首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Summary Morphological variation within organisms is integrated and often modular in nature. That is to say, the size and shape of traits tend to vary in a coordinated and structured manner across sets of organs or parts of an organism. The genetic basis of this morphological integration is largely unknown. Here, we report on quantitative trait loci (QTL) analysis of leaf and floral organ size in Arabidopsis thaliana. We evaluate patterns of genetic correlations among traits and perform whole-genome scans using QTL mapping methods. We detected significant genetic variation for the size and shape of each floral and leaf trait in our study. Moreover, we found large positive genetic correlations among sets of either flower or leaf traits, but low and generally nonsignificant genetic correlations between flower and leaf traits. These results support the hypothesis of independent floral and vegetative modules. We consider co-localization of QTL for different traits as support for a pleiotropic basis of morphological integration and modularity. A total of eight QTL affecting flower and three QTL affecting leaf traits were identified. Most QTL affected either floral or leaf traits, providing a general explanation for high correlations within and low correlations between modules. Only two genomic locations affected both flower and leaf growth. These results are discussed in the context of the evolution of modules, pleiotropy, and the putative homologous relationship between leaves and flowers.  相似文献   

2.
Gardner KM  Latta RG 《Molecular ecology》2007,16(20):4195-4209
We review genetic correlations among quantitative traits in light of their underlying quantitative trait loci (QTL). We derive an expectation of genetic correlation from the effects of underlying loci and test whether published genetic correlations can be explained by the QTL underlying the traits. While genetically correlated traits shared more QTL (33%) on average than uncorrelated traits (11%), the actual number of shared QTL shared was small. QTL usually predicted the sign of the correlation with good accuracy, but the quantitative prediction was poor. Approximately 25% of trait pairs in the data set had at least one QTL with antagonistic effects. Yet a significant minority (20%) of such trait pairs have net positive genetic correlations due to such antagonistic QTL 'hidden' within positive genetic correlations. We review the evidence on whether shared QTL represent single pleiotropic loci or closely linked monotropic genes, and argue that strict pleiotropy can be viewed as one end of a continuum of recombination rates where r=0. QTL studies of genetic correlation will likely be insufficient to predict evolutionary trajectories over long time spans in large panmictic populations, but will provide important insights into the trade-offs involved in population and species divergence.  相似文献   

3.
Differential natural selection acting on populations in contrasting environments often results in adaptive divergence in multivariate phenotypes. Multivariate trait divergence across populations could be caused by selection on pleiotropic alleles or through many independent loci with trait‐specific effects. Here, we assess patterns of association between a suite of traits contributing to life history divergence in the common monkey flower, Mimulus guttatus, and examine the genetic architecture underlying these correlations. A common garden survey of 74 populations representing annual and perennial strategies from across the native range revealed strong correlations between vegetative and reproductive traits. To determine whether these multitrait patterns arise from pleiotropic or independent loci, we mapped QTLs using an approach combining high‐throughput sequencing with bulk segregant analysis on a cross between populations with divergent life histories. We find extensive pleiotropy for QTLs related to flowering time and stolon production, a key feature of the perennial strategy. Candidate genes related to axillary meristem development colocalize with the QTLs in a manner consistent with either pleiotropic or independent QTL effects. Further, these results are analogous to previous work showing pleiotropy‐mediated genetic correlations within a single population of M. guttatus experiencing heterogeneous selection. Our findings of strong multivariate trait associations and pleiotropic QTLs suggest that patterns of genetic variation may determine the trajectory of adaptive divergence.  相似文献   

4.
Abstract Parasite resistance and body size are subject to directional natural selection in a population of feral Soay sheep (Ovis aries) on the island of St. Kilda, Scotland. Classical evolutionary theory predicts that directional selection should erode additive genetic variation and favor the maintenance of alleles that have negative pleiotropic effects on other traits associated with fitness. Contrary to these predictions, in this study we show that there is considerable additive genetic variation for both parasite resistance, measured as fecal egg count (FEC), and body size, measured as weight and hindleg length, and that there are positive genetic correlations between parasite resistance and body size in both sexes. Body size traits had higher heritabilities than parasite resistance. This was not due to low levels of additive genetic variation for parasite resistance, but was a consequence of high levels of residual variance in FEC. Measured as coefficients of variation, levels of additive genetic variation for FEC were actually higher than for weight or hindleg length. High levels of additive genetic variation for parasite resistance may be maintained by a number of mechanisms including high mutational input, balancing selection, antagonistic pleiotropy, and host‐parasite coevolution. The positive genetic correlation between parasite resistance and body size, a trait also subject to sexual selection in males, suggests that parasite resistance and growth are not traded off in Soay sheep, but rather that genetically resistant individuals also experience superior growth.  相似文献   

5.
Understanding genetic variation for complex traits in heterogeneous environments is a fundamental problem in biology. In this issue of Molecular Ecology, Fournier‐Level et al. ( 2013 ) analyse quantitative trait loci (QTL) influencing ecologically important phenotypes in mapping populations of Arabidopsis thaliana grown in four habitats across its native European range. They used causal modelling to quantify the selective consequences of life history and morphological traits and QTL on components of fitness. They found phenology QTL colocalizing with known flowering time genes as well as novel loci. Most QTL influenced fitness via life history and size traits, rather than QTL having direct effects on fitness. Comparison of phenotypes among environments found no evidence for genetic trade‐offs for phenology or growth traits, but genetic trade‐offs for fitness resulted because flowering time had opposite fitness effects in different environments. These changes in QTL effects and selective consequences may maintain genetic variation among populations.  相似文献   

6.
Quantitative traits important to organismal function and fitness, such as brain size, are presumably controlled by many small‐effect loci. Deciphering the genetic architecture of such traits with traditional quantitative trait locus (QTL) mapping methods is challenging. Here, we investigated the genetic architecture of brain size (and the size of five different brain parts) in nine‐spined sticklebacks (Pungitius pungitius) with the aid of novel multilocus QTL‐mapping approaches based on a de‐biased LASSO method. Apart from having more statistical power to detect QTL and reduced rate of false positives than conventional QTL‐mapping approaches, the developed methods can handle large marker panels and provide estimates of genomic heritability. Single‐locus analyses of an F2 interpopulation cross with 239 individuals and 15 198, fully informative single nucleotide polymorphisms (SNPs) uncovered 79 QTL associated with variation in stickleback brain size traits. Many of these loci were in strong linkage disequilibrium (LD) with each other, and consequently, a multilocus mapping of individual SNPs, accounting for LD structure in the data, recovered only four significant QTL. However, a multilocus mapping of SNPs grouped by linkage group (LG) identified 14 LGs (1–6 depending on the trait) that influence variation in brain traits. For instance, 17.6% of the variation in relative brain size was explainable by cumulative effects of SNPs distributed over six LGs, whereas 42% of the variation was accounted for by all 21 LGs. Hence, the results suggest that variation in stickleback brain traits is influenced by many small‐effect loci. Apart from suggesting moderately heritable (h2 ≈ 0.15–0.42) multifactorial genetic architecture of brain traits, the results highlight the challenges in identifying the loci contributing to variation in quantitative traits. Nevertheless, the results demonstrate that the novel QTL‐mapping approach developed here has distinctive advantages over the traditional QTL‐mapping methods in analyses of dense marker panels.  相似文献   

7.
Mutic JJ  Wolf JB 《Molecular ecology》2007,16(11):2371-2381
Indirect genetic effects arise when genes expressed in one individual affect the expression of traits in other individuals. The importance of indirect genetic effects has been recognized for a diversity of evolutionary processes including kin selection, sexual selection, community structure and multilevel selection, but data regarding their genetic architecture and prevalence throughout the genome remain scarce, especially for interactions between unrelated individuals. Using a set of 411 Bay-0 x Shahdara Arabidopsis recombinant inbred lines grown with Landsberg neighbours, we examined quantitative trait loci (QTL) having direct and indirect effects on size, developmental, and fitness related traits. Using an interval mapping approach, we identified 15 QTL with direct effects and found that 13 of these QTL had significant indirect effects on trait expression in neighbouring plants. These results suggest widespread pleiotropy, as nearly all direct effect QTL have associated pleiotropic indirect effects. Paradoxically, most indirect effects were of the same sign as direct effects, creating a pattern of nearly universal positive pleiotropy that makes most covariances between direct and indirect effects positive. These results are consistent with a complex genetic basis for intraspecific interactions, but suggest that interactions between neighbouring plants are largely positive, rather than negative as would be expected for competition. In addition to their evolutionary and ecological importance, these pleiotropic relationships between DGE and IGE loci have implications for quantitative genetic studies of natural populations as well as experimental design considerations. Additionally, studies that ignore IGEs may over- or underestimate quantitative genetic parameters, as well as the effect of and variance contributed by QTL.  相似文献   

8.
To identify the ecological and genetic mechanisms of local adaptation requires estimating selection on traits, identifying their genetic basis, and evaluating whether divergence in adaptive traits is due to conditional neutrality or genetic trade‐offs. To this end, we conducted field experiments for three years using recombinant inbred lines (RILs) derived from two ecotypes of Arabidopsis thaliana (Italy, Sweden), and at each parental site examined selection on flowering time and mapped quantitative trait loci (QTL). There was strong selection for early flowering in Italy, but weak selection in Sweden. Eleven distinct flowering time QTL were detected, and for each the Italian genotype caused earlier flowering. Twenty‐seven candidate genes were identified, two of which (FLC and VIN3) appear under major flowering time QTL in Italy. Seven of eight QTL in Italy with narrow credible intervals colocalized with previously reported fitness QTL, in comparison to three of four in Sweden. The results demonstrate that the magnitude of selection on flowering time differs strikingly between our study populations, that the genetic basis of flowering time variation is multigenic with some QTL of large effect, and suggest that divergence in flowering time between ecotypes is due mainly to conditional neutrality.  相似文献   

9.
Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanced the viability of fall-germinating seedlings in North Carolina reduced the fecundity of spring-germinating seedlings in Rhode Island. Several other QTL experienced strong directional selection, but only in one site and seasonal cohort. Thus, different loci were exposed to selection in different natural environments. Selection on allelic variation also depended upon the genetic background. The allelic fitness effects of two QTL reversed direction depending on the genotype at the other locus. Moreover, alternative alleles at each of these loci caused reversals in the allelic fitness effects of a QTL closely linked to TFL1, a candidate developmental gene displaying nucleotide sequence polymorphism consistent with balancing selection. Thus, both environmental heterogeneity and epistatic selection may maintain genetic variation for fitness in wild plant species.  相似文献   

10.
Wolf JB  Leamy LJ  Routman EJ  Cheverud JM 《Genetics》2005,171(2):683-694
The role of epistasis as a source of trait variation is well established, but its role as a source of covariation among traits (i.e., as a source of "epistatic pleiotropy") is rarely considered. In this study we examine the relative importance of epistatic pleiotropy in producing covariation within early and late-developing skull trait complexes in a population of mice derived from an intercross of the Large and Small inbred strains. Significant epistasis was found for several pairwise combinations of the 21 quantitative trait loci (QTL) affecting early developing traits and among the 20 QTL affecting late-developing traits. The majority of the epistatic effects were restricted to single traits but epistatic pleiotropy still contributed significantly to covariances. Because of their proportionally larger effects on variances than on covariances, epistatic effects tended to reduce within-group correlations of traits and reduce their overall degree of integration. The expected contributions of single-locus and two-locus epistatic pleiotropic QTL effects to the genetic covariance between traits were analyzed using a two-locus population genetic model. The model demonstrates that, for single-locus or epistatic pleiotropy to contribute to trait covariances in the study population, both traits must show the same pattern of single-locus or epistatic effects. As a result, a large number of the cases where loci show pleiotropic effects do not contribute to the covariance between traits in this population because the loci show a different pattern of effect on the different traits. In general, covariance patterns produced by single-locus and epistatic pleiotropy predicted by the model agreed well with actual values calculated from the QTL analysis. Nearly all single-locus and epistatic pleiotropic effects contributed positive components to covariances between traits, suggesting that genetic integration in the skull is achieved by a complex combination of pleiotropic effects.  相似文献   

11.
The evolution of morphological modularity through the sequestration of pleiotropy to sets of functionally and developmentally related traits requires genetic variation in the relationships between traits. Genetic variation in relationships between traits can result from differential epistasis, where epistatic relationships for pairs of loci are different for different traits. This study maps relationship quantitative trait loci (QTLs), specifically QTLs that affect the relationship between individual mandibular traits and mandible length, across the genome in an F2 intercross of the LG/J and SM/J inbred mouse strains (N = 1045). We discovered 23 relationship QTLs scattered throughout the genome. All mandibular traits were involved in one or more relationship QTL. When multiple traits were affected at a relationship QTL, the traits tended to come from a developmentally restricted region of the mandible, either the muscular processes or the alveolus. About one-third of the relationship QTLs correspond to previously located trait QTLs affecting the same traits. These results comprise examples of genetic variation necessary for an evolutionary response to selection on the range of pleiotropic effects.  相似文献   

12.
Evaluating the genetic architecture of sexual dimorphism can aid our understanding of the extent to which shared genetic control of trait variation versus sex‐specific control impacts the evolutionary dynamics of phenotypic change within each sex. We performed a QTL analysis on Silene latifolia to evaluate the contribution of sex‐specific QTL to phenotypic variation in 46 traits, whether traits involved in trade‐offs had colocalized QTL, and whether the distribution of sex‐specific loci can explain differences between the sexes in their variance/covariance matrices. We used a backcross generation derived from two artificial‐selection lines. We found that sex‐specific QTL explained a significantly greater percent of the variation in sexually dimorphic traits than loci expressed in both sexes. Genetically correlated traits often had colocalized QTL, whose signs were in the expected direction. Lastly, traits with different genetic correlations within the sexes displayed a disproportionately high number of sex‐specific QTL, and more QTL co‐occurred in males than females, suggesting greater trait integration. These results show that sex differences in QTL patterns are congruent with theory on the resolution of sexual conflict and differences based on G ‐matrix results. They also suggest that trade‐offs and trait integration are likely to affect males more than females.  相似文献   

13.
Genes of major phenotypic effects and strong genetic correlations can facilitate adaptation, direct selective responses, and potentially lead to phenotypic convergence. However, the preponderance of this type of genetic architecture in repeatedly evolved adaptations remains unknown. Using hybrids between Haplochromis chilotes (thick‐lipped) and Pundamilia nyererei (thin‐lipped) we investigated the genetics underlying hypertrophied lips and elongated heads, traits that evolved repeatedly in cichlids. At least 25 loci of small‐to‐moderate and mainly additive effects were detected. Phenotypic variation in lip and head morphology was largely independent. Although several QTL overlapped for lip and head morphology traits, they were often of opposite effects. The distribution of effect signs suggests strong selection on lips. The fitness implications of several detected loci were demonstrated using a laboratory assay testing for the association between genotype and variation in foraging performance. The persistence of low fitness alleles in head morphology appears to be maintained through antagonistic pleiotropy/close linkage with positive‐effect lip morphology alleles. Rather than being based on few major loci with strong positive genetic correlations, our results indicate that the evolution of the Lake Victoria thick‐lipped ecomorph is the result of selection on numerous loci distributed throughout the genome.  相似文献   

14.
Sexual selection and the ornaments that inform such choices have been extensively studied, particularly from a phenotypic perspective. Although more is being revealed about the genetic architecture of sexual ornaments, much still remains to be discovered. The comb of the chicken is one of the most widely recognized sexual ornaments, which has been shown to be correlated with both fecundity and bone allocation. In this study, we use a combination of multiple intercrosses between White Leghorn populations and wild‐derived Red Junglefowl to, first, map quantitative trait loci (QTL) for bone allocation and, second, to identify expression QTL that correlate and colocalize with comb mass. These candidate quantitative genes were then assessed for potential pleiotropic effects on bone tissue and fecundity traits. We identify genes that correlate with both relative comb mass and bone traits suggesting a combination of both pleiotropy and linkage mediates gene regulatory variation in these traits.  相似文献   

15.
Weller JI  Soller M  Brody T 《Genetics》1988,118(2):329-339
Linkage relationships between loci affecting quantitative traits (QTL) and marker loci were examined in an interspecific cross between Lycopersicon esculentum and Lycopersicon pimpinellifolium. Parental lines differed for six morphological markers and for four electrophoretic markers. Almost 1700 F-2 plants were scored with respect to the genetic markers and also with respect to 18 quantitative traits. Major genes affecting the quantitative traits were not found, but out of 180 possible marker x trait combinations, 85 showed significant quantitative effects associated with the genetic markers. The average marker-associated main effect was on the order of 6% of the mean value of the trait. Most of the main effects were apparently due to linkage of QTL to the marker loci rather than to pleiotropy. Fourteen of the traits showed at least one highly significant effect of opposite sign to the overall difference between the parental lines, demonstrating the ability of this design to uncover cryptic genetic variation. Significant variance and skewness effects on the quantitative traits were found to be associated with the genetic markers, suggesting the possible presence of loci affecting the variance and shape of quantitative trait distribution in a population. Most marker-associated quantitative effects showed some degree of dominance, generally in the direction of the L. pimpinellifolium parent. When the significant marker-associated effects were examined in pairs, 12% showed significant interaction effects. The results of this study illustrate the potential usefulness of this type of analysis for the detailed genetic investigation of quantitative trait variation in suitably marked populations.  相似文献   

16.
Our understanding of how natural selection should shape sex allocation is perhaps more developed than for any other trait. However, this understanding is not matched by our knowledge of the genetic basis of sex allocation. Here, we examine the genetic basis of sex ratio variation in the parasitoid wasp Nasonia vitripennis, a species well known for its response to local mate competition (LMC). We identified a quantitative trait locus (QTL) for sex ratio on chromosome 2 and three weaker QTL on chromosomes 3 and 5. We tested predictions that genes associated with sex ratio should be pleiotropic for other traits by seeing if sex ratio QTL co-occurred with clutch size QTL. We found one clutch size QTL on chromosome 1, and six weaker QTL across chromosomes 2, 3 and 5, with some overlap to regions associated with sex ratio. The results suggest rather limited scope for pleiotropy between these traits.  相似文献   

17.
The term "differential dominance" describes the situation in which the dominance effects at a pleiotropic locus vary between traits. Directional selection on the phenotype can lead to balancing selection on differentially dominant pleiotropic loci. Even without any individual overdominant traits, some linear combination of traits will display overdominance at a locus displaying differential dominance. Multivariate overdominance may be responsible, in part, for high levels of heterozygosity found in natural populations. We examine differential dominance of 70 mouse skeletal traits at 92 quantitative trait loci (QTL). Our results indicate moderate to strong additive and dominance effects at pleiotropic loci, low levels of individual-trait overdominance, and universal multivariate overdominance. Multivariate overdominance affects a range of 6% to 81% of morphospace, with a mean of 32%. Multivariate overdominance tends to affect a larger percentage of morphospace at pleiotropic loci with antagonistic effects on multiple traits (42%). We conclude that multivariate overdominance is common and should be considered in models and in empirical studies of the role of genetic variation in evolvability.  相似文献   

18.
The nature of genetic variation for Drosophila longevity in a population of recombinant inbred lines was investigated by estimating quantitative genetic parameters and mapping quantitative trait loci (QTL) for adult life span in five environments: standard culture conditions, high and low temperature, and heat-shock and starvation stress. There was highly significant genetic variation for life span within each sex and environment. In the analysis of variance of life span pooled over sexes and environments, however, the significant genetic variation appeared in the genotype x sex and genotype x environment interaction terms. The genetic correlation of longevity across the sexes and environments was not significantly different from zero in these lines. We estimated map positions and effects of QTL affecting life span by linkage to highly polymorphic roo transposable element markers, using a multiple-trait composite interval mapping procedure. A minimum of 17 QTL were detected; all were sex and/or environment-specific. Ten of the QTL had sexually antagonistic or antagonistic pleiotropic effects in different environments. These data provide support for the pleiotropy theory of senescence and the hypothesis that variation for longevity might be maintained by opposing selection pressures in males and females and variable environments. Further work is necessary to assess the generality of these results, using different strains, to determine heterozygous effects and to map the life span QTL to the level of genetic loci.  相似文献   

19.
Mackay TF  Lyman RF  Lawrence F 《Genetics》2005,170(4):1723-1735
Our ability to predict long-term responses to artificial and natural selection, and understand the mechanisms by which naturally occurring variation for quantitative traits is maintained, depends on detailed knowledge of the properties of spontaneous polygenic mutations, including the quantitative trait loci (QTL) at which mutations occur, mutation rates, and mutational effects. These parameters can be estimated by mapping QTL that cause divergence between mutation-accumulation lines that have been established from an inbred base population and selected for high and low trait values. Here, we have utilized quantitative complementation to deficiencies to map QTL at which spontaneous mutations affecting Drosophila abdominal and sternopleural bristle number have occurred in 11 replicate lines during 206 generations of divergent selection. Estimates of the numbers of mutations were consistent with diploid per-character mutation rates for bristle traits of 0.03. The ratio of the per-character mutation rate to total mutation rate (0.023) implies that >2% of the genome could affect just one bristle trait and that there must be extensive pleiotropy for quantitative phenotypes. The estimated mutational effects were not, however, additive and exhibited dependency on genetic background consistent with diminishing epistasis. However, these inferences must be tempered by the potential for epistatic interactions between spontaneous mutations and QTL affecting bristle number on the deficiency-bearing chromosomes, which could lead to overestimates in numbers of QTL and inaccurate inference of gene action.  相似文献   

20.
The sibling species Drosophila simulans and D. mauritiana differ significantly in a number of male secondary sexual traits, providing an ideal system for genetic analysis of interspecific morphological divergence. In the experiment reported here, F1 hybrids from a cross of two inbred lines were backcrossed in both directions and about 200 flies from each backcross were scored for several traits (bristle numbers and cuticle areas), as well as 18 markers distributed throughout the genome. Each trait was analyzed by composite interval mapping to identify quantitative trait loci (QTL) and estimate their effects. For each trait, from one to eight loci were detected, with more divergent traits showing evidence for greater numbers of QTL. Estimates of additive effects varied widely, with a range of 0.4 to 4.1 environmental standard deviation units and an average of 2.2 units. There was substantial evidence for nonadditive effects, since the magnitude of estimates often differed significantly between the two backcrosses. The sign of the estimated effect differed among QTL for bristle traits, but not for cuticle area traits, suggesting that these two types of trait may have undergone different types of selection. Finally, several similarities were found between different traits in the estimated positions of QTL, suggesting that pleiotropy and/or linkage of QTL may have been important in the evolution of these traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号