stomatal conductance and transpiration of leaves at the middle and bottom of canopy. This self‐shading mechanism is likely to be important in ecosystems where LAI increases in response to elevated Ca.  相似文献   

3.
4.
The magnitude of changes in carboxylation capacity in dominant plant species under long‐term elevated CO2 exposure (elevated pCa) directly impacts ecosystem CO2 assimilation from the atmosphere. We analyzed field CO2 response curves of 16 C3 species of different plant growth forms in favorable growth conditions in four free‐air CO2 enrichment (FACE) experiments in a pine and deciduous forest, a grassland and a desert. Among species and across herb, tree and shrub growth forms there were significant enhancements in CO2 assimilation (A) by +40±5% in elevated pCa (49.5–57.1 Pa), although there were also significant reductions in photosynthetic capacity in elevated pCa in some species. Photosynthesis at a common pCa (Aa) was significantly reduced in five species growing under elevated pCa, while leaf carboxylation capacity (Vcmax) was significantly reduced by elevated pCa in seven species (change of ?19±3% among these species) across different growth forms and FACE sites. Adjustments in Vcmax with elevated pCa were associated with changes in leaf N among species, and occurred in species with the highest leaf N. Elevated pCa treatment did not affect the mass‐based relationships between A or Vcmax and N, which differed among herbs, trees and shrubs. Thus, effects of elevated pCa on leaf C assimilation and carboxylation capacity occurred largely through changes in leaf N, rather than through elevated pCa effects on the relationships themselves. Maintenance of leaf carboxylation capacity among species in elevated pCa at these sites depends on maintenance of canopy N stocks, with leaf N depletion associated with photosynthetic capacity adjustments. Since CO2 responses can only be measured experimentally on a small number of species, understanding elevated CO2 effects on canopy Nm and Na will greatly contribute to an ability to model responses of leaf photosynthesis to atmospheric CO2 in different species and plant growth forms.  相似文献   

5.
The mid-day responses of wheat ear CO2 and water vapour exchange to full-season CO2 enrichment were investigated using a Free-Air CO2 Enrichment (FACE) apparatus. Spring wheat [Triticum aestivum (L). cv. Yecora Rojo] was grown in two experiments under ambient and elevated atmospheric CO2 (Ca) concentrations (approximately 370 μ mol mol 1 and 550 μ mol mol 1, respectively) combined first with two irrigation (Irr) schemes (Wet: 100% and Dry: 50% replacement of evapotranspiration) and then with two levels of nitrogen (N) fertilization (High: 350, Low: 70 kg ha 1 N). Blowers were used for Ca enrichment. Ambient Ca plots were exposed to blower induced winds as well the Ca × N but not in the Ca × Irr experiment. The net photosynthesis for the ears was increased by 58% and stomatal conductance (gs) was decreased by 26% due to elevated Ca under ample water and N supply when blowers were applied to both Ca treatments. The use of blowers in the Ca-enriched plots only during the Ca × Irr experiment (blower effect) and Low N supply restricted the enhancement of net photosynthesis of the ear due to higher Ca. In the latter case, the increase of net photosynthesis of the ear amounted to 26%. The decrease in gs caused by higher Ca was not affected by the blower effect and N treatment. The mid-day enhancement of net photosynthesis due to elevated Ca was higher for ears than for flag leaves and this effect was most pronounced under ample water and N supply. The contribution of ears to grain filling is therefore likely to increase in higher Ca environments in the future. In the comparison between Wet and Dry, the higher Ca did not alter the response of net photosynthesis of the ear and gs to Irr. However, Ca enrichment increased the drought tolerance of net photosynthesis of the glume and delayed the increase of the awn portion of net photosynthesis of the ear during drought. Therefore, the role of awns for maintaining high net photosynthesis of the ear under drought may decrease when Ca increases.  相似文献   

6.
The long‐term effects of elevated (ambient plus 350 μmol mol?1) atmospheric CO2 concentration (Ca) on the leaf senescence of Quercus myrtifolia Willd was studied in a scrub‐oak community during the transition from autumn (December 1997) to spring (April 1998). Plants were grown in large open‐top chambers at the Smithsonian CO2 Research Site, Merritt Island Wildlife Refuge, Cape Canaveral, Florida. Chlorophyll (a + b) concentration, Rubisco activity and N concentration decreased by 75%, 82%, and 52%, respectively, from December (1997) to April (1998) in the leaves grown at ambient Ca. In contrast, the leaves of plants grown at elevated Ca showed no significant decrease in chlorophyll (a + b) concentration or Rubisco activity, and only a 25% reduction in nitrogen. These results indicate that leaf senescence was delayed during this period at elevated Ca. Delayed leaf senescence in elevated Ca had important consequences for leaf photosynthesis. In elevated Ca the net photosynthetic rate of leaves that flushed in Spring 1997 (last year's leaves) and were 13 months old was not different from fully‐expanded leaves that flushed in 1998, and were approximately 1 month old (current year's leaves). In ambient Ca the net photosynthetic rate of last year's leaves was 54% lower than for current year's leaves. When leaves were fully senesced, nitrogen concentration decreased to about 40% of the concentration in non‐senesced leaves, in both CO2 treatments. In April, net photosynthesis was 97% greater in leaves grown in elevated Ca than in those grown at ambient. During the period when elevated Ca delayed leaf senescence, more leaves operating at higher photosynthetic rate would allow the ecosystem dominated by Q. myrtifolia to gain more carbon at elevated Ca than at ambient Ca.  相似文献   

7.
Similar nonsteady‐state automated chamber systems were used to measure and partition soil CO2 efflux in contrasting deciduous (trembling aspen) and coniferous (black spruce and jack pine) stands located within 100 km of each other near the southern edge of the Boreal forest in Canada. The stands were exposed to similar climate forcing in 2003, including marked seasonal variations in soil water availability, which provided a unique opportunity to investigate the influence of climate and stand characteristics on soil CO2 efflux and to quantify its contribution to the net ecosystem CO2 exchange (NEE) as measured with the eddy‐covariance technique. Partitioning of soil CO2 efflux between soil respiration (including forest‐floor vegetation) and forest‐floor photosynthesis showed that short‐ and long‐term temporal variations of soil CO2 efflux were related to the influence of (1) soil temperature and water content on soil respiration and (2) below‐canopy light availability, plant water status and forest‐floor plant species composition on forest‐floor photosynthesis. Overall, the three stands were weak to moderate sinks for CO2 in 2003 (NEE of ?103, ?80 and ?28 g C m?2 yr?1 for aspen, black spruce and jack pine, respectively). Forest‐floor respiration accounted for 86%, 73% and 75% of annual ecosystem respiration, in the three respective stands, while forest‐floor photosynthesis contributed to 11% and 14% of annual gross ecosystem photosynthesis in the black spruce and jack pine stands, respectively. The results emphasize the need to perform concomitant measurements of NEE and soil CO2 efflux at longer time scales in different ecosystems in order to better understand the impacts of future interannual climate variability and vegetation dynamics associated with climate change on each component of the carbon balance.  相似文献   

8.
Hurricane disturbances have profound impacts on ecosystem structure and function, yet their effects on ecosystem CO2 exchange have not been reported. In September 2004, our research site on a fire‐regenerated scrub‐oak ecosystem in central Florida was struck by Hurricane Frances with sustained winds of 113 km h−1 and wind gusts as high as 152 km h−1. We quantified the hurricane damage on this ecosystem resulting from defoliation: we measured net ecosystem CO2 exchange, the damage and recovery of leaf area, and determined whether growth in elevated carbon dioxide concentration in the atmosphere (Ca) altered this disturbance. The hurricane decreased leaf area index (LAI) by 21%, which was equal to 60% of seasonal variation in canopy growth during the previous 3 years, but stem damage was negligible. The reduction in LAI led to a 22% decline in gross primary production (GPP) and a 25% decline in ecosystem respiration (Re). The compensatory declines in GPP and Re resulted in no significant change in net ecosystem production (NEP). Refoliation began within a month after the hurricane, although this period was out of phase with the regular foliation period, and recovered 20% of the defoliation loss within 2.5 months. Full recovery of LAI, ecosystem CO2 assimilation, and ecosystem respiration did not occur until the next growing season. Plants exposed to elevated Ca did not sustain greater damage, nor did they recover faster than plants grown under ambient Ca. Thus, our results indicate that hurricanes capable of causing significant defoliation with negligible damage to stems have negligible effects on NEP under current or future CO2‐enriched environment.  相似文献   

9.
Six open‐top chambers were installed on the shortgrass steppe in north‐eastern Colorado, USA from late March until mid‐October in 1997 and 1998 to evaluate how this grassland will be affected by rising atmospheric CO2. Three chambers were maintained at current CO2 concentration (ambient treatment), three at twice ambient CO2, or approximately 720 μmol mol?1 (elevated treatment), and three nonchambered plots served as controls. Above‐ground phytomass was measured in summer and autumn during each growing season, soil water was monitored weekly, and leaf photosynthesis, conductance and water potential were measured periodically on important C3 and C4 grasses. Mid‐season and seasonal above‐ground productivity were enhanced from 26 to 47% at elevated CO2, with no differences in the relative responses of C3/C4 grasses or forbs. Annual above‐ground phytomass accrual was greater on plots which were defoliated once in mid‐summer compared to plots which were not defoliated during the growing season, but there was no interactive effect of defoliation and CO2 on growth. Leaf photosynthesis was often greater in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) plants in the elevated chambers, due in large part to higher soil water contents and leaf water potentials. Persistent downward photosynthetic acclimation in P. smithii leaves prevented large photosynthetic enhancement for elevated CO2‐grown plants. Shoot N concentrations tended to be lower in grasses under elevated CO2, but only Stipa comata (C3) plants exhibited significant reductions in N under elevated compared to ambient CO2 chambers. Despite chamber warming of 2.6 °C and apparent drier chamber conditions compared to unchambered controls, above‐ground production in all chambers was always greater than in unchambered plots. Collectively, these results suggest increased productivity of the shortgrass steppe in future warmer, CO2 enriched environments.  相似文献   

10.
In the next few decades, climate of the Amazon basin is expected to change, as a result of deforestation and rising temperatures, which may lead to feedback mechanisms in carbon (C) cycling that are presently unknown. Here, we report how a throughfall exclusion (TFE) experiment affected soil carbon dioxide (CO2) production in a deeply weathered sandy Oxisol of Caxiuanã (Eastern Amazon). Over the course of 2 years, we measured soil CO2 efflux and soil CO2 concentrations, soil temperature and moisture in pits down to 3 m depth. Over a period of 2 years, TFE reduced on average soil CO2 efflux from 4.3±0.1 μmol CO2 m−2 s−1 (control) to 3.2±0.1 μmol CO2 m−2 s−1 (TFE). The contribution of the subsoil (below 0.5 m depth) to the total soil CO2 production was higher in the TFE plot (28%) compared with the control plot (17%), and it did not differ between years. We distinguished three phases of drying after the TFE was started. The first phase was characterized by a translocation of water uptake (and accompanying root activity) to deeper layers and not enough water stress to affect microbial activity and/or total root respiration. During the second phase a reduction in total soil CO2 efflux in the TFE plot was related to a reduction of soil and litter decomposers activity. The third phase of drying, characterized by a continuing decrease in soil CO2 production was dominated by a water stress‐induced decrease in total root respiration. Our results contrast to results of a drought experiment on clay Oxisols, which may be related to differences in soil water retention characteristics and depth of rooting zone. These results show that large differences exist in drought sensitivity among Amazonian forest ecosystems, which primarily seem to be affected by the combined effects of texture (affecting water holding capacity) and depth of rooting zone.  相似文献   

11.
Soil water deficits are likely to influence the response of crop growth and yield to changes in atmospheric CO2 concentrations (Ca), but the extent of this influence is uncertain. To study the interaction of water deficits and Ca on crop growth, the ecosystem simulation model ecosys was tested with data for diurnal gas exchange and seasonal wheat growth measured during 1993 under high and low irrigation at Ca= 370 and 550 μmol mol?1 in the Free Air CO2 Enrichment (FACE) experiment near Phoenix, AZ. The model, supported by the data from canopy gas exchange enclosures, indicated that under high irrigation canopy conductance (gc) at Ca= 550 μmol mol?1 was reduced to about 0.75 that at Ca= 370 μmol mol?1, but that under low irrigation, gc was reduced less. Consequently when Ca was increased from 370 to 550 μmol mol?1, canopy transpiration was reduced less, and net CO2 fixation was increased more, under low irrigation than under high irrigation. The simulated effects of Ca and irrigation on diurnal gas exchange were also apparent on seasonal water use and grain yield. Simulated vs. measured seasonal water use by wheat under high irrigation was reduced by 6% vs. 4% at Ca= 550 vs. 370 μmol mol?1 but that under low irrigation was increased by 3% vs. 5%. Simulated vs. measured grain yield of wheat under high irrigation was increased by 16% vs. 8%, but that under low irrigation was increased by 38% vs. 21%. In ecosys, the interaction between Ca and irrigation on diurnal gas exchange, and hence on seasonal crop growth and water use, was attributed to a convergence of simulated gc towards common values under both Ca as canopy turgor declined. This convergence caused transpiration to decrease comparatively less, but CO2 fixation to increase comparatively more, under high vs. low Ca. Convergence of gc was in turn attributed to improved turgor maintenance under elevated Ca caused by greater storage C concentrations in the leaves, and by greater rooting density in the soil.  相似文献   

12.
Rice (Oryza sativa[L.] cv. IR-72) was grown for a season in sunlit, controlled-environment chambers at 350 or 700 µmol CO2 mol?1 under continuously flooded (unstressed) or drought-imposed periods at panicle initiation (stressed). The midday canopy photosynthetic rates (Pn), measured at the CO2 concentration ([CO2]) used for growth, were enhanced by high [CO2] but reduced by drought. High [CO2] increased Pn by 18 to 34% for the unstressed plants, and 6 to 12% for the stressed plants. In the unstressed plants, CO2 enrichment increased water-use efficiency (WUE) by 26%, and reduced evapotranspiration (ET) by 8 to 14%. Both high [CO2] and severe drought decreased the activity and content of ribulose bisphosphate carboxylase-oxygenase (Rubisco). High-CO2-unstressed plants had 6 to 22% smaller content and 5 to 25%, lower activity of Rubisco than ambient-CO2-unstressed plants. Under severe drought, reductions of Rubisco were 53 and 27% in activity and 40 and 12% in content, respectively, for ambient- and high-CO2 treatments. The apparent catalytic turnover rate (Kcat) of midday fully activated Rubisco was not altered by high [CO2], but severe drought reduced Kcat by 17 to 23%. Chloroplasts of the high-CO2 leaves contained more, and larger starch grains than those of the ambient CO2 leaves. High [CO2] did not affect the leaf sucrose content of unstressed plants. In contrast, severe drought reduced the leaf starch and increased the sucrose content in both CO2 treatments. The activity of leaf sucrose phosphate synthase of unstressed plants was not affected by high [CO2], whereas that of ambient-CO2-grown plants was reduced 45% by severe drought. Reduction in ET and enhancements in both Pn and WUE for rice grown under high [CO2] helped to delay the adverse effects of severe drought and allowed the stressed plants to assimilate CO2 for an extra day. Thus, rice grown in the next century may utilize less water, use water more efficiently, and be able to tolerate drought better under some situations.  相似文献   

13.
Rising levels of atmospheric CO2 will have profound, direct effects on plant carbon metabolism. In this study we used gas exchange measurements, models describing the instantaneous response of leaf net CO2 assimilation rate (A) to intercellular CO2 partial pressure (Ci), in vitro enzyme activity assay, and carbohydrate assay in order to investigate the photosynthetic responses of wheat (Triticum aestivum L., cv. Wembley) to growth under elevated partial pressures of atmospheric CO2 (Ca). At flag leaf ligule emergence, the modelled, in vivo, maximum carboxylation velocity for RuBisCO was significantly lower in plants grown at elevated Ca than in plants grown at ambient Ca (70 Pa compared with 40 Pa). By 12 d after ligule emergence, no significant difference in this parameter was detectable. At ligule emergence, plants grown at elevated Ca exhibited reduced in vitro initial activities and activation states of RuBisCO. At their respective growth Ci values, the photosynthesis of 40-Pa-grown plants was sensitive to p(O2) and to p(CO2) whereas that of 70-Pa-grown plants was insensitive. Both sucrose and starch accumulated more rapidly in the leaves of plants grown at 70 Pa. At flag leaf ligule emergence, modelled non-photorespiratory respiration in the light (Rd) was significantly higher in 70-Pa-grown plants than in 40-Pa-grown plants. By 12 d after ligule emergence no significant differences in Rd were detectable.  相似文献   

14.
We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf‐ and stand‐level CO2 exchange in model 3‐year‐old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large‐scale, controlled environments of the Biosphere 2 Laboratory. A short‐term experiment was imposed on top of continuing, long‐term CO2 treatments (43 and 120 Pa), at the end of the growing season. For the experiment, the plantations were exposed for 6–14 days to low and high VPD (0.6 and 2.5 kPa) at low and high volumetric soil moisture contents (25–39%). When system gross CO2 assimilation was corrected for leaf area, system net CO2 exchange (SNCE), integrated daily SNCE, and system respiration increased in response to elevated CO2. The increases were mainly as a result of the larger leaf area developed during growth at high CO2, before the short‐term experiment; the observed decline in responses to SMS and high VPD treatments was partly because of leaf area reduction. Elevated CO2 ameliorated the gas exchange consequences of water stress at the stand level, in all treatments. The initial slope of light response curves of stand photosynthesis (efficiency of light use by the stand) increased in response to elevated CO2 under all treatments. Leaf‐level net CO2 assimilation rate and apparent quantum efficiency were consistently higher, and stomatal conductance and transpiration were significantly lower, under high CO2 in all soil moisture and VPD combinations (except for conductance and transpiration in high soil moisture, low VPD). Comparisons of leaf‐ and stand‐level gross CO2 exchange indicated that the limitation of assimilation because of canopy light environment (in well‐irrigated stands; ratio of leaf : stand=3.2–3.5) switched to a predominantly individual leaf limitation (because of stomatal closure) in response to water stress (leaf : stand=0.8–1.3). These observations enabled a good prediction of whole stand assimilation from leaf‐level data under water‐stressed conditions; the predictive ability was less under well‐watered conditions. The data also demonstrated the need for a better understanding of the relationship between leaf water potential, leaf abscission, and stand LAI.  相似文献   

15.
Stomatal conductance of plants exposed to elevated CO2 is often reduced. Whether this leads to water savings in tall forest‐trees under future CO2 concentrations is largely unknown but could have significant implications for climate and hydrology. We used three different sets of measurements (sap flow, soil moisture and canopy temperature) to quantify potential water savings under elevated CO2 in a ca. 35 m tall, ca. 100 years old mixed deciduous forest. Part of the forest canopy was exposed to 540 ppm CO2 during daylight hours using free air CO2 enrichment (FACE) and the Swiss Canopy Crane (SCC). Across species and a wide range of weather conditions, sap flow was reduced by 14% in trees subjected to elevated CO2, yielding ca. 10% reduction in evapotranspiration. This signal is likely to diminish as atmospheric feedback through reduced moistening of the air comes into play at landscape scale. Vapour pressure deficit (VPD)‐sap flow response curves show that the CO2 effect is greatest at low VPD, and that sap flow saturation tends to occur at lower VPD in CO2‐treated trees. Matching stomatal response data, the CO2 effect was largely produced by Carpinus and Fagus, with Quercus contributing little. In line with these findings, soil moisture at 10 cm depth decreased at a slower rate under high‐CO2 trees than under control trees during rainless periods, with a reversal of this trend during prolonged drought when CO2‐treated trees take advantage from initial water savings. High‐resolution thermal images taken at different heights above the forest canopy did detect reduced water loss through altered energy balance only at <5 m distance (0.44 K leaf warming of CO2‐treated Fagus trees). Short discontinuations of CO2 supply during morning hours had no measurable canopy temperature effects, most likely because the stomatal effects were small compared with the aerodynamic constraints in these dense, broad‐leaved canopies. Hence, on a seasonal basis, these data suggest a <10% reduction in water consumption in this type of forest when the atmosphere reaches 540% ppm CO2.  相似文献   

16.
It has been suggested that desert vegetation will show the strongest response to rising atmospheric carbon dioxide due to strong water limitations in these systems that may be ameliorated by both photosynthetic enhancements and reductions in stomatal conductance. Here, we report the long‐term effect of 55 Pa atmospheric CO2 on photosynthesis and stomatal conductance for three Mojave Desert shrubs of differing leaf phenology (Ambrosia dumosa—drought‐deciduous, Krameria erecta—winter‐deciduous, Larrea tridentata—evergreen). The shrubs were growing in an undisturbed ecosystem fumigated using FACE technology and were measured over a four‐year period that included both above and below‐average precipitation. Daily integrated photosynthesis (Aday) was significantly enhanced by elevated CO2 for all three species, although Krameria erecta showed the greatest enhancements (63% vs. 32% for the other species) enhancements were constant throughout the entire measurement period. Only one species, Larrea tridentata, decreased stomatal conductance by 25–50% in response to elevated CO2, and then only at the onset of the summer dry season and following late summer convective precipitation. Similarly, reductions in the maximum carboxylation rate of Rubisco were limited to Larrea during spring. These results suggest that the elevated CO2 response of desert vegetation is a function of complex interactions between species functional types and prevailing environmental conditions. Elevated CO2 did not extend the active growing season into the summer dry season because of overall negligible stomatal conductance responses that did not result in significant water conservation. Overall, we expect the greatest response of desert vegetation during years with above‐average precipitation when the active growing season is not limited to ~ 2 months and, consequently, the effects of increased photosynthesis can accumulate over a biologically significant time period.  相似文献   

17.
Interactive effects of CO2 and water availability have been predicted to alter the competitive relationships between C3 and C4 species over geological and contemporary time scales. We tested the effects of drought and CO2 partial pressures (pCO2) ranging from values of the Pleistocene to those predicted for the future on the physiology and growth of model C3 and C4 species. We grew co-occurring Abutilon theophrasti (C3) and Amaranthus retroflexus (C4) in monoculture at 18 (Pleistocene), 27 (preindustrial), 35 (current), and 70 (future) Pa CO2 under conditions of high light and nutrient availability. After 27 days of growth, water was withheld from randomly chosen plants of each species until visible wilting occurred. Under well-watered conditions, low pCO2 that occurred during the Pleistocene was highly limiting to C3 photosynthesis and growth, and C3 plants showed increased photosynthesis and growth with increasing pCO2 between the Pleistocene and future CO2 values. Well-watered C4 plants exhibited increased photosynthesis in response to increasing pCO2, but total mass and leaf area were unaffected by pCO2. In response to drought, C3 plants dropped a large amount of leaf area and maintained relatively high leaf water potential in remaining leaves, whereas C4 plants retained greater leaf area, but at a lower leaf water potential. Furthermore, drought-treated C3 plants grown at 18 Pa CO2 retained relatively greater leaf area than C3 plants grown at higher pCO2 and exhibited a delay in the reduction of stomatal conductance that may have occurred in response to severe carbon limitations. The C4 plants grown at 70 Pa CO2 showed lower relative reductions in net photosynthesis by the end of the drought compared to plants at lower pCO2, indicating that CO2 enrichment may alleviate drought effects in C4 plants. At the Pleistocene pCO2, C3 and C4 plants showed similar relative recovery from drought for leaf area and biomass production, whereas C4 plants showed higher recovery than C3 plants at current and elevated pCO2. Based on these model systems, we conclude that C3 species may not have been at a disadvantage relative to C4 species in response to low CO2 and severe drought during the Pleistocene. Furthermore, C4 species may have an advantage over C3 species in response to increasing atmospheric CO2 and more frequent and severe droughts.  相似文献   

18.
To investigate the possible induction of Crassulacean acid metabolism (CAM) by drought in Talinum paniculatum ([Jacq.] Gaertn.), a deciduous herb with succulent leaves and lignified stems, nocturnal acid accumulation and CO2-exchange were studied in watered and droughted greenhouse-grown plants. Watered plants had a typical C3 pattern of CO2-exchange. When plants were subjected to drought, nocturnal acid accumulation increased significantly from 0.9 to 13.4 μmol H+ cm?2 after 21 days. Water deficit provoked a rapid reduction of daytime CO2 assimilation of as much as 92% and a slower increase in night-time fixation. A maximum of 24% of the diel carbon gain was contributed by dark fixation in droughted plants. After 34 days of drought, only CO2 compensation and a small accumulation of acid (idling) was detected during the night. Relative recycling of respiratory CO2 was approximately 100% for most of the water deficit treatment, the amount of CO2 recycled showing a high positive correlation with nocturnal acid accumulation. A low rate of nocturnal loss of CO2 in watered plants did not explain the amount recycled nightly in droughted plants, implying that respiration increased with drought. Leaf lamina area was reduced by 49% during drought due to rolling. Leaf biomass remained unchanged during the water-deficit treatment. Neither apparent quantum yield nor light-saturated photosynthetic rate differed significantly between control and 14-day water-stressed plants rewatered for 20 h. Chlorophyll content did not change with drought. These results confirm that CAM is induced by drought in T. paniculatum; the carbon acquired through this pathway only contributes to maintain, but not to increase, leaf biomass; also, CAM is responsible for a high recycling of respiratory CO2 during the night. Recycling through CAM, plus the reduction of exposed leaf area during drought, may help explain the maintenance of chlorophyll, quantum yield and saturated photosynthetic rates in water-stressed plants of T. paniculatum.  相似文献   

19.
The synchronous origin of agriculture in at least four independent climatic regions at the end of the last glacial period (c10 kyr bp ) points to a global limitation for crop domestication. One hypothesis proposes that a rapid carbon dioxide (CO2) increase from 18 Pa to ~27 Pa during deglaciation caused significant increases in the growth rates of wild crop progenitors, thereby removing a productivity barrier to their successful domestication. However, early C4 crops present a challenge to this hypothesis, because they were among the first domesticates, but have a carbon‐concentrating mechanism that offsets the limitation of photosynthesis by CO2. We investigated the CO2‐limitation hypothesis using the wild progenitors of five C4 founder crops from four independent centres of domestication. Plants were grown in controlled environment chambers at glacial (18 Pa), postglacial (28 Pa) and current ambient (38 Pa) CO2 levels, and photosynthesis, transpiration and biomass were measured. An increase in CO2 from glacial to postglacial levels caused a significant gain in vegetative biomass of up to 40%, but the equivalent rise in CO2 from postglacial to modern levels generally had no effect on biomass. Investigation into the underlying mechanisms showed C4 photosynthesis to be limited more by glacial than postglacial CO2 levels, matching theoretical expectations. Moreover, the increase in CO2 from glacial to postglacial levels caused a reduction in the transpiration rate via decreases in stomatal conductance of ~35%. In combination, these physiological changes conferred a large improvement in water‐use efficiency at the postglacial CO2 partial pressure compared with the glacial level. Our data, therefore, provide experimental support for the CO2‐limitation hypothesis, suggesting that these key physiological changes could have greatly enhanced the productivity of wild crop progenitors after deglaciation.  相似文献   

20.
Abstract Long‐term exposure of plants to elevated CO2 often leads to downward photosynthetic acclimation. Nitrogen (N) deficiency could potentially exacerbate this response by reducing growth rate and the sink for photosynthates, but this has not always been observed. Experimentally, the interpretation of N effects on CO2 responses can be confounded by increasing severity of tissue N deficiency over time when N supply is not adjusted as demand increases. In this study, N supply ranged from sub‐ to supra‐optimal (20–540 kgN ha–l equivalent), and relatively stable levels of tissue N concentration were obtained in all treatments by varying twice‐weekly application rates in proportion to plant growth. The effects of N on photosynthesis and growth of beans (Phaseolus vulgaris L.) raised at ambient (35 Pa) and three elevated (70, 105, 140 Pa) CO2 partial pressures (pCO2) were evaluated. Averaging across N treatments, leaf total non‐structural carbohydrates (TNC) were 2.5‐ to 3‐fold higher and leaf N concentrations were 31–35% lower at elevated compared to ambient pCO2. Light‐saturated net CO2 assimilation rates measured at growth pCO2 (Asatg) were significantly higher (26–40% depending on N supply) in plants grown at elevated compared to ambient pCO2. When measured at a common pCO2 of 35 Pa, the Asat of plants grown at elevated CO2 was 15–29% less than that of plants grown at 35 Pa, indicative of downward photosynthetic acclimation. The magnitude of downward photosynthetic acclimation to elevated CO2 was greater in plants grown at high (180 and 540 kgN ha–l) compared to low (20 and 60 kgN ha–l) N supply, and this was associated with a higher Asat at growth pCO2, higher leaf area ratio (leaf area/total biomass), and higher TNC in leaves of high‐N plants. Our results indicate that the effect of N on acclimation to CO2 will depend on the balance between supply and demand for N during the growing period, and the effect this has on biomass allocation and source‐sink C balance at the whole‐plant level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号