首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
线粒体Ca2+转运和通透转变孔道的开放与能量状态   总被引:1,自引:0,他引:1  
对大鼠肝线粒体Ca2+转运与通透转变孔道(PTP)开放之间的关系, 以及线粒体能量状态对Ca2+转运和PTP开放的影响进行研究. 结果显示, Ca2+诱导的线粒体Ca2+释放(mCICR)能介导PTP开放, 呼吸链电子传递抑制剂抑制mCICR和PTP的开放, 使呼吸链的电子传递局部恢复, mCICR和PTP开放也可部分恢复. mCICR和PTP的开放也能被消除跨膜质子梯差的CCCP抑制, 表明线粒体Ca2+转运和PTP的开放都紧密依赖电子传递和能量偶联.  相似文献   

2.
TFAR19促进小鼠肝线粒体膜通透性转运孔的开放   总被引:12,自引:0,他引:12  
TFAR19基因 (TF 1cellapoptosisrelatedgene 19)是北京大学人类疾病基因中心从人白血病细胞株TF 1细胞中克隆到的凋亡相关新基因之一 (GenBank登记号AF0 1495 5 )。初步研究发现 ,该基因在细胞凋亡时高表达 ,并且表达产物具有抑制肿瘤细胞生长和促进凋亡作用。但是其确切的作用机制不明。线粒体膜完整性破坏所导致促凋亡因子 (如细胞色素c等因子 )的释放是细胞凋亡关键性的控制因素。线粒体膜通透性转运孔 (PTP) ,对线粒体膜完整性具有重要的调控作用。研究了重组人TFAR19蛋白在体外条件下 ,对线粒体PTP、跨膜电位 ,以及细胞色素c释放的影响。结果表明 ,TFAR19蛋白使分离的小鼠肝线粒体PTP开放、线粒体跨膜电位下降 ,以及细胞色素c释放。TFAR19对线粒体的上述作用是通过促进PTP开放起作用的。实验结果提示 ,TFAR19对线粒体凋亡信号有正反馈放大作用 ,并进一步揭示了TFAR19促进细胞凋亡的机制  相似文献   

3.
钙池排空操纵的外钙内流决定甘草诱导MGC-803细胞凋亡   总被引:4,自引:0,他引:4  
 用 EGTA螯合胞外 Ca2 +和异搏定抑制钙通道 ,研究胞外 Ca2 +在甘草诱导 MGC- 80 3细胞中的作用 .流式细胞仪检测凋亡峰和 DNA ladder分析均表明 ,EGTA和异博定阻断细胞凋亡 .分别以 PI或 Rh1 2 3活染后的相应荧光强度表示细胞膜通透性和线粒性膜电位 (ΔΨm) .结果表明 ,细胞膜通透性增强和线粒体 ΔΨm 下降均为细胞凋亡的早期事件 ,EGTA和异博定均可抑制细胞膜通透性增强 ,但 EGTA促进线粒体 ΔΨm 下降 ,而异博定作用相反 .进一步经 PI和 Hoechst33342荧光双染后同时观察细胞膜通透性和细胞核形态 .结果表明 ,凋亡细胞均可 PI着色 ,EGTA和异博定完全阻断染色质凝聚 ,但不能完全抑制细胞膜通透性变化 .借助 Ca2 +探针 Fluo- 3/AM研究凋亡时胞内游离钙的时相变化 ,发现 Ca2 +升高也是细胞凋亡的早期事件 . EGTA和异博定轻微促进凋亡早期 Ca2 +升高 ,但抑制随后 Ca2 +的继续升高 .所有结果提示 ,钙池排空操纵的外 Ca2 +内流在甘草诱导 MGC- 80 3细胞凋亡中发挥决定性的作用 .  相似文献   

4.
该文探讨甜蜜素联合柠檬黄对人克隆结肠腺癌细胞(Caco-2细胞)损伤的机理,以高内涵细胞成像分析(high content analysis,HCA)技术为平台,析因设计实验方差分析为联合毒性的评价方法、实时荧光定量PCR(quantificational Real-time polymerase chain reaction,q RT-PCR)和Western blot为检测方法对此进行探究。结果表明,甜蜜素与柠檬黄均会显著地抑制Caco-2细胞的增殖,且呈现剂量–效应关系,IC50分别为11.37±0.15 g/L和1.21±0.12 g/L。与单独组相比,联合组显著地升高细胞内Ca2+浓度、升高活性氧(reactive oxygen species,ROS)水平、抑制细胞增殖、增大细胞膜通透性、降低线粒体膜电位。联合组在细胞内Ca2+浓度、ROS水平上表现为协同作用,在线粒体膜电位变化上表现为相加作用。q RT-PCR和Western blot显示,联合组显著提高Bax、细胞色素c(cytochrome c)、胱冬肽酶-3(caspase-3)等基因的表达,并上调Bax和下调Bcl-2的蛋白质水平,同时提高细胞色素c、剪切胱冬肽酶-3(cleaved-caspase-3)的蛋白质水平来抑制Caco-2细胞增殖。  相似文献   

5.
MFN1介导的线粒体融合在心肌细胞凋亡中的作用研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:探讨线粒体融合关键蛋白MFN1介导的线粒体融合在调控心肌细胞凋亡中的作用。方法:通过si RNA降低体外培养H9C2心肌细胞中MFN1的表达后,采用Western blot检测线粒体细胞色素c(Cyto c)释放及其下游凋亡效应分子Caspase9与Caspase3活性,流式细胞术检测细胞内活性氧(ROS)的产生情况,流式细胞术检测细胞凋亡的情况。结果:干扰MFN1可显著促进H9C2心肌细胞内细胞色素c由线粒体释放至胞浆,促进Caspase9与Caspase3的激活,增加细胞内活性氧ROS产生并提高细胞凋亡率(均P0.05)。结论:MFN1介导的线粒体融合可保护心肌细胞凋亡,其机制可能与抑制ROS产生与细胞色素C释放有关。  相似文献   

6.
用1.0mmol/L FeSO4/0.5mmol/L H2O2处理烟草(Nicotiana tabacum L.,cultivar BY-2)原生质体,发现羟自由基能够诱导烟草原生质体的凋亡。具体表现为细胞核皱缩、DNA Ladder、TUNEL阳性反应等典型的凋亡特扯。在动物细胞调亡过程中,线粒体起着非常重要的作用,其中膜电位(ΔΨ10)的变化以及由其引起的位于线粒体膜上的通透性孔(PTP)的开放与Cyt c的释放有关。另外,在动物凋亡细胞中,磷脂酰丝氨酸(phosphatidylserine,PS)会从细胞膜内侧向外翻转。为了判断植物细胞凋亡过程中膜电位的变化情况以及PS的外翻程皮,我们采用了流式细胞法。结果表明,随着处理时间的延长,烟草原生质体线粒体的膜电位逐渐降低;膜内PS大量外翻。说明由羟自由基和烟草原生质体组成的凋亡体系是一种可靠的凋亡组合,可以用来对植物细胞凋亡机理做进一步研究。  相似文献   

7.
本研究探讨了外源性C2-神经酰胺诱导入结肠癌HT-29细胞凋亡中,线粒体膜间隙凋亡蛋白的释放机制.不同浓度C2-神经酰胺作用HT-29细胞,流式细胞仪检测线粒体膜电位(△ψm),线粒体/细胞液分离试剂盒分离亚细胞成分,聚丙烯酰胺凝胶电泳检测细胞色素C(Cytc)、高温必需蛋白A2(HtrA2)、线粒体源性半胱天冬氨酸蛋白酶第二活化因子(Smac)、凋亡抑制蛋白(XtAP)和半胱天冬氨酸蛋白酶-3(Caspase-3)蛋白表达水平.实验结果显示25和50μmol/L C2-神经酰胺作用细胞6h,△ψm即开始下降(P〈0.05),且环孢霉素能通过调节线粒体膜通透性转换孔抑制△ψm的下降.C2-神经酰胺对Cyt c,HtrA2和Smac总蛋白表达没有明显影响,但能诱导Cyt c,HtrA2和Smac从线粒体释放入细胞液中,并下调XIAP蛋白的表达及活化Caspase-3.在Caspase抑制剂存在下,C2-神经酰胺仍能诱导Cyt c和HtrA2从线粒体释放,但不能诱导Smac释放.因此认为C2-神经酰胺能通过线粒体凋亡通路诱导HT-29细胞凋亡,C2-神经酰胺诱导Cytc和HtrA2从线粒体的释放是Caspase非依赖性的,而Smac释放是Caspase依赖性的.  相似文献   

8.
观察通平养心方对高糖诱导的H9c2细胞损伤的保护作用机制。高糖造成细胞损伤模型;MTT法检测细胞存活率;激光扫描共聚焦显微镜成像法,检测线粒体特异性荧光染料四甲基罗丹明乙酯(tetramethyrhodamine ester,TMRE),观察细胞线粒体膜电位(mitochondrial membrane potential,△Ψm)的变化,证明通平养心方是否通过抑制线粒体通透性转移孔(mitochondrial permeability transition pore,m PTP)的开放而发挥心肌线粒体的保护作用;Western-blot检测p-JNK、p-GSK-3β。结果发现,通平养心方和JNK抑制剂均能阻断高糖造成的H9c2心肌细胞损伤;0.1μg/m L通平养心方预处理10 min,细胞存活率升高、TMRE荧光减弱程度降低,p-JNK表达下降,p-GSK-3β表达升高。表明通平养心方能够通过线粒体保护途径对抗高糖诱导的H9c2细胞损伤,机制可能是通过JNK通路促进其下游因子GSK-3β磷酸化,从而抑制m PTP的开放实现的。  相似文献   

9.
观察通平养心方对高糖诱导的H9c2细胞损伤的保护作用机制。高糖造成细胞损伤模型;MTT法检测细胞存活率;激光扫描共聚焦显微镜成像法,检测线粒体特异性荧光染料四甲基罗丹明乙酯(tetramethyrhodamine ester,TMRE),观察细胞线粒体膜电位(mitochondrial membrane potential,△Ψm)的变化,证明通平养心方是否通过抑制线粒体通透性转移孔(mitochondrial permeability transition pore,m PTP)的开放而发挥心肌线粒体的保护作用;Western-blot检测p-JNK、p-GSK-3β。结果发现,通平养心方和JNK抑制剂均能阻断高糖造成的H9c2心肌细胞损伤;0.1μg/m L通平养心方预处理10 min,细胞存活率升高、TMRE荧光减弱程度降低,p-JNK表达下降,p-GSK-3β表达升高。表明通平养心方能够通过线粒体保护途径对抗高糖诱导的H9c2细胞损伤,机制可能是通过JNK通路促进其下游因子GSK-3β磷酸化,从而抑制m PTP的开放实现的。  相似文献   

10.
大鼠脑缺血诱导的细胞色素c的释放和Bcl-2表达的上调   总被引:5,自引:0,他引:5  
Zhang CY  Shen WH  Zhang GY 《生理学报》2004,56(2):147-152
利用全脑缺血模型,采用免疫印迹和免疫沉淀方法,探讨N-甲基-D-天冬氨酸受体和L-型电压门控钙通道拮抗剂对细胞色素c从线粒体中的释放和Bcl-2的表达变化影响。缺血/复灌后24h,线粒体中细胞色素c明显降低而胞浆中细胞色素c的成分相应增加。Bcl-2的表达呈时间依赖性,其表达在缺血/复灌后6h达到最大。在所有样品中,线粒体呼吸链蛋白细胞色素氧化酶没有变化,表明线粒体的制备方法是可靠的。线粒体中Bcl-2的表达减少和细胞色素c的释放可以被NMDA受体拮抗剂氯胺酮和L-型电压门控钙通道拮抗剂尼氟地平抑制。结果表明,N-甲基-D-天冬氨酸受体和L-型电压门控钙通道可能介导了脑缺血后细胞色素c从线粒体中的释放和Bcl-2的上调表达。缺血诱导的细胞色素c释放具有损伤作用而Bcl-2的上调表达则对脑缺血具有一定的保护作用。  相似文献   

11.
Under stress conditions, mitochondria sense metabolic changes, e.g. in pH, cytoplasmic Ca(2+), energy status, and reactive oxygen species (ROS), and respond by induction of the permeability transition pore (PTP) and by releasing cytochrome c, thus initiating the programmed cell death (PCD) cascade in animal cells. In plant cells, the presence of all the components of the cascade has not yet been shown. In wheat (Triticum aestivum L.) root mitochondria, the onset of anoxia caused rapid dissipation of the inner membrane potential, initial shrinkage of the mitochondrial matrix and the release of previously accumulated Ca(2+). Ca(2+) uptake by mitochondria was dependent on the presence of inorganic phosphate. Treatment of mitochondria with high micromolar and millimolar Ca(2+) (but not Mg(2+)) concentrations induced high amplitude swelling, indicative of PTP opening. Alterations in mitochondrial volume were confirmed by transmission electron microscopy. Mitochondrial swelling was not sensitive to cyclosporin A (CsA)-an inhibitor of mammalian PTP. The release of cytochrome c was monitored under lack of oxygen. Anoxia alone failed to induce cytochrome c release from mitochondria. Oxygen deprivation and Ca(2+) ions together caused cytochrome c release in a CsA-insensitive manner. This process correlated positively with Ca(2+) concentration and required Ca(2+) localization in the mitochondrial matrix. Functional characteristics of wheat root mitochondria, such as membrane potential, Ca(2+) transport, swelling, and cytochrome c release under lack of oxygen are discussed in relation to PCD.  相似文献   

12.
The peripheral-type benzodiazepine receptor (PBR) is an 18 kDa mitochondrial membrane protein with still elusive function in cell death. Here, we studied whether PBR is involved in Ca2+-induced permeability transition pore (PTP) opening in isolated rat brain mitochondria (RBM). PTP opening is important in mitochondrial events leading to programmed cell death. Immunoblots revealed a single 18 kDa anti-PBR antibody-immunoreactive band in purified RBM. Adenine nucleotide transporter, a key PTP component, was found in the PBR-immunoprecipitate. In isolated intact RBM, addition of a specific anti-PBR antibody [H. Li, Z. Yao, B. Degenhardt, G. Teper, V. Papadopoulos, Cholesterol binding at the cholesterol recognition/interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 1267-1272] delayed Ca2+-induced dissipation of membrane potential (psi(m)) and diminished cyclosporine A-sensitive Ca2+ efflux, which are both indicative for the suppression of PTP opening. Moreover, anti-PBR antibody caused partial retention of Ca2+ in the mitochondrial matrix in spite of psi(m) dissipation, and reduced activation of respiratory rate at Ca2+-induced PTP opening. A release of pro-apoptotic factors, AIF and cytochrome c, from RBM was shown at threshold Ca2+ load. Anti-PBR antibody blocked the release of AIF but did not affect the cytochrome c release. Addition of ATP was able to initiate PTP closing, associated with psi(m) restoration and Ca2+ re-accumulation. At the same time mitochondrial protein phosphorylation (incorporation of 32P from [gamma-32P]ATP) occurred and anti-PBR antibody was able to inhibit phosphorylation of these proteins. The endogenous PBR ligand, protoporphyrin IX, facilitated PTP opening and phosphorylation of the mitochondrial proteins, thus, inducing effects opposite to anti-PBR antibody. This study provides evidence for PBR involvement in PTP opening, controlling the Ca2+-induced Ca2+ efflux, and AIF release from mitochondria, important stages of initiation of programmed cell death.  相似文献   

13.
The mitochondrial permeability transition pore (PTP) may operate as a physiological Ca2+ release mechanism and also contribute to mitochondrial deenergization and release of proapoptotic proteins after pathological stress, e.g. ischemia/reperfusion. Brain mitochondria exhibit unique PTP characteristics, including relative resistance to inhibition by cyclosporin A. In this study, we report that 2-aminoethoxydiphenyl borate blocks Ca2+-induced Ca2+ release in isolated, non-synaptosomal rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+. Ca2+ release was not mediated by the mitochondrial Na+/Ca2+ exchanger or by reversal of the uniporter responsible for energy-dependent Ca2+ uptake. Loss of mitochondrial Ca2+ was accompanied by release of cytochrome c and pyridine nucleotides, indicating an increase in permeability of both the inner and outer mitochondrial membranes. Under these conditions, Ca2+-induced opening of the PTP was not blocked by cyclosporin A, antioxidants, or inhibitors of phospholipase A2 or nitric-oxide synthase but was abolished by pretreatment with bongkrekic acid. These findings indicate that in the presence of adenine nucleotides and Mg2+,Ca2+-induced PTP in non-synaptosomal brain mitochondria exhibits a unique pattern of sensitivity to inhibitors and is particularly responsive to 2-aminoethoxydiphenyl borate.  相似文献   

14.
Propagation of the apoptotic signal by mitochondrial waves   总被引:16,自引:0,他引:16  
Pacher P  Hajnóczky G 《The EMBO journal》2001,20(15):4107-4121
Generation of mitochondrial signals is believed to be important in the commitment to apoptosis, but the mechanisms coordinating the output of individual mitochondria remain elusive. We show that in cardiac myotubes exposed to apoptotic agents, Ca2+ spikes initiate depolarization of mitochondria in discrete subcellular regions, and these mitochondria initiate slow waves of depolarization and Ca2+ release propagating through the cell. Traveling mitochondrial waves are prevented by Bcl-x(L), involve permeability transition pore (PTP) opening, and yield cytochrome c release, caspase activation and nuclear apoptosis. Mitochondrial Ca2+ uptake is critical for wave propagation, and mitochondria at the origin of waves take up Ca2+ particularly effectively, providing a mechanism that may underlie selection of the initiation sites. Thus, apoptotic agents transform the mitochondria into an excitable state by sensitizing PTP to Ca2+. Expansion of the local excitation by mitochondrial waves propagating through the whole cell can be especially important in activation of the apoptotic machinery in large cells.  相似文献   

15.
Cytochrome c release and mitochondrial permeability transition (MPT) play important roles in apoptosis. In this study, we found that selenium, an essential trace element, induced mitochondrial membrane potential (Delta psi(m)) loss, swelling, and cytochrome c release in isolated mitochondria. All of the above observations were blocked by cyclosporin A (CsA), which is a specific inhibitor to permeability transition pore (PTP), indicating selenite-induced mitochondrial changes were mediated through the opening of PTP. In physiological concentration, selenite could induce mitochondria at low-conductance PTP 'open' probability, which is correlated to regulate the physiological function, whereas in toxic concentration, induce mitochondria at high-conductance PTP 'open' probability and rapidly undergo a process of osmotic swelling following diffusion toward matrix as for inducer (Ca(2+)/P(i)). Selenite also induced other mitochondrial marker enzymes including monoamine oxidase (MAO) and mitochondria aspartate aminotransferase (mAST). Oligomycin inhibited the selenite-induced cytochrome c release and Delta psi(m) loss, showing that F(0)F(1)-ATPase was important in selenite or Ca(2+)/P(i)-induced MPT.  相似文献   

16.
The mitochondrial permeability transition pore (PTP) is a membrane protein complex assembled and opened in response to Ca(2+) and oxidants such as peroxynitrite (ONOO(-)). Opening the PTP is mechanistically linked to the release of cytochrome c, which participates in downstream apoptotic signaling. However, the molecular basis of the synergistic interactions between oxidants and Ca(2+) in promoting the PTP are poorly understood and are addressed in the present study. In isolated rat liver mitochondria, it was found that the timing of the exposure of the isolated rat liver mitochondria to Ca(2+) was a critical factor in determining the impact of ONOO(-) on PTP. Specifically, addition of Ca(2+) alone, or ONOO(-) and then Ca(2+), elicited similar low levels of PTP opening, whereas ONOO(-) alone was ineffective. In contrast, addition of Ca(2+) and then ONOO(-) induced extensive PTP opening and cytochrome c release. Interestingly, Cu/Zn-superoxide dismutase enhanced pore opening through a mechanism independent of its catalytic activity. These data are consistent with a model in which Ca(2+) reveals a molecular target that is now reactive with ONOO(-). As a test of this hypothesis, tyrosine nitration was determined in mitochondria exposed to ONOO(-) alone or to Ca(2+) and then ONOO(-), and mitochondrial membrane proteins were analyzed using proteomics. These studies suggest protein targets revealed by Ca(2+) include dehydrogenases and CoA - containing enzymes. These data are discussed in the context of the role of mitochondria, Ca(2+), and ONOO(-) in apoptotic signaling.  相似文献   

17.
Gliotoxin (GT) is a hydrophobic fungal metabolite of the epipolythiodioxopiperazine group which reacts with membrane thiols. When added to a suspension of energized brain mitochondria, it induces matrix swelling of low amplitude, collapse of membrane potential (DeltaPsi), and efflux of endogenous cations such as Ca2+ and Mg2+, typical events of mitochondrial permeability transition (MPT) induction. These effects are due to opening of the membrane transition pore. The addition of cyclosporin A (CsA) or ADP slightly reduces membrane potential collapse, matrix swelling and Ca2+ efflux; Mg2+ efflux is not affected at all. The presence of exogenous Mg2+ or spermine completely preserve mitochondria against DeltaPsi collapse, matrix swelling and Ca2+ release. Instead, Mg2+ efflux is only slightly affected by spermine. Our results demonstrate that, besides inducing MPT, gliotoxin activates a specific Mg2+ efflux system from brain mitochondria.  相似文献   

18.
Fluoride curcumin derivatives: new mitochondrial uncoupling agents   总被引:1,自引:0,他引:1  
The mitochondrial effects of two fluoride curcumin derivatives were studied. They induced the collapse of mitochondrial membrane potential (DeltaPsi), increased mitochondrial respiration, and decreased O(2)*- production and promoted Ca(2+) release. These effects were reversed by the recoupling agent 6-Ketocholestanol, but not by cyclosporin A, an inhibitor of the permeability transition pore (PTP), suggesting that these compounds act as uncoupling agents. This idea was reinforced by the analysis of the physico-chemical properties of the compounds indicating, that they are mainly in the anionic form in the mitochondrial membrane. Moreover, they are able to induce PTP opening by promoting the oxidation of thiol groups and the release of cytochrome c, making these two molecules potential candidates for induction of apoptosis.  相似文献   

19.
The mitochondrial permeability transition pore (PTP) and associated release of cytochrome c are thought to be important in the apoptotic process. Nitric oxide (NO( small middle dot)) has been reported to inhibit apoptosis by acting on a variety of extra-mitochondrial targets. The relationship between cytochrome c release and PTP opening, and the effects of NO( small middle dot) are not clearly established. Nitric oxide, S-nitrosothiols and peroxynitrite are reported to variously inhibit or promote PTP opening. In this study the effects of NO( small middle dot) on the PTP were characterized by exposing isolated rat liver mitochondria to physiological and pathological rates of NO( small middle dot) released from NONOate NO( small middle dot) donors. Nitric oxide reversibly inhibited PTP opening with an IC(50) of 11 nm NO( small middle dot)/s, which can be readily achieved in vivo by NO( small middle dot) synthases. The mechanism involved mitochondrial membrane depolarization and inhibition of Ca(2+) accumulation. At supraphysiological release rates (>2 micrometer/s) NO( small middle dot) accelerated PTP opening. Substantial cytochrome c release occurred with only a 20% change in mitochondrial swelling, was an early event in the PTP, and was also inhibited by NO( small middle dot). Furthermore, NO( small middle dot) exposure resulted in significantly lower cytochrome c release for the same degree of PTP opening. It is proposed that this pathway represents an additional mechanism underlying the antiapoptotic effects of NO( small middle dot).  相似文献   

20.
We have studied the pathways for Ca(2+) transport in mitochondria of the fruit fly Drosophila melanogaster. We demonstrate the presence of ruthenium red (RR)-sensitive Ca(2+) uptake, of RR-insensitive Ca(2+) release, and of Na(+)-stimulated Ca(2+) release in energized mitochondria, which match well characterized Ca(2+) transport pathways of mammalian mitochondria. Following larger matrix Ca(2+) loading Drosophila mitochondria underwent spontaneous RR-insensitive Ca(2+) release, an event that in mammals is due to opening of the permeability transition pore (PTP). Like the PTP of mammals, Drosophila Ca(2+)-induced Ca(2+) release could be triggered by uncoupler, diamide, and N-ethylmaleimide, indicating the existence of regulatory voltage- and redox-sensitive sites and was inhibited by tetracaine. Unlike PTP-mediated Ca(2+) release in mammals, however, it was (i) insensitive to cyclosporin A, ubiquinone 0, and ADP; (ii) inhibited by P(i), as is the PTP of yeast mitochondria; and (iii) not accompanied by matrix swelling and cytochrome c release even in KCl-based medium. We conclude that Drosophila mitochondria possess a selective Ca(2+) release channel with features intermediate between the PTP of yeast and mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号