首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.

Background

Clinical trials using ex vivo expansion of autologous mesenchymal stromal cells (MSCs) are in progress for several neurological diseases including multiple sclerosis (MS). Given that environment alters MSC function, we examined whether in vitro expansion, increasing donor age and progressive MS affect the neuroprotective properties of the MSC secretome.

Methods

Comparative analyses of neuronal survival in the presence of MSC-conditioned medium (MSCcm) isolated from control subjects (C-MSCcm) and those with MS (MS-MSCcm) were performed following (1) trophic factor withdrawal and (2) nitric oxide–induced neurotoxicity.

Results

Reduced neuronal survival following trophic factor withdrawal was seen in association with increasing expansion of MSCs in vitro and MSC donor age. Controlling for these factors, there was an independent, negative effect of progressive MS. In nitric oxide neurotoxicity, MSCcm-mediated neuroprotection was reduced when C-MSCcm was isolated from higher-passage MSCs and was negatively associated with increasing MSC passage number and donor age. Furthermore, the neuroprotective effect of MSCcm was lost when MSCs were isolated from patients with MS.

Discussion

Our findings have significant implications for MSC-based therapy in neurodegenerative conditions, particularly for autologous MSC therapy in MS. Impaired neuroprotection mediated by the MSC secretome in progressive MS may reflect reduced reparative potential of autologous MSC-based therapy in MS and it is likely that the causes must be addressed before the full potential of MSC-based therapy is realized. Additionally, we anticipate that understanding the mechanisms responsible will contribute new insights into MS pathogenesis and may also be of wider relevance to other neurodegenerative conditions.  相似文献   

2.

Background aims

TNFR family member glucocorticoid-induced tumor necrosis factor–related receptor (GITR/TNFRSF18) activation by its ligand glucocorticoid-induced TNF-related receptor ligand (GITRL) have important roles in proliferation, death and differentiation of cells. Some types of small cell lung cancers (SCLCs) express GITR. Because mesenchymal stromal cells (MSCs) may target tumor cells, we aimed to investigate the effect of MSCs carrying GITRL overexpressing plasmid on the proliferation and viability of a GITR+ SCLC cell line (SCLC-21H) compared with a GITR SCLC cell line (NCI-H82).

Methods

Electroporation was used to transfer pGITRL (GITRL gene carrying plasmid) or pCR3 (mock plasmid) into MSCs. Flow cytometry and semi-quantitative polymerase chain reaction were used to characterize the transfected MSCs. Following SCLC-21H or NCI-H82 cell lines were co-cultured with pGITRL-MSCs.

Results

Proliferation of NCI-H82 was increased in all types of co-cultures while SCLC-21H cells did not. GITRL expressing MSCs were able to induce cell death of SCLC-21H through the upregulation of SIVA1 apoptosis inducing factor.

Conclusions

The influence of MSCs on SCLC cells can vary according to the cancer cell subtypes as obtained in SCLC-21H and NCI-H82 and enabling GITR-GITRL interaction can induce cell death of SCLC cell lines.  相似文献   

3.

Background

Mesenchymal stromal cells (MSCs) offer great potential for diverse clinical applications. However, conventional systemic infusion of MSCs limits their therapeutic benefit, since intravenously (IV) infused cells become entrapped in the lungs where their dwell time is short.

Methods

To explore possible alternatives to IV infusion, we used in vivo optical imaging to track the bio-distribution and survival of 1 million bioluminescent MSCs administered IV, intraperitoneally (IP), subcutaneously (SC) and intramuscularly (IM) in healthy athymic mice.

Results

IV-infused MSCs were undetectable within days of administration, whereas MSCs implanted IP or SC were only detected for 3 to 4 weeks. In contrast, MSCs sourced from human umbilical cord matrix or bone marrow survived more than 5 months in situ when administered IM. Long-term survival was optimally achieved using low passage cells delivered IM. However, MSCs could undergo approximately 30 doublings before their dwell time was compromised. Cryo-preserved MSCs administered IM promptly after thaw were predominantly cleared after 3 days, whereas equivalent cells cultured overnight prior to implantation survived more than 3 months.

Discussion

The IM route supports prolonged cell survival of both neo-natal and adult-derived MSCs, although short-term MSC survival was comparable between all tested routes up to day 3. IM implantation presents a useful alternative to achieve clinical benefits from prolonged MSC dwell time at a homeostatic implant site and is a minimally invasive delivery route suitable for many applications. However, optimized thaw protocols that restore full biological potential of cryo-preserved MSC therapies prior to implantation must be developed.  相似文献   

4.

Background

Cell therapy using mesenchymal stromal cells (MSCs) offers new perspectives in the treatment of traumatic brain injury (TBI). The aim of the present study was to assess the impact of platelet-rich plasma scaffolds (PRPS) as support of MSCs in a delayed phase after severe TBI in rats.

Methods

TBI was produced by weight-drop impact to the right cerebral hemisphere. Two months after TBI, four experimental groups were established; saline, PRPS, MSCs in saline, or MSCs in PRPS was transplanted into the area of brain lesion through a small hole. All groups were evaluated in the course of the following 12 months after therapy and the animals were then humanely killed.

Results

Our results showed that a greater functional improvement was obtained after the administration of MSCs in PRPS compared with the other experimental groups.

Discussion

PRPS enhanced the benefit of cell therapy with MSCs to treat chronic brain damage in rats that suffered a severe TBI. The present findings suggest that the use of intralesional MSCs supported in PRPS may be a strategy of tissue engineering for patients with established neurological severe dysfunction after a TBI.  相似文献   

5.

Background

Systemic infusion of mesenchymal stromal cells (MSCs) has been shown to induce acute acceleration of growth velocity in children with osteogenesis imperfecta (OI) despite minimal engraftment of infused MSCs in bones. Using an animal model of OI we have previously shown that MSC infusion stimulates chondrocyte proliferation in the growth plate and that this enhanced proliferation is also observed with infusion of MSC conditioned medium in lieu of MSCs, suggesting that bone growth is due to trophic effects of MSCs. Here we sought to identify the trophic factor secreted by MSCs that mediates this therapeutic activity.

Methods

To examine whether extracellular vesicles (EVs) released from MSCs have therapeutic activity, EVs were isolated from MSC conditioned medium by ultracentrifugation. To further characterize the trophic factor, RNA or microRNA (miRNA) within EVs was depleted by either ribonuclease (RNase) treatment or suppressing miRNA biogenesis in MSCs. The functional activity of these modified EVs was evaluated using an in vitro chondrocyte proliferation assay. Finally, bone growth was evaluated in an animal model of OI treated with EVs.

Results

We found that infusion of MSC-derived EVs stimulated chondrocyte proliferation in the growth plate, resulting in improved bone growth in a mouse model of OI. However, infusion of neither RNase-treated EVs nor miRNA-depleted EVs enhanced chondrocyte proliferation.

Conclusion

MSCs exert therapeutic effects in OI by secreting EVs containing miRNA, and EV therapy has the potential to become a novel cell-free therapy for OI that will overcome some of the current limitations in MSC therapy.  相似文献   

6.

Background

Idiopathic nephrotic syndrome (INS) is one of the most common renal diseases in the pediatric population; considering the role of the immune system in its pathogenesis, corticosteroids are used as first-line immunosuppressive treatment. Due to its chronic nature and tendency to relapse, a significant proportion of children experience co-morbidity due to prolonged exposure to corticosteroids and concomitant immunosuppression with second-line, steroid-sparing agents. Mesenchymal stromal cells (MSCs) are multipotent cells that represent a key component of the bone marrow (BM) microenvironment; given their unique immunoregulatory properties, their clinical use may be exploited as an alternative therapeutic approach in INS treatment.

Methods

In view of the possibility of exploiting their immunoregulatory properties, we performed a phenotypical and functional characterization of MSCs isolated from BM of five INS patients (INS-MSCs; median age, 13 years; range, 11–16 years) in comparison with MSCs isolated from eight healthy donors (HD-MSCs). MSCs were expanded ex vivo and then analyzed for their properties.

Results

Morphology, proliferative capacity, immunophenotype and differentiation potential did not differ between INS-MSCs and HD-MSCs. In an allogeneic setting, INS-MSCs were able to prevent both T- and B-cell proliferation and plasma-cell differentiation. In an in-vitro model of experimental damage to podocytes, co-culture with INS-MSCs appeared to be protective.

Discussion

Our results demonstrate that INS-MSCs maintain the main biological and functional properties typical of HD-MSCs; these data suggest that MSCs may be used in autologous cellular therapy approaches for INS treatment.  相似文献   

7.

Background

Mesenchymal stromal cells (MSCs) are studied for their immunotherapeutic potential. Prior to therapeutic use, MSCs are culture expanded to obtain the required cell numbers and, to improve their efficacy, MSCs may be primed in vitro. Culture expansion and priming induce phenotypical and functional changes in MSCs and thus standardisation and quality control measurements come in need. We investigated the impact of priming and culturing on MSC DNA methylation and examined the use of epigenetic profiling as a quality control tool.

Methods

Human umbilical cord–derived MSCs (ucMSCs) were cultured for 3 days with interferon (IFN)γ, transforming growth factor (TGF)β or a multi-factor combination (MC; IFNγ, TGFβ and retinoic acid). In addition, ucMSCs were culture expanded for 14 days. Phenotypical changes and T-cell proliferation inhibition capacity were examined. Genome-wide DNA methylation was measured with Infinium MethylationEPIC Beadchip.

Results

Upon priming, ucMSCs exhibited a different immunophenotype and ucMSC(IFNγ) and ucMSC(MC) had an increased capacity to inhibit T-cell proliferation. DNA methylation patterns were minimally affected by priming, with only one significantly differentially methylated site (DMS) in IFNγ- and MC-primed ucMSCs associated with autophagy activity. In contrast, 14 days after culture expansion, ucMSCs displayed minor phenotypical and functional changes but showed >4000 significantly DMSs, mostly concerning genes involved in membrane composition, cell adhesion and transmembrane signalling.

Discussion

These data show that DNA methylation of MSCs is only marginally affected by priming, whereas culture expansion and subsequent increased cellular interactions have a large impact on methylation. On account of this study, we suggest that DNA methylation analysis is a useful quality control tool for culture expanded therapeutic MSCs.  相似文献   

8.

Aim

Establishment of a potency assay in the manufacturing of clinical-grade mesenchymal stromal cells (MSCs) has been a challenge due to issues of relevance to function, timeline and variability of responder cells. In this study, we attempted to develop a potency assay for MSCs.

Methods

Clinical-grade bone marrow–derived MSCs were manufactured. The phenotype and immunosuppressive functions of the MSCs were evaluated based on the International Society for Cellular Therapy guidelines. Resting MSCs licensed by interferon (IFN)-γ exposure overnight were evaluated for changes in immune suppression and immune-relevant proteins. The relationship of immune-relevant protein expression with immunosuppression of MSCs was analyzed.

Results

MSC supressed third-party T-lymphocyte proliferation with high inter-donor and inter-test variability. The suppression of T-lymphocyte proliferation by IFN-γ–licensed MSCs correlated with that by resting MSCs. Many cellular proteins were up-regulated after IFN-γ exposure, including indoleamine 2,3-dioxygenase 1 (IDO-1), programmed death ligand 1 (PD-L1), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1) and bone marrow stromal antigen 2 (BST-2). The expression levels of IDO-1 and PD-L1 on licensed MSCs, not VCAM-1, ICAM-1 or BST-2 on licensed MSCs, correlated with MSC suppression of third-party T-cell proliferation.

Conclusion

A flow cytometry–based assay of MSCs post–IFN-γ exposure measuring expression of intracellular protein IDO-1 and cell surface protein PD-L1 captures two mechanisms of suppression and offers the potential of a relevant, rapid assay for MSC-mediated immune suppression that would fit with the manufacturing process.  相似文献   

9.

Background

Kanamycin, mainly used in the treatment of drug-resistant-tuberculosis, is known to cause irreversible hearing loss. Using the xeno-transplant model, we compared both in vitro and in vivo characteristics of human mesenchymal stromal cells (MSCs) derived from adult tissues, bone marrow (BM-MSCs) and adipose tissue (ADSCs). These tissues were selected for their availability, in vitro multipotency and regenerative potential in vivo in kanamycin-deafened nod-scid mice.

Methods

MSCs were isolated from informed donors and expanded ex vivo. We evaluated their proliferation capacity in vitro using the hexosaminidase assay, the phenotypic profile using flow-cytometry of a panel of surface antigens, the osteogenic potential using alkaline phosphatase activity and the adipogenic potential using oil-red-O staining. MSCs were intravenously injected in deafened mice and cochleae, liver, spleen and kidney were sampled 7 and 30 days after transplantation. The dissected organs were analyzed using lectin histochemistry, immunohistochemistry, polymerase chain reaction (PCR) and dual color fluorescence in situ hybridization (DC-FISH).

Results

MSCs showed similar in vitro characteristics, but ADSCs appeared to be more efficient after prolonged expansion. Both cell types engrafted in the cochlea of damaged mice, inducing regeneration of the damaged sensory structures. Several hybrid cells were detected in engrafted tissues.

Discussion

BM-MSCs and ADSCs showed in vitro characteristics suitable for tissue regeneration and fused with resident cells in engrafted tissues. The data suggest that paracrine effect is the prevalent mechanism inducing tissue recovery. Overall, BM-MSCs and ADSCs appear to be valuable tools in regenerative medicine for hearing loss recovery.  相似文献   

10.

Background aims

Acute graft-versus-host disease (aGVHD) remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation, mediated by alloreactive donor T cells. Toll-like receptors (TLRs), a family of conserved pattern-recognition receptors (PRRs), represent key players in donors' T-cell activation during aGVHD; however, a regulatory, tolerogenic role for certain TLRs has been recognized in a different context. We investigated whether the ex vivo–induced TLR-2,-4,-7 tolerance in donor cells could prevent alloreactivity in a mismatched transplantation model.

Methods

TLR-2,-4,-7 tolerance was induced in mouse splenocytes, after stimulation with low doses of corresponding ligands. Cellular and molecular changes of the TLR-tolerant splenocytes and purified T cells were assessed by immunophenotypic and gene expression analyses. Incidence of aGVHD was evaluated by the clinical score and survival as well as histopathology of target tissues.

Results

Only the R848-induced TLR7 tolerance prevented aGVHD. The TLR7 ligand–induced tolerance lasted for a critical post-transplant period and was associated with distinct cellular and molecular signatures characterized by induction of regulatory T cells, reduced alloreactivity and balanced regulation of inflammatory signaling and innate immune responses. The TLR7-tolerant T cells preserved the immunological memory and generated in vitro virus-specific T cells upon antigen stimulation. The anti-aGVHD tolerization effect was direct and specific to TLR7 and required the receptor–ligand interaction; TLR7–/– T cells isolated from B6 TLR7–/– mice presented a distinct gene expression profile but failed to prevent aGVHD.

Discussion

We propose an effective and clinically applicable ex vivo approach for aGVHD prevention through a transient and reversible immune reprogramming exerted by TLR7-tolerant donor lymphocytes.  相似文献   

11.

Background aims

Parotid hypofunction causes life-disrupting effects, and there are no effective medications for xerostomia. We hypothesized that mesenchymal stem cells (MSCs) have repairing effects on parotid glands of ovariectomized (OVX) rats.

Methods

Forty-five adult female rats were divided into three equal groups: group I (Control group), group II (OVX-group) and group III (OVX rats that received MSCs at 4 and 8 weeks post-ovariectomy). At 12 weeks post-ovariectomy, histological (Masson's trichrome and periodic acid–Schiff with alcian blue stains), immunohistochemical (caspase-3 and CD44) and morphometric studies and salivary flow rate and saliva pH determination were carried out.

Results

Histologically, the OVX group displayed numerous irregular vacuolated acini, thickened septa with marked cellular infiltration and vascular congestion. Degenerated organelles and few or irregular secretory granules with a different density were observed. Caspase-3-positive cells were highly expressed. MSC-treated glands exhibited a considerable degree of preservation of glandular architecture with numerous CD44-expressing and few caspase-3–expressing cells. Significant decrease of the salivary flow rate in the OVX group was detected, which reverted to normal levels in group III.

Conclusions

MSCs ameliorated the damaging effects of ovariectomy on the parotid glands.  相似文献   

12.
13.

Background

In this study, we intend to assess the safety and tolerability of intra-articular knee implantation of autologous bone marrow–derived mesenchymal stromal cells (MSCs) in patients with rheumatoid arthritis (RA) and to determine the preliminary clinical efficacy data in this population. The trial registration numbers are as follows: Royan Institute Ethics Committee: AC/91/1133; NCT01873625.

Methods

This single-center, randomized, triple-blind, placebo-controlled phase 1/2 clinical trial randomized RA patients with knee involvement to receive either an intra-articular knee implantation of 40 million autologous bone marrow–derived MSCs per joint or normal saline (placebo). Patients were followed up for 12 months to assess therapy outcomes.

Results

A total of 30 patients, 15 in the MSC group and 15 in the placebo group, enrolled in this study. There were no adverse effects reported after MSC administration or during follow-up. Patients who received MSCs had superior findings according to the Western Ontario and McMaster Universities Arthritis Index (WOMAC), visual analogue scale (VAS), time to jelling and pain-free walking distance. However, this improvement could not be significantly sustained beyond 12 months. The MSC group exhibited improved standing time (P?=?0.01). In addition, the MSCs appeared to contribute to reductions in methotrexate and prednisolone use.

Conclusion

Intra-articular knee implantation of MSCs appeared to be safe and well tolerated. In addition, we observed a trend toward clinical efficacy. These results, in our opinion, have justified the need for further investigations over an extended assessment period with larger numbers of RA patients who have knee involvement.  相似文献   

14.

Background

Chronic kidney disease (CKD) is a progressive loss of kidney function and structure that affects approximately 13% of the population worldwide. A recent meta-analysis revealed that cell-based therapies improve impaired renal function and structure in preclinical models of CKD. We assessed the safety and tolerability of bone marrow–mesenchymal stromal cell (MSC) infusion in patients with CKD.

Methods

A single-arm study was carried out at one center with 18-month follow-up in seven eligible patients with CKD due to different etiologies such as hypertension, nephrotic syndrome (NS) and unknown etiology. We administered an intravenous infusion (1–2?×?106 cells/kg) of autologous cultured MSCs. The primary endpoint was safety, which was measured by number and severity of adverse events. The secondary endpoint was decrease in the rate of decrease in estimated glomerular filtration rate (eGFR). We compared kidney function during the follow-up visits to baseline and 18 months prior to the intervention.

Results

Follow-up visits of all seven patients were completed; however, we have not observed any cell-related adverse events during the trial. Changes in eGFR (P?=?0.10) and serum creatinine (P?=?0.24) from 18 months before cell infusion to baseline in comparison with baseline to 18 months were not statistically significant.

Conclusions

We showed safety and tolerability of a single-dose infusion of autologous MSCs in patients with CKD.  相似文献   

15.

Background

Bone Marrow MSCs are an appealing source for several cell-based therapies. Many bioreactors, as the Quantum Cell Expansion System, have been developed to generate a large number of MSCs under Good Manufacturing Practice conditions by using Human Platelet Lysate (HPL). Previously we isolated in the human bone marrow a novel cell population, named Mesodermal Progenitor Cells (MPCs), which we identified as precursors of MSCs. MPCs could represent an important cell source for regenerative medicine applications. As HPL gives rise to a homogeneus MSC population, limiting the harvesting of other cell types, in this study we investigated the efficacy of pooled human AB serum (ABS) to provide clinically relevant numbers of both MSCs and MPCs for regenerative medicine applications by using the Quantum System.

Methods

Bone marrow aspirates were obtained from healthy adult individuals undergoing routine total hip replacement surgery and used to generate primary cultures in the bioreactor. HPL and ABS were tested as supplements to culture medium. Morphological observations, cytofluorimetric analysis, lactate and glucose level assessment were performed.

Results

ABS gave rise to both heterogeneous MSC and MPC population. About 95% of cells cultured in HPL showed a fibroblast-like morphology and typical mesenchymal surface markers, but MPCs were scarcely represented.

Discussion

The use of ABS appeared to sustain a large scale MSC production, as well as the recovery of a subset of MPCs, and resulted a suitable alternative to HPL in the cell generation based on the Quantum System.  相似文献   

16.

Background

Interleukin-35 (IL-35) has recently been identified as an immunosuppressive cytokine that has been used as a potential therapy for chronic inflammatory and autoimmune diseases. However, there remains a paucity of data regarding its potential benefits after integration into mesenchymal stem cells (MSCs).

Methods

We used a dextran sulfate sodium (DSS)–induced colitis mice model and treated them with IL-35-MSCs, MSCs or saline. The body weight was recorded daily and inflammatory processes were determined. Cytokine secretion by lamina propria lymphocytes (LPLs) and percentage of regulatory T cells (Tregs) were also measured.

Results

The data showed that mice in the two treated groups recovered their body weight more rapidly than mice treated with saline in the later stage of colitis. The colon lengths of IL-35-MSC–treated mice were markedly longer than those in the other two groups and the inflammation reduced significantly. Furthermore, the percentage of Foxp3?+?Tregs increased significantly and the level of proinflammatory cytokines produced by LPLs decreased significantly in the IL-35-MSC–treated group.

Discussion

The results demonstrate that IL-35-MSCs could ameliorate ulcerative colitis by down-regulating the expression of pro-inflammatory cytokines.  相似文献   

17.

Background

Effective therapy of Acute Lung Injury (ALI) is still a major scientific and clinical problem. To define novel therapeutic strategies for sequelae of blunt chest trauma (TxT) like ALI/Acute Respiratory Distress Syndrome, we have investigated the immunomodulatory and regenerative effects of a single dose of ex vivo expanded human or rat mesenchymal stromal cells (hMSCs/rMSCs) with or without priming, immediately after the induction of TxT in Wistar rats.

Methods

We analyzed the histological score of lung injury, the cell count of the broncho alveolar lavage fluid (BAL), the change in local and systemic cytokine level and the recovery of the administered cells 24?h and 5 days post trauma.

Results

The treatment with hMSCs reduced the injury score 24?h after trauma by at least 50% compared with TxT rats without MSCs. In general, TxT rats treated with hMSCs exhibited a lower level of pro-inflammatory cytokines (interleukin [IL]-1B, IL-6) and chemokines (C-X-C motif chemokine ligand 1 [CXCL1], C-C motif chemokine ligand 2 [CCL2]), but a higher tumor necrosis factor alpha induced protein 6 (TNFAIP6) level in the BAL compared with TxT rats after 24?h. Five days after trauma, cytokine levels and the distribution of inflammatory cells were similar to sham rats. In contrast, the treatment with rMSCs did not reveal such therapeutic effects on the injury score and cytokine levels, except for TNFAIP6 level.

Conclusion

TxT represents a suitable model to study effects of MSCs as an acute treatment strategy after trauma. However, the source of MSCs has to be carefully considered in the design of future studies.  相似文献   

18.

Background aims

Although intra-articular injection of platelet products is increasingly used for joint regenerative approaches, there are few data on their biological effects on joint-resident multipotential stromal cells (MSCs), which are directly exposed to the effects of these therapeutic strategies. Therefore, this study investigated the effect of platelet lysate (PL) on synovial fluid–derived MSCs (SF-MSCs), which in vivo have direct access to sites of cartilage injury.

Methods

SF-MSCs were obtained during knee arthroscopic procedures (N?=?7). Colony forming unit–fibroblast (CFU-F), flow-cytometric phenotyping, carboxyfluorescein succinimidyl ester-based immunomodulation for T-cell and trilineage differentiation assays were performed using PL and compared with standard conditions.

Results

PL-enhanced SF-MSC (PL-MSC) proliferation as CFU-F colonies was 1.4-fold larger, and growing cultures had shorter population-doubling times. PL-MSCs and fetal calf serum (FCS)-MSCs had the same immunophenotype and similar immunomodulation activities. In chondrogenic and osteogenic differentiation assays, PL-MSCs produced 10% more sulfated-glycosaminoglycan (sGAG) and 45% less Ca++ compared with FCS-MSCs, respectively. Replacing chondrogenic medium transforming growth factor-β3 with 20% or 50% PL further increased sGAG production of PL-MSCs by 69% and 95%, respectively, compared with complete chondrogenic medium. Also, Dulbecco's Modified Eagle's Medium high glucose (HG-DMEM) plus 50% PL induced more chondrogenesis compared with HG-DMEM plus 10% FCS and was comparable to complete chondrogenic medium.

Conclusions

This is the first study to assess SF-MSC responses to PL and provides biological support to the hypothesis that PL may be capable of modulating multiple functional aspects of joint resident MSCs with direct access to injured cartilage.  相似文献   

19.

Background

Menstrual blood is only recently and still poorly studied, but it is an abundant and noninvasive source of highly proliferative mesenchymal stromal cells (MSCs). However, no appropriate isolation method has been reported due to its high viscosity and high content of clots and desquamated epithelium.

Methods

We studied three different isolation approaches and their combinations: ammonium-containing lysing buffer, distilled water and gradient-density centrifugation. We tested the proliferative capacity, morphology, surface markers and pluripotency of the resulting cells.

Results

Our isolation method yields up to four million nucleated cells per milliliter of initial blood, of which about 0.2–0.3% are colony-forming cells expressing standard mesenchymal markers CD90, CD105 and CD73, but not expressing CD45, CD34, CD117, CD133 or HLA-G. The cells have high proliferative potential (doubling in 26?h) and the ability to differentiate into adipocytes and osteocytes. Early endometrial MSCs (eMSCs) express epithelial marker cytokeratin 7 (CK7). CK7 is easily induced in later passages in a prohepatic environment. We show for the first time that a satisfactory and stable yield of eMSCs is observed throughout the whole menstrual period (5 consecutive days) of a healthy woman.

Discussion

The new cost/yield adequate method allows isolation from menstrual blood a relatively homogenous pool of highly proliferative MSCs, which seem to be the best candidates for internal organ therapy due to their proepithelial background (early expression of CK7 and its easy induction in later passages) and for mass cryobanking due to their high yield and availability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号