首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
In the study area (Yanjiaping Village, Hebei Province, China), grazing extensity varies at different locations, small and discontinuous croplands are imbedded in some arid grassland, which are habitats for the melitaeine butterflies, Euphydryas aurinia and Melitaea phoebe. These two species of butterfilies coexist in this area, in which grazing and cultivation are the main disturbances. Grazing and cultivation have a reciprocal effect on E. aurinia, rather than M. phoebe. We observed that E. aurinia preferred to occupy patches with moderate grazing and imbedded with small and discontinuous croplands, where E. aurinia also has high population density. The percentage of E. aurinia larval groups in the ribbings was significantly higher than that of M. phoebe, whereas larvae of both species tended to increase in recent years. Our data also showed that the population density and the patch occupancy rate of both E. aurinia and M. phoebe were the highest under moderate grazing. It indicates that cultivation of small and discontinuous croplands within the patch has a significant effect on the population density of both species of melitaeine butterflies. Thus, to artificially create or maintain semi-natural habitats, complemented by moderate grazing, might be an ecological strategy to conserve melitaeine butterflies effectively. Considering the distinct impacts of cultivation and grazing on the population distribution and dynamics of the two different species, human disturbance in the mountainous area might be strategically involved in proposing conservation plans for the target species in the future.  相似文献   

2.
Wang R  Wang Y  Lei G  Xu R  Painter J 《Biochemical genetics》2003,41(3-4):107-118
We analyzed genetic differentiation within metapopulations of two species of checkerspot butterfly, Euphydryas aurinia and Melitaea phoebe, in China. To generate genetic information, we used a new molecular technique, DALP – direct amplified length polymorphism. AMOVA results showed that most of the variation occurred among individuals within local populations of both E. aurinia and M. phoebe. However, while there was differentiation among local population in E. aurinia (P < 0.001), there was no subdivision in metapopulation of M. phoebe (P = 0.210). This is consistent with the behavior of M. phoebe adults being more dispersive than E. aurinia. Within the M. phoebe metapopulation, three neighboring patches were always occupied during the observation period (1998–2000). In addition, the number of individuals in these three populations accounted for the majority of M. phoebe larvae, and hence we conclude that the M. phoebe metapopulation might exist as a source-sink metapopulation. On the other hand, the E. aurinia metapopulation is an example of a classical metapopulation. Therefore, the conservation management of these two species should reflect these differences.  相似文献   

3.
Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host‐associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host‐adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host‐adapted traits, resulting in incipient reproductive isolation among host‐associated ecotypes. We show here that Euphydryas aurinia had much weaker host‐associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host‐adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.  相似文献   

4.
Abstract.  1. Mark–release–recapture studies were conducted on two species of chequerspot butterfly, Euphydryas aurinia and Melitaea phoebe , in the same habitat patch network in Yanjiaping, a small basin in the Taihang Mountains, north-west of Beijing, China, in 2000.
2. Euphydryas aurinia tended to stay in the habitat patches and to move to neighbouring patches, whereas M. phoebe moved widely among patches in the entire network.
3. The parameters of the virtual migration model showed higher daily emigration propensity in M. phoebe and in E. aurinia males than in E. aurinia females, and significantly greater average daily movement distance in M. phoebe than in E. aurinia .
4. The results are consistent with the previous findings showing genetic structuring among local populations of E. aurinia but not among local populations of M. phoebe .
5. Based on the genetic and ecological results, it was concluded that E. aurinia has a classic metapopulation in the study area, whereas M. phoebe appears to have a source–sink metapopulation.
6. In 2000, when there was an overall increase in the abundance of the two species, the limited mobility of E. aurinia resulted in an increase in the average local population size, whereas the increase in the number of local populations in M. phoebe was due to its high mobility .  相似文献   

5.
Linnaeus described 166 nominal species of Noctuoidea, of which 144 (86.7%) are currently used as valid names, 18 are synonyms, one is a homonym and three taxa remain unknown. Seven taxa were described solely from illustrations in contemporary literature. Lectotypes are designated for 139 (87.4%) of the 159 remaining taxa, 122 of them from the Linnaean collection in London, 13 from the Queen Ludovica Ulrica's collection in Uppsala, Sweden, and four from other contemporary collections. Two Linnaean senior synonyms are introduced: Hada plebeja comb. nov. (Linnaeus, 1761) for the current H. nana (Hufnagel, 1766) and Oeonistis altica (Linnaeus, 1768) comb. nov. for Oe. entella (Cramer, 1779). Erebus occiduus (Linnaeus, 1758) syn. nov. is a junior subjective synonym of E. crepuscularis (Linnaeus, 1758); L. marmorides (Cramer, 1775) Stat. rev. should be reinstated for Letis occidua auct. In two species pairs the Linnaean names have been interpreted incorrectly. The lectotype designation of Phalaena prasinana Linnaeus, 1758, by Lempke (1947) is invalid because the specimen is not syntypic. According to the new lectotype, Pseudoips prasinanus (Linnaeus, 1758) comb. nov. replaces P. faganus (Fabricius, 1781), and Bena bicolorana (Fuessly, 1775) comb. nov. is available for the other species. Abrostola triplasia (Linnaeus, 1758) Stat. rev. replaces A. trigemina (Werneburg, 1864), and for the other species A. triparlila (Hufnagel, 1766) should be reinstated. One neotype designation [Eilema complanum (Linnaeus, 1758)], one lectotype designation [Xylena exsolela (Linnaeus, 1758)], and precedence of a junior synonym [Ophideres fullonia (Clerck, 1764)] over its unused senior synonym are to be referred to the ICZN; until their decision the current usage must be followed. The identity of Mesapamea secalis (Linnaeus, 1758) stat. rev. corresponds to current usage, but, under presence of syntypic material, the recent neotype designation by Lempke (1988) will be referred to the ICZN. The revision is mainly based on the discovery that the insect pins and the way specimens are prepared give evidence of the authenticity of the material. Contrary to the views of earlier authors, Linnaeus had his labels with the specific name pinned against the bottom of the drawers by the specimen pin. Because the labels have been moved twice during subsequent curations, their present position is less indicative of the authenticity than has been previously suggested. The origin of the so-called n-labels is discussed.  相似文献   

6.
This paper presents an overview of the subgenus Appias (Catophaga) Hübner (Pieridae). A beautiful golden‐yellow member of the group, endemic to the Indonesian island of Sulawesi, Appias (Catophaga) aurosa Yata & Vane‐Wright sp.n. , is described as new. A small white species, Appias (Catophaga) mariana Yata & Chainey sp.n. , is described as new from the Marianas. Four other taxa, A. (C.) athama (Blanchard), A. (C.) galba (Wallace) stat.rev. , A. (C.) galene (Felder & Felder) and A. (C.) wardii (Moore), treated in most recent literature as subspecies, are recognized here as distinct, increasing the number of Catophaga species generally recognized from nine to 15. A brief review is given for each, with notes on their diagnosis, general distribution and known hostplants. An annotated synonymic checklist indicating subspecies, type localities and four new synonyms, and nine lectotype designations, one neotype designation and two type locality restrictions necessary to stabilize usage conclude the paper. Online Supporting Information provides an extensive discussion concerning the possible evolution of these butterflies with respect to polymorphism, speciation, coloration and hostplant relationships, a comprehensive list of type material for all available species group names belonging to the subgenus, and a complete bibliography for all citations in both the printed and online material.  相似文献   

7.
A large outdoor cage, measuring 7 × 30 m, was used to study the willingness of butterflies to move through unsuitable habitat in search of neighbouring patches. The area inside the cage was divided into two grassland parts by a 7 m long shady part of unsuitable habitat that the butterflies had to fly through to move between the grassland parts. In 1999 and 2000 we performed experiments on three Melitaeini species (Melitaea cinxia and Mellicta athalia were used both years and Euphydryas aurinia in 2000) and three additional species (Brenthis ino and Aphantopus hyperantus in 1999 and Clossiana euphrosyne in 2000). In both years the Melitaeini species moved at considerably lower rates through the shady part than the other species. Among the Melitaeini species Mell. athalia moved most frequently through the shady part while E. aurinia and M. cinxia moved at lower rates. The distribution of these butterflies differ from widespread to localized and the results are discussed in the context of their habitat preferences and distribution patterns.  相似文献   

8.
High mountain ecosystems are extreme habitats for all organisms and therefore demand specific adaptations. In this context, we studied the ecology of the butterfly Euphydryas aurinia debilis in the High Tauern (Austria) and compared the obtained data against the ecology of the species in lower elevation habitats. We performed mark-release-recapture studies over the entire flight periods (end of June to end of July) in 2007 and 2008 to analyse the fundamental ecological parameters of a population. The demography of males and females was similar in both years, and no indication of typical protandry was detected. We observed a generally low dispersal of the individuals in both years, but males dispersed significantly more than females in 2008; this finding of low vagility was supported by allozyme analyses. Furthermore, butterflies survived periods of several days of continuously closed snow cover without any indication of increased mortality rates. In these three traits, this alpine population of E. aurinia apparently has ecological and physiological adaptations to the extreme requirements of high-altitude habitats and strongly deviates from the lower elevation populations.  相似文献   

9.
In the study area (Yanjiaping Village, Hebei Province, China), grazing extensity varies at different loca-tions, small and discontinuous croplands are imbedded in some arid grassland, which are habitats for the melitaeine butterflies, Euphydryas aurinia and Melitaea phoebe. These two species of butterflies coexist in this area, in which grazing and cultivation are the main disturbances. Grazing and cultivation have a reciprocal effect on E. aurinia, rather than M. phoebe. We observed that E. aurinia preferred to occupy patches with moderate grazing and imbedded with small and discontinuous croplands, where E. aurinia also has high population density. The percentage of E. aurinia larval groups in the ribbings was significantly higher than that of M. phoebe, whereas larvae of both species tended to increase in recent years. Our data also showed that the population density and the patch occupancy rate of both E. aurinia and M. phoebe were the highest under moderate grazing. It indicates that cultivation of small and dis-continuous croplands within the patch has a significant effect on the population density of both spe-cies of melitaeine butterflies. Thus, to artificially create or maintain semi-natural habitats, comple-mented by moderate grazing, might be an ecological strategy to conserve melitaeine butterflies effec-tively. Considering the distinct impacts of cultivation and grazing on the population distribution and dynamics of the two different species, human disturbance in the mountainous area might be strategi-cally involved in proposing conservation plans for the target species in the future.  相似文献   

10.
As the climate warms, many species are showing altered phenology patterns, potentially disrupting synchrony between interacting species. Recent studies have documented disrupted synchrony in plant–herbivore and predator–prey interactions. However, studies investigating climate‐related asynchrony in host–parasitoid interactions and exploring the relative responses of interacting hosts and parasitoids to climate change are lacking. This is an important gap in knowledge given the ubiquity of insect parasitoids and their importance in influencing the abundance and dynamics of their hosts. In the threatened marsh fritillary butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae) and its specialized parasitoid, Cotesia bignellii (Hymenoptera: Braconidae) phenological synchrony (and consequently population fluctuations) are thought to be weather‐dependent. To assess the likely influence of climate and microenvironment change on synchrony between E. aurinia and C. bignellii, we experimentally manipulated the exposure of sensitive‐stage host larvae and parasitoid pupae to temperature (ambient or elevated) and shading (shaded or unshaded) regimes. We also analysed a 20‐year population dynamic dataset from the United Kingdom for E. aurinia to investigate whether population variations could be explained by interannual variations in the thermal and sunshine environment. Development times were affected significantly by the experimental temperature and shading treatments for E. aurinia but not for C. bignellii. However, the contrasting responses were insufficient to significantly affect host availability for parasitoids. In the field, thermal and sunshine conditions did not influence population fluctuations, and population variations across a large (UK‐wide) scale were uncorrelated. Changes to the thermal and sunshine environment of the magnitude investigated in our experiment and within the range experienced by wild E. aurinia populations over the last 20‐years thus seem unlikely to cause breakdown in host–parasitoid synchrony. We suggest that experiments investigating the mechanistic responses of interacting species to environmental change are needed to support the analysis and interpretation of observational data on species' phenology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号