首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Single crystals of three derivatives of the structurally still incompletely characterized coordination polymer [(Me3Sn)4Ru(CN)6] 1b have been prepared and subjected to crystallographic studies: [1b · 4H2O]=2b forms stacks of puckered 2[Ru{μ-CNSn(Me3)NC}2] sheets interlinked by hydrogen bonds in making use of two additional CNSn(Me3)OH2 ligands and quasi-zeolitic water. Mild drying of 2b leads to the “missing link” between 1b and 2b, [1b · 2H2O], 3b. The structure of [1b · 2tp] (tp=4-thiopyridone) consists of a three-dimensional, negatively charged host framework comprising (via Sn-S bonds) one “aromatic” thione linkage and a [Me3Sn · tp]+guest ion involving a more zwitterionic form of tp. Slow uptake of Me3SnCl from the gas phase by an aqueous solution of K4[Ru(CN)6] and tp afforded the novel assembly [1b · 2H2O · 0.8pms · 0.2pds] (pms/pds=4,4-dipyridylmono-/disulfide), the supramolecular architecture of which resembles that of 2b. Bridging pms or pds molecules occupy equivalent interlayer sites, and the pms/pds ratio is likely to vary. At least three further assemblies containing again 1b and either tp or pds/pms have likewise been isolated, however, not as single crystals.  相似文献   

2.
Subsequent addition of 1,2-benzenedithiol (S2-H2) and nBuLi to a solution of [Ru(NO)Cl3 · xMeOH] in THF afforded exclusively the monomeric species NBu4[RuII(NO)(S2)2] (1). Formation of dimeric (NBu4)2[RuII(NO)(S2)2]2 (2) has been confirmed when the deprotonated ligand S2-Li2 was added to [Ru(NO)Cl3 · xMeOH] and allowed to stir for 30 h. The monomer 1 undergoes aerial oxidation to give (NBu4)2[RuIV(S2)3] (3). The reaction between RuCl3 · xH2O and S2-H2 in the presence of NaOMe, afforded the dinulear RuIII species (NMe4)2[RuIII(S2)2]2 (4). A modified method for the preparation of 1 is being employed to synthesize the osmium analogue NBu4[Os(NO)(S2)2] (5) effectively. The solid state structures of 1, 2 and 3 were determined by X-ray crystal structure analysis. A comparison of relevant bond distance data suggests that 1,2-benzenedithiolate acts as an “innocent” ligand.  相似文献   

3.
Substitution of thf ligands in [Cr(thf)3Cl3] and [Cr(thf)2(OH2)Cl3] was investigated. 2,2′-Bipyridine (bipy) was reacted with [Cr(thf)3Cl3] to form [Cr(bipy)(thf)Cl3] (1), which was subsequently reacted with water to give [Cr(bipy)(OH2)Cl3] (2). Reaction of 1 with acetonitrile (CH3CN), pyridine (py) and pyridine derivatives to form [Cr(bipy)(L)Cl3] (L = CH3CN 3, py 4 and 4-pyR with R = NH25, But6 and Ph 7). In addition, the substitution of bipy in [Cr(thf)3Cl3] was followed by 1H NMR spectroscopy at room temperature, which showed completion of the reaction in ca. 100 min. Complex 2 was characterised by single crystal X-ray diffraction. The theoretical powder diffraction pattern of 2 was compared to the experimentally obtained powder X-ray diffraction pattern, and shows excellent agreement. The dimer [Cr2(bipy)2Cl4(μ-Cl)2] was cleaved asymmetrically to give the anionic complex [Cr(bipy)Cl4] (8) and [Cr(bipy)2Cl2]+ (9). Complexes 8 and 9 were characterised by single crystal X-ray diffraction.  相似文献   

4.
Novel bipyridine-type linking ligands L1 ((4-py)-CHN-C10H6-NCH-(4-py)) and L2 ((3-py)-CHN-C10H6-NCH-(3-py)), a pair of isomers due to possessing different pairs of terminal pyridyl groups, were prepared by the Schiff-base condensation. In ligand L1, the N?N separation between the terminal pyridyl groups is 16.0 Å, with their nitrogen donor atoms at the para positions (4,4′). The corresponding N?N separation in ligand L2 is 14.2 Å, with the nitrogen donor atoms at the meta positions (3,3′). 1-D zigzag-chain coordination polymers [Zn(L1)(NO3)2] (1) and [Zn(L2)(NO3)2] (2) were prepared by reactions of Zn(NO3)2 · 6H2O with ligands L1 and L2, respectively, by solution diffusion. Polymer 3, [Cd(L1)1.5(NO3)2], prepared from Cd(NO3)2 · 4H2O and L1, exhibits a 1-D ladder structure, whose repeating ladder unit consists of four Cd metals and four L1 ligands to create a large 76-membered ring with dimensions of 20.8 × 20.8 Å. All products were structurally characterized by X-ray diffraction.  相似文献   

5.
The ansa-titanocene complexes, [Ti{Me2Si(η5-C5Me4)(η5-C5H3R)}Cl2] (R = Me (5), iPr (6), tBu (7), SiMe3 (8)), were obtained from the reaction of Li2{Me2Si(C5Me4)(C5H3R)} (R = Me (1), iPr (2), tBu (3), SiMe3 (4)) with [TiCl4(THF)2], respectively. Compounds 5-8 have been tested as catalysts in the polymerization of ethylene and compared with the ansa-titanocene complexes [Ti{Me2Si(η5-C5H4)2}Cl2] and [Ti{Me2Si(η5-C5Me4)(η5-C5H4)}Cl2]. The resulting polyethylene showed molecular weights of about 200 000 g mol−1 and polydispersity values of approximately 3. In addition, the molecular structure of 6 has been determined by single crystal X-ray diffraction studies.  相似文献   

6.
Trityl borate salts [4-RPyCPh3][B(C6F5)4] (R = H 1, tBu 2, Et 3, NMe24) and [R3PCPh3][B(C6F5)4] (R = Me 5, nBu 6, Ph[1] 7, p-MeC6H48) are readily prepared via equimolar reaction of the appropriate pyridine or phosphine and trityl borate [CPh3][B(C6F5)4]. The analogous reactions of PiPr3 affords the product [(p-iPr3P-C6H4)Ph2CH][B(C6F5)4] (9) while the corresponding reactions of Cy3P and tBu3P gave the cyclohexadienyl derivatives [(p-R3PC6H5)CPh2][B(C6F5)4] (R = Cy 10, tBu 11). X-ray structures of 5 and 9 are reported.  相似文献   

7.
Cyclometalation of benzo[h]quinoline (bzqH) by [RuCl(μ-Cl)(η6-C6H6)]2 in acetonitrile occurs in a similar way to that of 2-phenylpyridine (phpyH) to afford [Ru(bzq)(MeCN)4]PF6 (3) in 52% yield. The properties of 3 containing ‘non-flexible’ benzo[h]quinoline were compared with the corresponding [Ru(phpy)(MeCN)4]PF6 (1) complex with ‘flexible’ 2-phenylpyridine. The [Ru(phpy)(MeCN)4]PF6 complex is known to react in MeCN solvent with ‘non-flexible’ diimine 1,10-phenanthroline to form [Ru(phpy)(phen)(MeCN)2]PF6, being unreactive toward ‘flexible’ 2,2′-bipyridine under the same conditions. In contrast, complex 3 reacts both with phen and bpy in MeCN to form [Ru(bzq)(LL)(MeCN)2]PF6 {LL = bpy (4) and phen (5)}. Similar reaction of 3 in methanol results in the substitution of all four MeCN ligands to form [Ru(bzq)(LL)2]PF6 {LL = bpy (6) and phen (7)}. Photosolvolysis of 4 and 5 in MeOH occurs similarly to afford [Ru(bzq)(LL)(MeCN)(MeOH)]PF6 as a major product. This contrasts with the behavior of [Ru(phpy)(LL)(MeCN)2]PF6, which lose one and two MeCN ligands for LL = bpy and phen, respectively. The results reported demonstrate a profound sensitivity of properties of octahedral compounds to the flexibility of cyclometalated ligand. Analogous to the 2-phenylpyridine counterparts, compounds 4-7 are involved in the electron exchange with reduced active site of glucose oxidase from Aspergillus niger. Structure of complexes 4 and 6 was confirmed by X-ray crystallography.  相似文献   

8.
A trinuclear copper(II) complex, [Cu3(2,5-pydc)2(Me5dien)2(BF4)2(H2O)2] · H2O 1, has been constructed from 2,5-pyridine-dicarboxylato bridges (2,5-pydc2−) and N,N,N′,N″,N″-pentamethyl-diethylenetriamine (Me5dien) acting as a blocking ligand. The copper ions, within the centrosymmetric trinuclear cations, are connected by two 2,5-pydc2− bridges, with an intramolecular Cu···Cu separation of 8.432 Å. The central copper ion exhibits an elongated octahedral geometry, with semicoordinated ions, while the terminal ones are pentacoordinated (distorted square-pyramidal geometry). The cryomagnetic investigation of 1 reveals an antiferromagnetic coupling of the copper(II) ions (J = −5.9 cm−1, H = −JSCu1SCu2 − JSCu2SCu1a).  相似文献   

9.
Metal-sulfur complex fragments, to which small molecules like N2, N2H2, N2H4, NH3, or CO can bind, are desirable model compounds concerning enzymatic N2 fixation.This paper reports on the effects of the phosphane co-ligand on formation and reactivity of [Ru(L)(PR3)(`N2Me2S2')] [`N2Me2S2'2−=1,2-ethanediamine-N,N-dimethyl-N,N-bis(2-benzenethiolate)(2−)] complexes with nitrogenase relevant ligands, especially N2, N2H4, NH3, and CO.Treatment of [Ru(NCCH3)4Cl2] with Li2`N2Me2S2', excessive LiOMe, bulky PPh3 or PCy3, respectively, led to the formation of two series of [Ru(L)(PR3)(`N2Me2S2')] complexes [for R=Ph: 1b, 1c (L=NCCH3), 6b (L=N2H4), 7b (L=N2), 8b1-3 (L=CO), 9b (L=NH3); for R=Cy: 1a (L=NCCH3), 6a (L=N2H4), 7a (L=N2), 8a (L=CO), 9a (L=NH3)]. While the use of PPh3 (θ=145°) yielded cis,trans and cis,cis isomers of [Ru(NCCH3)(PPh3)(`N2Me2S2')] (1b, 1c), no isomer formation was observed with the bulkier phosphane PCy3 (θ=170°). Sterically less demanding phosphanes (θ=118-132°) afforded bisphosphane complexes [Ru(PR3)2(`N2Me2S2')] [2d (R=Me), 2e (R=Et), 2f (R=nPr), and 2g (R=nBu)], which were practically inert and could only be converted in two cases and under drastic reaction conditions into the CO complexes [Ru(CO)(PR3)(`N2Me2S2')] [4e (R=Et), 4f (R=nPr)]. The chelating bidentate phosphane dppe (bisdiphenylphosphanoethane) yielded exclusively the mononuclear complex [Ru(dppe)(`N2Me2S2')] (3).  相似文献   

10.
The preparation, X-ray crystal structures, and magnetic properties of four new rod-shaped hexanuclear Mn clusters [Mn6(O2CCH3)6(EdeaH)2(tmp)2] (1), [Mn6(O2CCH3)6(mdeaH)2(tmp)2] (2), [Mn6(O2CCF3)6(teaH2)2(tmp)2]·2MeCN (3) and [Mn6(O2CPh)6(EdeaH)2(tmp)2]·2Et2O (4), where teaH3 is triethanolamine and tmpH3 is the tris-hydroxymethyl propane ligand, are reported. DC magnetization data along with AC magnetic susceptibility studies show that these complexes have weak antiferromagnetic coupling, appreciable magnetoanisotropy, and ground states of up to S = 4. Though all four complexes show a frequency-dependent out-of-phase signal in the AC susceptibility, a characteristic of single-molecule magnets (SMMs), only complexes 1, 2, and 4 are likely to be SMMs with ground states ranging from S = 2 to S = 4. Complex 3 shows the weakest AC signal and the lowest spin ground state of S ≈ 1, likely due to small structural differences and intermolecular interactions.  相似文献   

11.
Two complexes of gold of the compositions [Au(DMG)ClPy] (1) and [AuCl2Py2][AuCl4] · 2[AuCl3Py] (2), where H2DMG was dimethylglyoxime, were synthesized as the products of interaction of H[AuCl4] · 4H2O with H2DMG in the presence of pyridine and characterized by X-ray structural analysis. It was shown that depending on the synthetic conditions, the final product represents a molecular complex 1 or an ionic complex 2, in the latter one the charged and neutral species being combined via Au?Cl or Au?Au interactions.  相似文献   

12.
[PPN][Se5Fe(NO)2] (1) and [K-18-crown-6-ether][S5Fe(NO)2] (2′) were synthesized and characterized by IR, UV-Vis, EPR spectroscopy, magnetic susceptibility, and X-ray structure. [PPN][Se5Fe(NO)2] easily undergoes ligand exchange with S8 and (RS)2 (R = C7H4SN (5), o-C6H4NHCOCH3 (6), C4H3S (7)) to form [PPN][S5Fe(NO)2] and [PPN][(SR)2Fe(NO)2]. The reaction displays that [E5Fe(NO)2] (E = Se (3), S (4)) facilely converts to [Fe4E3(NO)7] by adding acid HBF4 or oxidant [Cp2Fe][BF4] in THF, respectively. Obviously, complexes 1 and 2′ serve as the precursors of the Roussin’s black salts 3 and 4. The electronic structure of {Fe(NO)2}9 core of [Se5Fe(NO)2] is best described as a dynamic resonance hybrid of {Fe+1(NO)2}9 and {Fe−1(NO+)2}9 modulated by the coordinated ligands. The findings, EPR signal of g = 2.064 for 1 at 298 K, implicate that the low-molecular-weight DNICs and protein-bound DNICs may not exist with selenocysteine residues of proteins as ligands, since the existence of protein-bound DNICs and low-molecular-weight DNICs in vitro has been characterized with a characteristic EPR signal at g = 2.03. In addition, complex 2′ treated human erythroleukemia K562 cancer cells exposed to UV-A light greatly decreased the percentage survival of the cell cultures.  相似文献   

13.
A series of Cu(II), Zn(II) and Mn(II) coordination compounds has been synthesized by reaction of the corresponding metal salts and pyrazolyl-based ligands, i.e. the neutral 1-(2-(4-((2,2,2-tri(1H-pyrazol-1-yl)ethoxy)methyl)benzyloxy)-1,1-di(1H-pyrazol-1-yl)ethyl)-1H-pyrazole {p-C6H4[CH2OCH2C(pz)3]2, (L1), and the anionic hydridotris(3-phenyl-5-methylpyrazolyl)borate (L2), bis(pyrazolyl)acetate (L3) and bis(3,5-dimethylpyrazolyl)acetate (L4): the species [L1(CuCl2)2] (1), [L1(Cu(OAc)2)2] (2), [L1(Zn(OAc)2)2] (3), [(CuCl(L2)(HpzPh,Me)] (4), [Mn(L3)2]·2H2O, (5), [ZnCl(L3)(imH)]·MeOH [CuCl(L4)(imH)]·2H2O (7) have been obtained (HpzPh,Me = 3-phenyl-5-methylpyrazole, imH = imidazole). Complexes 1 and 4 have been structurally characterized, also using less conventional powder diffraction methods. The superoxide scavenging activity has been characterized by indirect assays including EPR analysis. All complexes exhibit superoxide scavenging activity with IC50 in the µM range and they protect against the oxidative action of peroxynitrite in different ways. 1, 4 and 7 exert both an anti- and pro-oxidant effect depending on their concentration as evaluated by EPR and fluorescence methods. The pro-oxidative effects are absent in Zn(II) and Mn(II) complexes.  相似文献   

14.
Three novel polyoxotungstate-based rare earth compounds, [(C6H5NO2)Ln(H2O)5]2[H2W12O40] · nH2O (Ln = Ce3+ (1), Pr3+(2), n = 7; Nd3+ (3), n = 6), have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectra and TG analysis. The structural feature of compounds 1-3 is that the α-metatungstate cluster [H2W12O40]6− anions are linked by the lanthanide (Ln) cation-organic coordination complexes, resulting in a two-dimensional (2D) structure with helical chains. The magnetic properties of compounds 1 and 2 have been studied by measuring their magnetic susceptibility in the temperature range 2-300 K, indicating the existence of spin-orbital coupling interactions and antiferromagnetic response. Furthermore, the electrochemical properties of 1-3 were studied.  相似文献   

15.
The interaction of an excess of the title ligands L with the cis-Pt(phos)2 moieties gives compounds a-bcis-[Pt(L-O)2(phos)2] (a, phos = P(Ph)3; b, phos = 1/2 dppe), in which O- is preferred to S-coordination. Such preference is confirmed by the fact that the same products are obtained by reaction of excess of L with the previously reported a-d complexes [Pt(L-O,S)(phos)2]+, (c, phos = PPh3, d, phos = 1/2 dppe), for which chelate ring opening occurs with rupture of Pt-S rather than Pt-O bonds. Compound a can be obtained also by oxidative addition of HL to [Pt(PPh3)3]. The Pt-O bonds in compounds a-d are stable towards substitution by Me2SO, pyridine and tetramethylthiourea. Substitution of L’s occurs with N,N′-diethyldithiocarbamate, which forms a very stable chelate with Pt(II). Thiourea and N,N′-dimethylthiourea also react, because they give rise to cyclometallated products [Pt(phos)2(NRC(S)NHR)]+ (R = H, CH3), with one ionised thioamido group, as revealed by an X-ray investigation of [Pt(PPh3)2(NHC(S)NH2)]+. The preference of O versus S coordination, as well as the stability of the Pt-O bonds, are discussed in terms of antisymbiosis.  相似文献   

16.
Reaction of sodium picolinate with FeIII oxo-centered carboxylate triangles in MeCN in the presence of PPh4Cl yields (PPh4)[Fe4O2(O2CR)7(pic)2] (R = Ph (1), But (2)). Omitting the phosphonium cation produces [Fe8Na4O4(O2CPh)16(pic)4(H2O)4] (3), which contains two Fe4Na2 units bridged by two picolinate ligands. X-ray crystal structures of 1 and 3 are reported.Voltammetric profiles in MeCN show four one-electron reduction steps for complexes 1 and 2. Variable-temperature magnetic susceptibility measurements in polycrystalline samples of 1 and 3 reveal strong antiferromagnetic couplings leading to = 0 ground states.  相似文献   

17.
The electrochemical behavior of the S,S-bridged adducts of square planar metalladithiolene complexes was investigated by using cyclic voltammetry and electrochemical spectroscopies (visible, near-IR, and ESR). The norbornene-bridged S,S-adduct [Ni(S2C2Ph2)2(C7H8)] (2a; C7H8=norbornene) formed by [Ni(S2C2Ph2)2] (1a) and quadricyclane (Q) was dissociated by an electrochemical reduction, and anion 1a and norbornadiene (NBD) were formed. Q was isomerized to NBD in the overall reaction. The o-xylyl-bridged S,S-adduct [Ni(S2C2Ph2)2(CH2)2(C6H4)] (3a; (CH2)2(C6H4)=o-xylyl) was also dissociated by an electrochemical reduction, and this reaction gave the o-xylyl radical (o-quinodimethane). The reduction of complex 3a in the presence of excess o-xylylene dibromide underwent the catalytic formation of o-quinodimethane. The butylene-bridged S,S-adduct [Ni(S2C2Ph2)2(CH2)4] (4a; (CH2)4=butylene) was stable on an electrochemical reduction. The lifetimes of reduced species of these adducts 2a-4a were influenced by the stability of the eliminated group (stability: NBD > o-xylyl radical (o-quinodimethane) > butylene radical). Therefore, the reduced species are stable in the sequence 4a > 3a > 2a. Although the palladium complex [Pd(S2C2Ph2)2] (1b) was easier to reduce than the nickel complex 1a or the platinum complex [Pt(S2C2Ph2)2] (1c), their S,S-adducts were easier to reduce in the order of Ni adduct > Pd adduct > Pt adduct.  相似文献   

18.
The organometallic tin(IV) complexes [SnPh2(SRF)2] SRF = SC6F4-4-H (1), SC6F5 (2), were synthesized and their reactivity with [MCl2(PPh3)2] M = Ni, Pd and Pt explored. Thus, transmetallation products were obtained affording polymeric [Ni(SRF)(μ-SRF)]n, monomeric cis-[Pt(PPh3)2(SC6F4-4-H)2] (3) and cis-[Pt(PPh3)2(SC6F5)2] (4) and dimeric species [Pd(PPh3)(SC6F4-4-H)(μ-SC6F4-4-H)]2 (5) and [Pd(PPh3)(SC6F5)(μ-SC6F5)]2 (6) for Ni, Pt and Pd, respectively. The crystal structures of complexes 1, 2, 3, 4 and 6 were determined.  相似文献   

19.
The meta-diaminoaryl ferrocenes Fc-NCN-H (3) and Fc-CC-NCN-H (5) (Fc = (η5-C5H5)(η5-C5H4)Fe, NCN-H = C6H3(CH2NMe2)2-3,5) can be used as precursors in the preparation of heterobimetallic transition metal complexes of structural type Fc-NCN-MX (NCN = [C6H2(CH2NMe2)2-2,6]; MX = PdCl (7), PtCl (8), PtI (9)) and Fc-CC-NCN-MX (MX = PdCl (11), PdI (12), PtCl (13)), respectively. They are accessible by applying different synthesis procedures, including oxidative addition and metallation-transmetallation processes.Cyclovoltammetric studies show that the ferrocene moieties in 3, 5, 7-9 and 11-13 can reversibly be oxidised. The potential of the Fe(II)/Fe(III) redox couple decreases with increasing electron density at the NCN pincer unit. The use of 8 as a possible (electro)chemical sensor in the detection of SO2 is discussed as well.The solid-state structures of 8 and 13 are reported. The crystals of 8 contain two molecules of 8 in the asymmetric unit. The plane of the C6H2 moiety is with 27.2(3)° and 38.2(3)° tilted towards the C5H4 entity, while in 13 an angle of 45.9(3)° can be found. The d8-electron configured platinum atoms possess a somewhat distorted square-planar surrounding, setup by two Me2NCH2ortho-substituents, the NCN Cipso carbon atom and the chloride ligand.  相似文献   

20.
Hexa-coordinated chelate complex cis-[Ru(CO)2I2(P∩S)] (1a) {P∩S = η2-(P,S)-coordinated} and penta-coordinated non-chelate complexes cis-[Ru(CO)2I2(P∼S)] (1b-d) {P∼S = η1-(P)-coordinated} are produced by the reaction of polymeric [Ru(CO)2I2]n with equimolar quantity of the ligands Ph2P(CH2)nP(S)Ph2 {n = 1(a), 2(b), 3(c), 4(d)} in dichloromethane at room temperature. The bidentate nature of the ligand a in the complex 1a leads to the formation of five-membered chelate ring which confers extra stability to the complex. On the other hand, 1:2 (Ru:L) molar ratio reaction affords the hexa-coordinated non-chelate complexes cis,cis,trans-[Ru(CO)2I2(P∼S)2] (2a-d) irrespective of the ligands. All the complexes show two equally intense terminal ν(CO) bands in the range 2028-2103 cm−1. The ν(PS) band of complex 1a occurs 23 cm−1 lower region compared to the corresponding free ligand suggesting chelation via metal-sulfur bond formation. X-ray crystallography reveals that the Ru(II) atom occupies the center of a slightly distorted octahedral geometry. The complexes have also been characterized by elemental analysis, 1H, 13C and 31P NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号