首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salmonella enterica serovar Heidelberg frequently causes food-borne illness in humans. There are few data on the prevalence, antimicrobial susceptibility, and genetic diversity of Salmonella serovar Heidelberg isolates in retail meats. We compared the prevalences of Salmonella serovar Heidelberg in a sampling of 20,295 meats, including chicken breast (n = 5,075), ground turkey (n = 5,044), ground beef (n = 5,100), and pork chops (n = 5,076), collected during 2002 to 2006. Isolates were analyzed for antimicrobial susceptibility and compared genetically using pulsed-field gel electrophoresis (PFGE) and PCR for the blaCMY gene. A total of 298 Salmonella serovar Heidelberg isolates were recovered, representing 21.6% of all Salmonella serovars from retail meats. One hundred seventy-eight (59.7%) were from ground turkey, 110 (36.9%) were from chicken breast, and 10 (3.4%) were from pork chops; none was found in ground beef. One hundred ninety-eight isolates (66.4%) were resistant to at least one compound, and 49 (16.4%) were resistant to at least five compounds. Six isolates (2.0%), all from ground turkey, were resistant to at least nine antimicrobials. The highest resistance in poultry isolates was to tetracycline (39.9%), followed by streptomycin (37.8%), sulfamethoxazole (27.7%), gentamicin (25.7%), kanamycin (21.5%), ampicillin (19.8%), amoxicillin-clavulanic acid (10.4%), and ceftiofur (9.0%). All isolates were susceptible to ceftriaxone and ciprofloxacin. All ceftiofur-resistant strains carried blaCMY. PFGE using XbaI and BlnI showed that certain clones were widely dispersed in different types of meats and meat brands from different store chains in all five sampling years. These data indicate that Salmonella serovar Heidelberg is a common serovar in retail poultry meats and includes widespread clones of multidrug-resistant strains.  相似文献   

2.
A total of 825 samples of retail raw meats (chicken, turkey, pork, and beef) were examined for the presence of Escherichia coli and Salmonella serovars, and 719 of these samples were also tested for Campylobacter spp. The samples were randomly obtained from 59 stores of four supermarket chains during 107 sampling visits in the Greater Washington, D.C., area from June 1999 to July 2000. The majority (70.7%) of chicken samples (n = 184) were contaminated with Campylobacter, and a large percentage of the stores visited (91%) had Campylobacter-contaminated chickens. Approximately 14% of the 172 turkey samples yielded Campylobacter, whereas fewer pork (1.7%) and beef (0.5%) samples were positive for this pathogen. A total of 722 Campylobacter isolates were obtained from 159 meat samples; 53.6% of these isolates were Campylobacter jejuni, 41.3% were Campylobacter coli, and 5.1% were other species. Of the 212 chicken samples, 82 (38.7%) yielded E. coli, while 19.0% of the beef samples, 16.3% of the pork samples, and 11.9% of the turkey samples were positive for E. coli. However, only 25 (3.0%) of the retail meat samples tested were positive for Salmonella. Significant differences in the bacterial contamination rates were observed for the four supermarket chains. This study revealed that retail raw meats are often contaminated with food-borne pathogens; however, there are marked differences in the prevalence of such pathogens in different meats. Raw retail meats are potential vehicles for transmitting food-borne diseases, and our findings stress the need for increased implementation of hazard analysis of critical control point (HACCP) and consumer food safety education efforts.  相似文献   

3.
From March 2001 to June 2002, a total of 981 samples of retail raw meats (chicken, turkey, pork, and beef) were randomly obtained from 263 grocery stores in Iowa and cultured for the presence of Enterococcus spp. A total of 1,357 enterococcal isolates were recovered from the samples, with contamination rates ranging from 97% of pork samples to 100% of ground beef samples. Enterococcus faecium was the predominant species recovered (61%), followed by E. faecalis (29%), and E. hirae (5.7%). E. faecium was the predominant species recovered from ground turkey (60%), ground beef (65%), and chicken breast (79%), while E. faecalis was the predominant species recovered from pork chops (54%). The incidence of resistance to many production and therapeutic antimicrobials differed among enterococci recovered from retail meat samples. Resistance to quinupristin-dalfopristin, a human analogue of the production drug virginiamycin, was observed in 54, 27, 9, and 18% of E. faecium isolates from turkey, chicken, pork, and beef samples, respectively. No resistance to linezolid or vancomycin was observed, but high-level gentamicin resistance was observed in 4% of enterococci, the majority of which were recovered from poultry retail meats. Results indicate that Enterococcus spp. commonly contaminate retail meats and that dissimilarities in antimicrobial resistance patterns among enterococci recovered from different meat types may reflect the use of approved antimicrobial agents in each food animal production class.  相似文献   

4.
We present estimations for the amounts of Arcobacter (A. butzleri, A. cryaerophilus and A. skirrowii) and Campylobacter (C. jejuni, C. coli and C. fetus) species in retail chicken, pork and beef meat using PCR-MPN. Arcobacter butzleri, A. cryaerophilus and C. jejuni were found in 100, 60 and 55% of chicken samples, respectively. No other Arcobacter or Campylobacter species were found in chicken. The MPNs of A. butzleri, A. cryaerophilus and C. jejuni were greater than 103 per 100 g in 50, 0 and 5% of samples, respectively. The MPN of A. butzleri was higher than that of C. jejuni in 95% of samples. In pork, A. butzleri and A. cryaerophilus were detected in 10 and 11 (50 and 55%) of 20 samples, respectively. No other Arcobacter or Campylobacter species were found in pork. Only one pork sample had more than 103 MPN per 100 g of A. cryaerophilus. For beef, only two samples tested positive for A. cryaerophilus, at 4600 and 92 MPN per 100 g. Overall, we found that the presence and MPNs of Arcobacter species are very high in chicken. In contrast, the positive ratios of Arcobacter in pork were high as chicken samples, but MPNs were lower than in chicken.  相似文献   

5.
From 34 retail grocery stores and meat markets, 209 samples of nonfrozen meats were obtained and analyzed for coagulase-positive Staphylococcus aureus, employing six selective media. Sixty-seven (38.7%) of 173 samples obtained from 27 stores yielded S. aureus. No coagulase-positive S. aureus was isolated from 36 samples obtained from 7 of the stores. The 67 meats yielded 272 isolates from 10 different kinds of meats. There were 162 physiological strains represented when classified by store and 36 strains classified without regard to store of origin. The larger stores yielded fewer meats with staphylococci than the smaller stores. The meats from which S. aureus was recovered in the order of frequency of percentage recovery are as follows: chicken, pork liver, fish, spiced ham, round beef steak, hamburger, beef liver, pork chops, veal steak, and lamb chops. The following seven meats did not yield staphylococci: bologna, shucked oysters, olive and pickle loaf, salami, wieners, and chopped ham. Eighty-eight per cent of the isolates produced pigment, 85% were gelatinase positive, only 1 strain failed to form a precipitate on egg yolk agar, 92% formed deoxyribonuclease, 87% produced bound coagulase, 91% produced the α-hemolysin, 70% the δ-, 22% the β-, and 6% were nil in this regard. The isolates are compared with hospital and other food strains, and their possible source in the meats is discussed.  相似文献   

6.
Recent studies have identified Clostridium difficile in food animals and retail meat, and concern has been raised about the potential for food to act as a source of C. difficile infection in humans. Previous studies of retail meat have relied on enrichment culture alone, thereby preventing any assessment of the level of contamination in meat. This study evaluated the prevalence of C. difficile contamination of retail ground beef and ground pork in Canada. Ground beef and ground pork were purchased from retail outlets in four Canadian provinces. Quantitative and enrichment culture was performed. Clostridium difficile was isolated from 28/230 (12%) samples overall: 14/115 (12%) ground beef samples and 14/115 (12%) ground pork samples (P = 1.0). For ground beef, 10/14 samples (71%) were positive by enrichment culture only. Of the 4 ground beef samples that were positive by direct culture, 20 spores/g were present in 2 while 120 and 240 spores/g were present in 1 each. For ground pork, 10/14 (71%) samples were positive by enrichment culture only. Of the 4 ground pork samples that were positive by direct culture, 20 spores/g were present in 3 while 60 spores/g were present in 1. Ribotype 078 predominated, consistent with some previous studies of C. difficile in food animals. Ribotype 027/North American pulsotype 1 was also identified in both retail beef and pork. This study has identified relatively common contamination of retail ground beef and pork with C. difficile spores; however, the levels of contamination were very low.Clostridium difficile is an important cause of enteric disease in humans. It is the most commonly diagnosed cause of hospital- and antimicrobial agent-associated diarrhea in people, and recent evidence suggests that it may be emerging as an important community-associated pathogen (2, 5). In addition to humans, C. difficile can be found in the intestinal tracts of a variety of animal species, including food animals, such as cattle and pigs (7, 10, 13). Clostridium difficile has also been found in retail meat (11, 12, 17), and concerns about the role of food in the epidemiology of community-associated C. difficile infection (CA-CDI) have been expressed (5, 8, 15).Initial studies have reported isolation of C. difficile from 4.6 to 45% of retail meat samples (11, 12, 17). However, all studies have used broth enrichment protocols, which could detect very low spore numbers and provide no information about the number of organisms present in a sample. No studies have evaluated numbers of C. difficile spores in food. While the infectious dose is not known, an understanding of the level of contamination may be an important factor in determining the relevance of contamination of food. Additionally, the use of different methods between studies hampers comparison of results. Recently a study was performed to evaluate different methods for qualitative and quantitative detection of C. difficile (21). This study determined that the detection threshold of enrichment culture could be at least as low as 10 spores/g of meat. It also determined that quantitative culture can accurately determine the level of contamination in experimentally inoculated meat samples, albeit with a higher detection threshold. The objective of this study was to determine the prevalence of C. difficile contamination of retail ground beef and ground pork using both qualitative and quantitative methods.  相似文献   

7.
We investigated the prevalence of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in 120 retail meat samples from 30 grocery stores in Baton Rouge, LA. S. aureus strains were recovered from 45.6% of pork samples and 20% of beef samples, whereas MRSA strains were isolated from six meat samples (five pork samples and one beef sample). The MRSA isolates were of two strain types (clones), one harboring Panton-Valentine leucocidin and belonging to pulsed-field gel electrophoresis type USA300 and the other one belonging to USA100.  相似文献   

8.
This study was designed to determine whether isolates from chicken carcasses, the primary source of Campylobacter jejuni and Campylobacter coli in human infections, commonly carry the cdt genes and also whether active cytolethal distending toxin (CDT) is produced by these isolates. Campylobacter spp. were isolated from all 91 fresh chicken carcasses purchased from local supermarkets. Campylobacter spp. were identified on the basis of both biochemical and PCR tests. Of the 105 isolates, 70 (67%) were identified as C. jejuni, and 35 (33%) were identified as C. coli. PCR tests amplified portions of the cdt genes from all 105 isolates. Restriction analysis of PCR products indicated that there appeared to be species-specific differences between the C. jejuni and C. coli cdt genes, but that the restriction patterns of the cdt genes within strains of the same species were almost invariant. Quantitation of active CDT levels produced by the isolates indicated that all C. jejuni strains except four (94%) had mean CDT titers greater than 100. Only one C. jejuni strain appeared to produce no active CDT. C. coli isolates produced little or no toxin. These results confirm the high rate of Campylobacter sp. contamination of fresh chicken carcasses and indicate that cdt genes may be universally present in C. jejuni and C. coli isolates from chicken carcasses.  相似文献   

9.
From February to November 2007, chicken meat preparations (n = 656) were sampled at 11 processing companies across Belgium. All samples were tested for Campylobacter by enrichment culture and by direct plating according to standard methods. Almost half (48.02%) of the samples were positive for Campylobacter spp. The mean Campylobacter count was 1.68 log10 CFU/g with a standard deviation of ± 0.64 log10 CFU/g. The study revealed a statistically significant variation in Campylobacter contamination levels between companies; processors with a wider frequency distribution range of Campylobacter counts provided chicken meat preparations with higher Campylobacter incidences and concentrations. There was no significant difference between the counts of Campylobacter spp. in various preparation types. However, the Campylobacter counts and incidences in chicken wings were the highest and portioned-form products (legs, wings, and breasts) showed a higher probability of being Campylobacter positive compared to minced-form products (sausages, burgers, and minced meat). The proportion of Campylobacter-positive samples was significantly higher in July than in other months. Recovery of Campylobacter spp. recovery by direct plating was higher (41.0%) compared to detection after enrichment (24.2%). Statistical modeling of the survey data showed that the likelihood of obtaining a positive result by enrichment culture increases with an increase in the Campylobacter concentration in the sample. In the present study, we provide the first enumeration data on Campylobacter contamination in Belgian chicken meat preparations and address proposals for improving Campylobacter monitoring programs.  相似文献   

10.
A bacteriophage cocktail (designated ECP-100) containing three Myoviridae phages lytic for Escherichia coli O157:H7 was examined for its ability to reduce experimental contamination of hard surfaces (glass coverslips and gypsum boards), tomato, spinach, broccoli, and ground beef by three virulent strains of the bacterium. The hard surfaces and foods contaminated by a mixture of three E. coli O157:H7 strains were treated with ECP-100 (test samples) or sterile phosphate-buffered saline buffer (control samples), and the efficacy of phage treatment was evaluated by comparing the number of viable E. coli organisms recovered from the test and control samples. Treatments (5 min) with the ECP-100 preparation containing three different concentrations of phages (1010, 109, and 108 PFU/ml) resulted in statistically significant reductions (P = <0.05) of 99.99%, 98%, and 94%, respectively, in the number of E. coli O157:H7 organisms recovered from the glass coverslips. Similar treatments resulted in reductions of 100%, 95%, and 85%, respectively, in the number of E. coli O157:H7 organisms recovered from the gypsum board surfaces; the reductions caused by the two most concentrated phage preparations were statistically significant. Treatment with the least concentrated preparation that elicited significantly less contamination of the hard surfaces (i.e., 109 PFU/ml) also significantly reduced the number of viable E. coli O157:H7 organisms on the four food samples. The observed reductions ranged from 94% (at 120 ± 4 h posttreatment of tomato samples) to 100% (at 24 ± 4 h posttreatment of spinach samples). The data suggest that naturally occurring bacteriophages may be useful for reducing contamination of various hard surfaces, fruits, vegetables, and ground beef by E. coli O157:H7.  相似文献   

11.
Source attribution using molecular subtypes has implicated cattle and sheep as sources of human Campylobacter infection. Whether the Campylobacter subtypes associated with cattle and sheep vary spatiotemporally remains poorly known, especially at national levels. Here we describe spatiotemporal patterns of prevalence, bacterial enumeration, and subtype composition in Campylobacter isolates from cattle and sheep feces from northeastern (63 farms, 414 samples) and southwestern (71 farms, 449 samples) Scotland during 2005 to 2006. Isolates (201) were categorized as sequence type (ST), as clonal complex (CC), and as Campylobacter jejuni or Campylobacter coli using multilocus sequence typing (MLST). No significant difference in average prevalence (cattle, 22%; sheep, 25%) or average enumeration (cattle, 2.7 × 104 CFU/g; sheep, 2.0 × 105 CFU/g) was found between hosts or regions. The four most common STs (C. jejuni ST-19, ST-42, and ST-61 and C. coli ST-827) occurred in both hosts, whereas STs of the C. coli ST-828 clonal complex were more common in sheep. Neither host yielded evidence for regional differences in ST, CC, or MLST allele composition. Isolates from the two hosts combined, categorized as ST or CC, were more similar within than between farms but showed no further spatiotemporal trends up to 330 km and 50 weeks between farm samples. In contrast, both regions yielded evidence for significant differences in ST, CC, and allele composition between hosts, such that 65% of isolates could be attributed to a known host. These results suggest that cattle and sheep within the spatiotemporal scales analyzed are each capable of contributing homogeneous Campylobacter strains to human infections.Campylobacter species are the largest cause of bacterial intestinal infection in the developed and developing world (3). Almost all reported human Campylobacter infections in the United Kingdom are caused by Campylobacter jejuni, which accounts for approximately 92% of cases, and Campylobacter coli, which accounts for most of the rest (8). Campylobacter species are carried asymptomatically in a wide range of host animals and excreted into the environment in feces (23). Humans can be infected by several routes including consumption of contaminated water (14) or food (23); indeed, case control studies indicate that consumption of poultry meat is a risk factor (11, 12, 28), but other foods including unpasteurized milk (33) and meat from cattle and sheep contaminated at the abattoir might be important (30).Cattle and sheep on farms are major hosts of Campylobacter, with up to 89% of cattle herds (31) and up to 55% of sheep flocks (26) being infected. The prevalence of C. jejuni and C. coli combined, estimated at the level of individual animals from fecal specimens, is 23 to 54% in cattle (22, 25) and up to 20% in sheep (37). Campylobacter enumeration in feces shed from individual animals ranges from <102 to 107 CFU/g in both hosts (31), and the concentration shed varies with time. Meat products of cattle and sheep, by contrast, have generally lower levels of Campylobacter contamination. Prevalence values are 0.5 to 4.9% in surveys of retail beef (11a, 17, 36) and 6.9 to 12.6% in surveys of retail lamb and mutton (17, 35).Clinical Campylobacter strains can be attributed to infection sources in animals by comparing subtype frequencies in clinical cases with those in different candidate sources, including cattle, sheep, pigs, and the physical environment. Campylobacter subtype data sets are most transferable when subtypes are defined as sequence type (ST) using multilocus sequence typing (MLST). Three recent MLST-based studies based in northwestern England (34), mainland Scotland (29), northeastern Scotland (32), and New Zealand (24) have used source attribution models to infer the source of human clinical infection. The results suggest that retail chicken is the source with the highest (55 to 80%) attribution while cattle and sheep combined are ranked second (20 to 40%). These attribution models require further empirical validation but appear to be showing broadly similar results.Attribution of human Campylobacter infections to cattle and sheep raises the question of whether Campylobacter subtypes infecting farm cattle and sheep are generally homogeneous or tend to have spatiotemporal structure. Regarding spatial differences, isolates of C. jejuni from a 100-km2 study of farmland area with dairy cattle and sheep in northwestern England displayed increased genetic similarity up to 1 km apart but no further trend over distances of 1 to 14 km apart (7), and isolates from three dairy cattle farms 2 or 5 km apart in the same area demonstrated differences in the frequencies of strains of clonal complexes (CCs) ST-42 and ST-61 (15). Regarding temporal differences, isolates of C. jejuni from five dairy cattle farms in the same area demonstrated differences in the frequency of strains of CC ST-61 between the spring and summer of 2003 (15). Lastly, regarding host-associated strains, STs of CCs ST-21, ST-42, and ST-61 are associated with cattle, and the more limited data for STs from sheep also show the presence of ST-21 and ST-61 (7, 15).The larger-scale spatiotemporal structure of Campylobacter strains from cattle and sheep is poorly known. The main aims of the present study were (i) to characterize C. jejuni and C. coli from cattle and sheep from two distinct geographical Scottish regions in terms of Campylobacter prevalence and enumeration and C. jejuni and C. coli ST composition and (ii) to estimate the extent of host association of C. jejuni and C. coli STs from cattle versus sheep.  相似文献   

12.
Escherichia coli isolates were recovered from the National Antimicrobial Resistance Monitoring System retail meat program and examined for antimicrobial susceptibility. Retail meat samples (n = 11,921) from four U.S. states collected during 2002 to 2008, consisting of 2,988 chicken breast, 2,942 ground turkey, 2,991 ground beef, and 3,000 pork chop samples, were analyzed. A total of 8,286 E. coli isolates were recovered. The greatest numbers of samples contaminated with the organism were chicken (83.5%) and turkey (82.0%), followed by beef (68.9%) and pork (44.0%). Resistance was most common to tetracycline (50.3%), followed by streptomycin (34.6%), sulfamethoxazole-sulfisoxazole (31.6%), ampicillin (22.5%), gentamicin (18.6%), kanamycin (8.4%), amoxicillin-clavulanic acid (6.4%), and cefoxitin (5.2%). Less than 5% of the isolates had resistance to trimethoprim, ceftriaxone, ceftiofur, nalidixic acid, chloramphenicol, and ciprofloxacin. All isolates were susceptible to amikacin. Compared to beef and pork isolates, the poultry meat isolates had a greater percentage of resistance to all tested drugs, with the exception of chloramphenicol, to which pork isolates had the most resistance. More than half of the turkey isolates (56%) were resistant to multidrugs (≥3 classes) compared to 38.9% of chicken, 17.3% of pork, and 9.3% of beef isolates. The bla(CMY) gene was present in all ceftriaxone- and ceftiofur-resistant isolates. The cmlA, flo, and catI genes were present in 45%, 43%, and 40% of chloramphenicol-resistant isolates, respectively. Most nalidixic acid-resistant isolates (98.5%) had a gyrA mutation in S83 or D87 or both, whereas only 6.7% had a parC mutation in either S80 or E84. The results showed that E. coli was commonly present in the retail meats, and antimicrobial resistance profiles differed according to the animal origin of the isolates.  相似文献   

13.
AIMS: To determine the genetic relatedness of Campylobacter spp. from retail meat products, and compare the discriminatory power of pulsed-field gel electrophoresis (PFGE) and automatic ribotyping. METHODS AND RESULTS: A total of 378 Campylobacter isolates recovered from 159 raw meats (130 chicken, 25 turkey, three pork and one beef) sampled from 50 retail grocery stores of four supermarket chains in the Maryland suburban area from August 1999 to July 2000 were analysed by PFGE with SmaI, 120 isolates of which were also characterized by ribotyping with PstI using RiboPrinter system. A total of 148 unique PFGE patterns were identified, 91 of which were present in multiple Campylobacter isolates and 24 in multiple meat samples. Nineteen Campylobacter clones with identical PFGE patterns recurred frequently (up to nine times) throughout the sampling period. Comparing ribotyping with PFGE, we identified 44 PFGE patterns and 22 RiboGroups among the 120 isolates tested. Multiple PFGE patterns within one RiboGroup were commonly observed, as well as multiple RiboGroups within one PFGE pattern. CONCLUSIONS: Although Campylobacter present in retail meats were genetically diverse, certain clones persisted in poultry meats. PFGE had a greater discriminatory power than ribotyping, and the two methods were complementary in genotyping Campylobacter. SIGNIFICANCE AND IMPACT OF THE STUDY: Genomic DNA fingerprinting of Campylobacter confirmed diverse and recurrent Campylobacter clones in the retail meats, which provides additional data for a better understanding of the epidemiological aspect of Campylobacter infection.  相似文献   

14.
A total of 139 surface water samples from seven lakes and 15 rivers in southwestern Finland were analyzed during five consecutive seasons from autumn 2000 to autumn 2001 for the presence of various enteropathogens (Campylobacter spp., Giardia spp., Cryptosporidium spp., and noroviruses) and fecal indicators (thermotolerant coliforms, Escherichia coli, Clostridium perfringens, and F-RNA bacteriophages) and for physicochemical parameters (turbidity and temperature); this was the first such systematic study. Altogether, 41.0% (57 of 139) of the samples were positive for at least one of the pathogens; 17.3% were positive for Campylobacter spp. (45.8% of the positive samples contained Campylobacter jejuni, 25.0% contained Campylobacter lari, 4.2% contained Campylobacter coli, and 25.0% contained Campylobacter isolates that were not identified), 13.7% were positive for Giardia spp., 10.1% were positive for Cryptosporidium spp., and 9.4% were positive for noroviruses (23.0% of the positive samples contained genogroup I and 77.0% contained genogroup II). The samples were positive for enteropathogens significantly (P < 0.05) less frequently during the winter season than during the other sampling seasons. No significant differences in the prevalence of enteropathogens were found when rivers and lakes were compared. The presence of thermotolerant coliforms, E. coli, and C. perfringens had significant bivariate nonparametric Spearman's rank order correlation coefficients (P < 0.001) with samples that were positive for one or more of the pathogens analyzed. The absence of these indicators in a logistic regression model was found to have significant predictive value (odds ratios, 1.15 × 108, 7.57, and 2.74, respectively; P < 0.05) for a sample that was negative for the pathogens analyzed. There were no significant correlations between counts or count levels for thermotolerant coliforms or E. coli or the presence of F-RNA phages and pathogens in the samples analyzed.  相似文献   

15.
This large-scale study compared incubation temperatures (37°C versus 42°C) to study the detection of thermophilic Campylobacter species, including Campylobacter jejuni, C. coli, and C. lari, in various surface water samples and bird fecal droppings around Hamilton Harbor, Lake Ontario. The putative culture isolates obtained from incubation temperatures of 37 and 42°C were confirmed by Campylobacter genus- and species-specific triplex PCR assays targeting the 16S rRNA gene and the 16S-23S rRNA gene internal transcribed spacer (ITS) region. A total of 759 water, wastewater, and bird fecal dropping samples were tested. Positive amplification reactions for the genus Campylobacter were found for 454 (60%) samples incubated at 37°C, compared to 258 (34%) samples incubated at 42°C. C. jejuni (16%) and C. lari (12%) were detected significantly more frequently at the 42°C incubation temperature than at 37°C (8% and 5%, respectively). In contrast, significantly higher rates of C. coli (14%) and other Campylobacter spp. (36%) were detected at the 37°C incubation temperature than at 42°C (8% and 7%, respectively). These results were consistent across surface water, wastewater, and bird fecal dropping samples. At times, Campylobacter spp. were recovered and detected at 37°C (3% for C. jejuni, 10% for C. coli, and 3% for C. lari) when the same samples incubated at 42°C were negative. A significantly higher rate of other Campylobacter spp. was detected only at 37°C (32%) than only at 42°C (3%). These results indicate that incubation temperature can significantly influence the culturability and detection of thermophilic and other fastidious Campylobacter spp. and that a comprehensive characterization of the Campylobacter spp. in surface water, wastewaters, or bird fecal droppings will require incubation at both 37 and 42°C.  相似文献   

16.
Numerous outbreak investigations and case-control studies for campylobacteriosis have provided evidence that handling Campylobacter-contaminated chicken products is a risk factor for infection and illness. There is currently extremely limited quantitative data on the levels of Campylobacter cross-contamination in the kitchen, hindering risk assessments for the pathogen commodity combination of Campylobacter and chicken meat. An exposure assessment needs to quantify the transfer of the bacteria from chicken to hands and the kitchen environment and from there onto ready-to-eat foods. We simulated some typical situations in kitchens and quantified the Campylobacter transfer from naturally contaminated chicken parts most commonly used in Germany. One scenario simulated the seasoning of five chicken legs and the reuse of the same plate for cooked meat. In another, five chicken breast filets were cut into small slices on a wooden board where, without intermediate cleaning, a cucumber was sliced. We also investigated the transfer of the pathogen from chicken via hands to a bread roll. The numbers of Campylobacter present on the surfaces of the chicken parts, hands, utensils, and ready-to-eat foods were detected by using Preston enrichment and colony counting after surface plating on Karmali agar. The mean transfer rates from legs and filets to hands were 2.9 and 3.8%. The transfer from legs to the plate (0.3%) was significantly smaller (P < 0.01) than the percentage transferred from filets to the cutting board and knife (1.1%). Average transfer rates from hands or kitchen utensils to ready-to-eat foods ranged from 2.9 to 27.5%.  相似文献   

17.
The ability of phages to survive processing is an important aspect of their potential use in the biocontrol of Campylobacter in poultry production. To this end, we have developed a procedure to recover Campylobacter bacteriophages from chilled and frozen retail poultry and have validated the sensitivity of the method by using a characterized Campylobacter phage (i.e., NCTC 12674). By using this method, we have shown that Campylobacter phages can survive on retail chicken under commercial storage conditions. Retail chicken portions purchased in the United Kingdom were screened for the presence of endogenous Campylobacter phages. Thirty-four Campylobacter bacteriophages were isolated from 300 chilled retail chicken portions, but none could be recovered from 150 frozen chicken portions. The phage isolates were characterized according to their lytic profiles, morphology, and genome size. The free-range products were significantly more likely to harbor phages (P < 0.001 by single-factor analysis of variance) than were standard or economy products. This study demonstrates that Campylobacter bacteriophages, along with their hosts, can survive commercial poultry processing procedures and that the phages exhibited a wide range of recovery rates from chicken skin stored at 4°C.  相似文献   

18.
Carbapenem antimicrobials are critically important to human health and they are often the only remaining effective antibiotics for treating serious infections. Resistance to these drugs mediated by acquired carbapenemase enzymes is increasingly encountered in gram-negative bacteria and is considered a public health emergency. Animal origin food products are recognized as a potential source of resistant organisms, although carbapenem resistance has only recently been reported. In western countries there are active resistance surveillance programs targeting food animals and retail meat products. These programs primarily target beef, pork and poultry and focus exclusively on E. coli, Salmonella, Campylobacter spp. and Enterococcus spp. This global surveillance strategy does not capture the diversity of foods available nor does it address the presence of resistance gene-bearing mobile genetic elements in non-pathogenic bacterial taxa. To address this gap, a total of 121 seafood products originating in Asia purchased from retail groceries in Canada were tested. Samples were processed using a taxa-independent method for the selective isolation of carbapenem resistant organisms. Isolates were characterized by phenotypic antimicrobial susceptibility testing, PCR and DNA sequencing. Carbapenemase producing bacteria, all blaOXA-48, were isolated from 4 (3.3%) of the samples tested. Positive samples originated from China (n=2) and Korea (n=2) and included squid, sea squirt, clams and seafood medley. Carbapenemase producing organisms found include Pseudomonas, Stenotrophomonas and Myroides species. These findings suggest that non-pathogenic bacteria, excluded from resistance surveillance programs, in niche market meats may serve as a reservoir of carbapenemase genes in the food supply.  相似文献   

19.
The study investigated the prevalence of Campylobacter spp. in Finnish cattle at slaughter and carcass contamination after slaughter. During the period January to December 2003, bovine rectal fecal samples (n = 952) and carcass surface samples (n = 948) from 12 out of 15 Finnish slaughterhouses were examined. In total, campylobacters were detected in 31.1% of fecal samples and in 3.5% of carcass surface samples. Campylobacter jejuni was isolated from 19.5%, Campylobacter coli from 2.2%, and presumptive Campylobacter hyointestinalis from 10.8% of fecal samples. Campylobacters were detected in 4.4% and 37.4% of the fecal samples examined both by direct culture and by enrichment (n = 730), respectively, suggesting a low level of campylobacters in the intestinal content. A slightly increasing trend was observed in the overall prevalence of campylobacters towards the end of summer and autumn. Seventeen different serotypes were detected among the fecal C. jejuni isolates using a set of 25 commercial antisera for serotyping heat-stable antigens (Penner) of C. jejuni by passive hemagglutination. The predominant serotypes, Pen2 and Pen4-complex, were isolated from 52% of the fecal samples. Subtyping by pulsed-field gel electrophoresis (SmaI) yielded 56 and 20 subtypes out of 330 fecal and 70 carcass C. jejuni isolates, respectively. MICs of ampicillin, enrofloxacin, erythromycin, gentamicin, nalidixic acid, and oxytetracycline for 187 C. jejuni isolates were determined using a commercial broth microdilution method. Sixteen (9%) of the isolates were resistant to at least one of the antimicrobials tested. Resistance to nalidixic acid was most commonly detected (6%). No multiresistance was observed.  相似文献   

20.
In this study, the microbiological quality of roof-harvested rainwater was assessed by monitoring the concentrations of Escherichia coli, enterococci, Clostridium perfringens, and Bacteroides spp. in rainwater obtained from tanks in Southeast Queensland, Australia. Samples were also tested using real-time PCR (with SYBR Green I dye) for the presence of potential pathogenic microorganisms. Of the 27 rainwater samples tested, 17 (63%), 21 (78%), 13 (48%), and 24 (89%) were positive for E. coli, enterococci, C. perfringens, and Bacteroides spp., respectively. Of the 27 samples, 11 (41%), 7 (26%), 4 (15%), 3 (11%), and 1 (4%) were PCR positive for the Campylobacter coli ceuE gene, the Legionella pneumophila mip gene, the Aeromonas hydrophila lip gene, the Salmonella invA gene, and the Campylobacter jejuni mapA gene. Of the 21 samples tested, 4 (19%) were positive for the Giardia lamblia β-giardin gene. The binary logistic regression model indicated a positive correlation (P < 0.02) between the presence/absence of enterococci and A. hydrophila. In contrast, the presence/absence of the remaining potential pathogens did not correlate with traditional fecal indicators. The poor correlation between fecal indicators and potential pathogens suggested that fecal indicators may not be adequate to assess the microbiological quality of rainwater and consequent health risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号