首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I. Vass  H. Koike  Y. Inoue 《BBA》1985,810(3):302-309
The influence of high pH on the functioning of the oxygen-evolving system was studied with isolated thylakoids by measuring flash oxygen yield in parallel with thermoluminescence B band which originates in the recombination between the positive charges on S2 and S3, the oxidized states of the water-oxidizing enzyme, and the negative charges on QB, the semireduced form of the secondary quinone acceptor of Photosystem II. It was found that a mild alkaline incubation of thylakoids (3 min at pH = 8.8–9.1 in darkness) largely inhibits O2 evolution, while much less the B-band amplitude. The flash-induced period-four oscillation of the B band was abolished at high pH, showing normal oscillatory response only after the 1st and 2nd flashes, but no more oscillation after the 3rd flash. These observations indicated an inhibition of S3-to-S4 transition by high pH and were correlated primarily with the liberation of the 33 kDa peripheral protein followed by release of functional Mn. The above phenomena were largely reversed when the pH was returned to neutral. A possible mechanism of high pH inhibition of oxygen-evolving system is discussed.  相似文献   

2.
B.R. Velthuys 《BBA》1975,396(3):392-401
Experiments are described on flash-induced luminescence of isolated spinach chloroplasts after addition of NH4Cl. The results indicate a binding of NH3, presumably in competition with water, in the oxidation states S2 and S3, i.e. the states reached upon illumination of dark-adapted material with one and two flashes, respectively. In the initial state S1, no binding of NH3 occurs. In state S2 the binding of ammonia is rapid (half-time about 0.5 s) and rapidly reversible; in state S3 the binding is slower (half-time about 10 s) and slowly reversible. NH3 bound to S4 prevents the oxidation of water. NH3 bound to S2 decreases the rate of the back reaction of reduced primary acceptor (Q), indicating a charge stabilization, i.e. a decrease in the redox potential of S2 due to interaction with ammonia. In Tris-washed chloroplasts, the stability of the positive charge generated in a flash is much smaller than in normal chloroplasts and not increased by NH3. On the basis of these observations it is postulated that, in the absence of NH3, states S2 and S3 are stabilized by manganese-coordinated, bound water.  相似文献   

3.
Anne Joliot 《BBA》1974,357(3):439-448
The fluorescence yield has been measured on spinach chloroplasts at low temperature (−30 to −60°C) for various dark times following a short saturating flash. A decrease in the fluorescence yield linked to the reoxidation of the Photosystem II electron acceptor Q is still observed at −60°C. Two reactions participate in this reoxidation: a back reaction or charge recombination and the transfer of an electron from Q to Pool A. The relative competition between these two reactions at low temperature depends upon the oxidation state of the donor side of the Photosystem II center:

1. (1) In dark-adapted chloroplasts (i.e. in States S0+S1 according to Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 11, 457–475), Q, reduced by a flash at low temperature, is reoxidized by a secondary acceptor and the positive charge is stabilized on the Photosystem II donor Z. Although this reaction is strongly temperature dependent, it still occurs very slowly at −60°C.

2. (2) When chloroplasts are placed in the S2+S3 states by a two-flash preillumination at room temperature, the reoxidation of Q after a flash at low temperature is mainly due to a temperature-independent back reaction which occurs with non-exponential kinetics.

3. (3) Long continuous illumination of a frozen sample at −30°C causes 6–7 reducing equivalents to be transferred to the pool. Thus, a sufficient number of oxidizing equivalents should have been generated to produce at least one O2 molecule.

4. (4) A study of the back reaction in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) shows the superposition of two distinct non-exponential reactions one temperature dependent, the other temperature independent.

Abbreviations: DCMU; 3(3; 4-dichlorophenyl)-1; 1-dimethylurea  相似文献   


4.
Rotational barriers about the M-S bonds of 16-electron bent metallocene monothiolates (η5-C5H5)2Zr(Cl) (SR) (R = −CH3, −CH2CH3, −CH(CH3)2, −C(CH3)3) (1a–d) have been measured by dynamic 1H NMR methods: 32, 33, 35 and 26 kJ mol−1, respectively. The ground-state orientation about the Zr-S bonds of 1 that maximizes Spπ → Mdπ bonding (Cl-Zr-S-R ≈ 90°) also maximizes CpR steric interaction, whereas the rotational transition-state orientation (Cl-Zr-S-R ≈ 0°) is one that minimizes Spπ → Mdπ bonding and maximizes ClR steric interaction. Deviation from a ground-state orientation that is ideal for Spπ → Mdπ bonding might be expected as the size of the R group and CpR steric interaction increases. Thus, the aberrant trend for the R = −C(CH3)3 derivative could be attributed to a ground-state steric effect where the sterically demanding −C(CH3)3 group forces an unfavorable (misdirected) orientation for Mdπ-Spπ bonding, but a favorable orientation with respect to CpR and ClR steric interactions. However, the solid-state structures of (η5-C5H5)2Zr(SR)2 (R = −CH3, −CH2CH3, −CH(CH3)2, −C(CH3)3) (2a–d) exhibit regular variation of their metric parameters as evidenced by their Zr-S-C bond angles of 108, 109, 113, and 124° and S-Zr-S′ bond angles of 97, 99, 100 and 106°, respectively. Neither the S′-Zr-S-R torsion angles nor the dihedral angles that describe the relationship between the S/Zr/S′ and Cp(centroid)/Zr/Cp′ (centroid) planes (both indicators of the relative orientation of the Zr dπ acceptor orbital and the thiolate S pπ donor orbital) reflect the steric demand of the R group. Thus, the size of the R group imposes a measured effect on the geometry of 2 and the tert-butyl group is not extraordinary. Although the enthalpic and entropic effects could not be deconvoluted for rotation about the Zr-S bond of 1 in the present study, literature precedents suggest that both enthalpic and entropic effects may play a role in determining the irregular trend that is observed.  相似文献   

5.
The reactions of the polysulfur and selenium cationic clusters S82+ and Se82+ with various iron carbonyls were investigated. Several new chalcogen containing iron carbonyl cluster cations were isolated, depending on the nature of the counteranion. In the presence of SbF6 as a counterion, the cluster [Fe3(E2)2(CO)10] [SbF6]2·SO2 (E = S, Se) could be isolated from the reaction of E82+ and excess iron carbonyl. The cluster is a picnic-basket shaped molecule of two iron centers linked by two Se2 groups, with the whole fragment capped by an Fe(CO)4 group. Crystallographic data for C10O12Fe3Se4Sb2F12S (I): space group monoclinic P21/c, A = 11.810(9), b = 24.023(6), c = 10.853(7) Å, β = 107.15(5)°, V = 2942(3) Å3, Z = 4, R = 0.0426, Rw = 0.0503. When Sb2F11 is present as the counterion, or Se4[Sb2F11]2 is used as the cluster cation source, a different cluster can be isolated, which has the formula [Fe4(Se2)3(CO)12] [SbF6]2·3SO2. The dication contains two Fe2Se2 fragments bridged by an Se2 group. Crystallographic data for C12O18Fe4Se6Sb2F12S3 (III): space group triclinic , b = 18.400(9), C = 10.253(4) Å, = 93.10(4), β = 103.74(3), γ = 93.98(3)°, V = 1995(1) Å3, Z = 2, R = 0.0328, Rw = 0.0325. The CO stretches in the IR spectrum all show a large shift to higher wavenumbers, suggesting almost no τ backbonding from the metals. This also correlates with the observed bond distances. All the compounds are extremely sensitive to air and water, and readily lose SO2 when removed from the solvent. Thus all the crystals were handled at −100°C. The clusters seem to be either insoluble or unstable in all solvents investigated.  相似文献   

6.
We report extensive density functional theory studies of the structures and vibrational frequencies of Tp3,5-MeRhH2(H2) in its ground and various transition states as well as the first direct comparison of observed and calculated inelastic neutron scattering (INS) vibrational spectra on this type of compound. Geometry optimizations produced canted η2-dihydrogen dihydride local minima of C1 symmetry; with HH distances for the C1 minimum energy structure of 0.842 and 0.898 Å and barriers to rotation of 0.34 and 0.50 kcal mol−1, respectively for B3LYP/BS1 and BP86/BS1 calculations of Tp3,5-MeRhH2(H2). The latter results from one transition state rotated approximately 60° away (a second lower energy transition state which is a few hundreds of a kcal mol−1 above the C1 MIN is rotated approximately 30° away). With these calculated d(HH) values for the C1 MIN the previously reported experimental data on the rotation of the dihydrogen ligand yields an experimental barrier to rotation of 1 kcal mol−1 and places the torsional transition at 200 cm−1 in the INS spectrum. Optimization of the Rh structure, that is analogous to the related Ir(V) Cs minimum found for TpIrH4, generates a high-energy (>4 cal mol−1) Cs transition state TpRhIIIH4 structure with an η3-H3 − ligand. This transition state (Cs TSE) exchanges the hydrogen in the mirror plane between two chiral C1 MIN structures. Comparisons between observed and computed INS spectra suggests that the experimental INS spectrum be viewed as resulting from a quantum-averaged ground state encompassing at least two of the low energy structures found in our calculations.  相似文献   

7.
Andr Vermeglio  Paul Mathis 《BBA》1973,292(3):763-771
The effect of light on the reaction center of Photosystem II was studied by differential absorption spectroscopy in spinach chloroplasts.

At − 196 °C, continuous illumination results in a parallel reduction of C-550 and oxidation of cytochrome b559 high potential. With flash excitation, C-550 is reduced, but only a small fraction of cytochrome b559 is oxidized. The specific effect of flash illumination is suppressed if the chloroplasts are preilluminated by one flash at 0 °C.

At − 50 °C, continuous illumination results in the reduction of C-550 but little oxidation of cytochrome b559. However, complete oxidation is obtained if the chloroplasts have been preilluminated by one flash at 0 °C. The effect of preillumination is not observed in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.

A model is discussed for the reaction center, with two electron donors, cytochrome b559 and Z, acting in competition. Their respective efficiency is dependent on temperature and on their states of oxidation. The specific effect of flash excitation is attributed to a two-photon reaction, possibly based on energy-trapping properties of the oxidized trap chlorophyll.  相似文献   


8.
B. Bouges-Bocquet 《BBA》1973,292(3):772-785

1. 1. By varying the redox potential of a chloroplast suspension, we obtained new evidence for an equilibrium between states S0 and S1 in the model of Kok, B., Forbush, B. and McGloin, N. (1970, Photochem. Photobiol. 11, 457–475). The mid-point potential of the S0 to S1 couple is close to that for the pool of the electron acceptor of System II, A to A.

2. 2. The limiting steps between two consecutive photoreactions of System II in Chlorella and spinach chloroplasts, have been studied.

2.1. (a) The limiting step from S1 to S2 (noted γ1t)) is not exponential. Its temperature coefficient becomes greater as the reaction proceeds. The shape of the kinetics is an intrinsic property of each center. Chloroplasts fixed with 2% glutaraldehyde, show simple first order kinetics.

2.2. (b) The limiting step from S0 to S10t)) exhibits the same characteristics as γ1t)).

2.3. (c) The limiting step from S2 to S32t)) shows sigmoidal kinetics; two reactions are involved. One of the reactions exhibits the same properties as γ0t) and γ1t).

2.4. (d) The limiting step from S3 to S03t)) is a first order reaction, two times slower than the other transitions. This reaction is interpretated in terms of oxygen release.

3. 3. We also studied the limiting steps in the presence of low concentrations (50 μM) of hydroxylamine. The results favor the binding of two molecules of hydroxylamine to every photochemical center.

Abbreviations: DCIP, dichlorophenolindophenol  相似文献   


9.
A.W. Rutherford  G. Renger  H. Koike  Y. Inoue 《BBA》1984,767(3):548-556
The thermoluminescence band observed in chloroplasts after flash excitation at ambient temperatures has recently been identified as being due to recombination of the electron on the semiquinone form of the secondary plastoquinone acceptor, QB, with positive charges on the oxygen-evolving enzyme, S2 and S3 (Rutherford, A.W., Crofts, A.R. and Inoue, Y. (1982) Biochim. Biophys. Acta 682, 457–465). Further investigation of this thermoluminescence confirms this assignment and provides information on the function of PS II. The following data are reported: (1) Washing of chloroplasts with ferricyanide lowers the concentration of QB in the dark and predictable changes in the extent of the thermoluminescence band are observed. (2) The thermoluminescence intensity arising from S2QB is approximately one half of that arising from S3QB. (3) Preflash treatment followed by dark adaptation results in changes in the intensity of the thermoluminescence band recorded after a series of flashes. These changes can be explained according to the above assignments for the origin of the thermoluminescence and if QB provides an important source of deactivating electrons for the S states. Computer simulations of the preflash data are reported using the above assumptions. Previously unexplained data already in the literature (Läufer, A. and Inoue, Y. (1980) Photobiochem. Photobiophys. 1, 339–346) can be satisfactorily explained and are simulated using the above assumptions. (4) Lowering the pH to pH 5.5 results in a shift of the S2QB thermoluminescence band to higher temperatures while that arising from S3QB does not shift. This effect is interpreted as indicating that QB is protonated and the S2 to S3 reaction involves deprotonation while the S1 to S2 reaction does not.  相似文献   

10.
A series of cuboidal iron-sulfur clusters [Fe4S3(NO)4(PR3)3]0,1+ (R = Et, Pri, Cy) were synthesized by two routes: reductive desulfurization of [Fe4S4(NO)4] by tertiary phosphines, and substitution of triphenylphosphine in [Fe44S3(NO)4(PPh3)3] by a more basic phosphine. The structures of 3[Fe4S3(NO)4(PEt3)3] · 0.5Et2O, [Fe4S3(NO)4(PEt3)3] [Fe4S3(NO)7] and partially substituted [Fe4S3(NO)4(PPh3)2 (PPri3)] have been determined by X-ray diffraction in order to define the cuboidal Fe4S3 core, previously known only in Roussin's black anion and its reduced form, [Fe4S3(NO)77]1−,2−, and as a part of the iron-molybdenum cofactor of nitrogenase.  相似文献   

11.
Reaction of RuCl(η5-C5H5(pTol-DAB) with AgOTf (OTf = CF3SO3) in CH2Cl2 or THF and subsequent addition of L′ (L′ = ethene (a), dimethyl fumarate (b), fumaronitrile (c) or CO (d) led to the ionic complexes [Ru(η5-C5H5)(pTol-DAB)(L′)][OTf] 2a, 2b and 2d and [Ru(η5-C5H5)(pTol-DAB)(fumarontrile-N)][OTf] 5c. With the use of resonance Raman spectroscopy, the intense absorption bands of the complexes have been assigned to MLCT transitions to the iPr-DAB ligand. The X-ray structure determination of [Ru(η5-C5H5)(pTol-DAB)(η2-ethene)][CF3SO3] (2a) has been carried out. Crystal data for 2a: monoclinic, space group P21/n with A = 10.840(1), b = 16.639(1), C = 14.463(2) Å, β = 109.6(1)°, V = 2465.6(5) Å3, Z = 4. Complex 2a has a piano stool structure, with the Cp ring η5-bonded, the pTol-DAB ligand σN, σN′ bonded (Ru-N distances 2.052(4) and 2.055(4) Å), and the ethene η2-bonded to the ruthenium center (Ru-C distances 2.217(9) and 2.206(8) Å). The C = C bond of the ethene is almost coplanar with the plane of the Cp ring, and the angle between the plane of the Cp ring and the double of the ethene is 1.8(0.2)°. The reaction of [RuCl(η5-C5H5)(PPh)3 with AgOTf and ligands L′ = a and d led to [Ru(η5-C5H5)(PPh3)2(L′)]OTf] (3a) and (3d), respectively. By variable temperature NMR spectroscopy the rottional barrier of ethene (a), dimethyl fumarate (b and fumaronitrile (c) in complexes [Ru(η5-C5H5)(L2)(η2-alkene][OTf] with L2 = iPr-DAB (a, 1b, 1c), pTol-DAB (2a, 2b) and L = PPh3 (3a) was determined. For 1a, 1b and 2b the barrier is 41.5±0.5, 62±1 and 59±1 kJ mol−1, respectively. The intermediate exchange could not be reached for 1c, and the ΔG# was estimated to be at least 61 kJ mol. For 2a and 3a the slow exchange could not be reached. The rotational barrier for 2a was estimated to be 40 kJ mol. The rotational barier for methyl propiolate (HC≡CC(O)OCH3) (k) in complex [Ru(η5-C5H5)(iPr-DAB) η2-HC≡CC(O)OCH3)][OTf] (1k) is 45.3±0.2 kJ mol−1. The collected data show that the barrier of rotational of the alkene in complexes 1a, 2a, 1b, 2b and 1c does not correlate with the strength of the metal-alkene interaction in the ground state.  相似文献   

12.
The kinetics of deactivation of the S3 state in Chlorella have been observed under a variety of conditions. The S3 state appears to decline in a dark period coming after a sequence of 30 saturating flashes in a second-order reaction, the rate constant of which is 0.132/[S*3] s−1 and which involves an electron donor, D1, of concentration 1.25[S*3] where [S*3] is the concentration of the S3 state when the oxygen yield of the light flashes is constant. If a 1 min period of 650 nm illumination is employed after the sequence of flashes, the subsequent S3 state deactivation kinetics are more complex. There is an initial phase of S3 state deactivation, accounting for about 35% of the original S3 state, which is complete in less than 100 ms. The remaining 65% of the S3 state appears to deactivate in a second-order reaction, the rate constant of which is 1.36/[S*3] s−1 and which involves an electron donor of initial concentration 0.58[S*3]. If a 1 min period of 710 nm illumination comes after the 30 flashes, at least 98% of the S3 state deactivates according to first-order kinetics. It is shown that this can be explained using a second-order model if there is an electron donor present of which the concentration is large compared with [S*3]. However, S3 state deactivation observed after 5 min of dark and two saturating flashes can be described neither by a first-order model nor a second-order model. Deactivation of the S2 state after a 5 min dark period and one saturating flash follows second-order kinetics with a rate constant of 0.2/[S*3] s−1 and appears to involve an electron donor of initial concentration 1.3[S*3]. Arguments are presented which tend to rule out the primary electron acceptor to Photosystem II as being any of the electron donors but it appears quite possible that the large plastoquinone pool is involved.  相似文献   

13.
“Marcorss” sweet corn plants grown in field plots were exposed continuously in open-top chambers for 32 days to ambient air, charcoal-filtered air or charcoal-filtered air containing HF (ca. 0.5 μgF m−3), SO2 (ca. 235 μg m−3), or the two pollutants combined. Elliptical chlorotic leasions appeared after 23 days on leaves of plants exposed to SO2/HF, and shortly thereafter on plants exposed to all other treatments. At harvest, the number of plants with lesions was significantly greater in chambers supplied with SO2/HF than in chambers with SO2, HF, or filtered air.

The different treatments had no effect on fresh or dry weights of leaves, husks, or tassels, height of plants, or number of kernels per ear. Exposure to SO2/HF reduced the fresh and dry weights of stalks. There were fewer mature ears in the SO2/HF and unfiltered air treatments than in the others. The reduction in yield from SO2/HF was about the same as that ascribed to ambient photochemical oxidants in the unfiltered air treatment.

HF combined with SO2 had no effect on accumulation of S as compared with SO2 alone, but there was a striking reduction in accumulation of foliar F in plants exposed to SO2/HF as compared with HF alone.  相似文献   


14.
The reaction of [N(PPh3)2]2[Ni6(CO)12] with Cu(PPh3)xCl (x=1, 2), as well as the degradation of [N(PPh3)2]2[H2Ni12(CO)21] with PPh3, affords the new and unstable dark orange–brown [N(PPh3)2]2[Ni9(CO)16].THF salt in low yields. This salt has been characterized by a CCD X-ray diffraction determination, along with IR spectroscopy and elemental analysis. The close-packed two-layer metal core geometry of the [Ni9(CO)16]2− dianion is directly related to that of the bimetallic [Ni6Rh3(CO)17]3− trianion and may be envisioned to be formally derived from the hcp three-layer geometry of [Ni12(CO)21]4− by the substitution of one of the two outer [Ni3(CO)3(μ−CO)3]2− layers with a face-bridging carbonyl group.  相似文献   

15.
We describe the syntheses, physicochemical properties and biological evaluation of a novel series of complexones containing bis- or biazoles moieties and two iminodiacetic acid units as novel ligands for paramagnetic lanthanides. The complexones were prepared by reaction of the corresponding 1,1′-bishaloethylbi- or bispyrazoles with methyl iminodiacetate and subsequent NaOH hydrolysis. 1,1′-Bisbromoethyl precursors were obtained by direct alkylation with an excess of 1,2-dibromoethane, or by heating the corresponding alcohol in HCl. Sigmoidal binding isotherms and MO calculations supported as most stable structures in solution, those containing two Gd(III) atoms bound per molecule of complexone with half saturation values S0.5 (M−1, 22 °C, pH 7.2) in the range 6.5 10−60.5<36.1 10−6. Relaxivity properties [r1, r2, s−1 mM−1 Gd(III)] determined at 1.5 Tesla gave values (12.0<r1<17.7, 12.2<r2<20), improving significantly the relaxivities of reference compounds such as Gd(III)EDTA (5.2, 5.6) or Gd(III)DTPA (4.30, 4.30). These improvements involve mainly increased hydration and slower rotational motions. In vitro toxicity experiments are reported.  相似文献   

16.
为了预测气候变化对麦田节肢动物群落多样性的影响, 本研究在麦田开放环境中设置4种处理, 分别是高温(高于当时气温2℃和当前CO2浓度)、高CO2浓度(500 μL/L和当时气温)、高温+高CO2浓度和对照(当前CO2浓度和气温)等, 采用定期随机抽样方法调查节肢动物群落的多样性, 用经典的多样性指数对整体节肢动物群落以及不同食性节肢动物群落多样性进行分析。共采到节肢动物3纲10目42科52种。仅“高温”和“高温+高CO2”处理显著增大节肢动物群落的均匀度, 其余处理均无显著影响。“高温+高CO2”处理的影响随小麦生长发育期不同而略有差异, 在苗期可增大Shannon-Wiener多样性指数, 而在后期使该指数减小; “高温+高CO2”与“高温”处理的群落多样性较为相似。对不同食性节肢动物群落的分析表明, 与对照相比, 植食性昆虫群落在“高CO2”下丰富度显著增大; 寄生性昆虫群落的多度在“高温”下显著增大; 腐食性等节肢动物群落的多度在“高CO2+高温”和“高温”处理下有所增大、均匀度在“高温”下略降低, 但均未达统计上的显著水平; 捕食性节肢动物群落不受影响。本研究说明, CO2浓度和气温升高不同程度地影响麦田节肢动物群落的物种多样性, 两类因素同时升高与各自单独升高的影响不完全一致。  相似文献   

17.
E. K. Pistorius  G. H. Schmid 《BBA》1987,890(3):352-359
The roles of Ca2+ and Cl on the photosynthetic O2 yield under flash illumination have been examined in EDTA-washed preparations of the cyanobacterium Anacystis nidulans. Especially the effect of Cl deficiency on the O2 yield and on the S-state distribution was analyzed. As the results show, omission of both Ca2+ and Cl (Mn2+ present) almost totally inhibited O2 evolution. When Ca2+ was replaced by Na+, a substantial reduction of the O2 yield was observed, but only a minor change in the S-state distribution occurred. However, when Cl was displaced by NO3, which is equivalent to Cl deficiency of the water-splitting complex, a substantial reduction of the O2 yield and in addition a significant change in the S-state distribution was observed. The comparison of deactivation kinetics in NO3 containing samples with those in control samples indicated that Cl deficiency allowed accumulation of oxidizing equivalents up to the S3 state but modified the final step of O2 evolution. Moreover, those centers which advanced to the S3 state in the absence of Cl deactivated in a special way which involved a faster deactivation of S2 and an increased formation of S−1.  相似文献   

18.
Various sulfidic anions and the oxidizing cations [Ru(NH3)6]3+ and N,N′-dimethyl-4,4′-bipyridinium2+ (paraquat2+) form ion pairs in aqueous solutions which display outer-sphere charge-transfer (CT) absorptions. The CT energies are used to establish a series of sulfidic anions with increasing CT donor strength: SCN2O3 2−4 3−3S3−2 −2S2 −4 2−.  相似文献   

19.
The binuclear cyanoferrate, tetraphenylphosphonium pentacyanoiron(III)-μ-cyano-amminetetracyanoiron(III), [(C6H5)4P]4[Fe2(CN)10NH3]4−, was synthesized by air oxidation of aqueous solutions of Na3[Fe(CN)5NH3] · 3H2O. Single crystal X-ray diffraction studies show the compound to contain the binuclear, cyano-bridged anion, [(NC)5Fe---NC---Fe(CN)4NH3]4−. This compound is structurally identical to the one prepared by A. Ludi et al., [Inorg. Chim. Acta, 34, 113 (1979)], with the exception that [Fe(CN)6]3− is not required for the synthesis of this compound. The Fe(III) atoms are antiferromagnetically coupled through the CN bridge, as shown by a maximum in the magnetic susceptibility at 50 K. The electronic and IR spectra of the complex in the solid state and in solution are discussed.  相似文献   

20.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号