首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the effect of feeding silages with different botanical composition, on rumen and lamb fat, 30 male lambs were assigned to five different silage groups for 11 weeks: botanically diverse silage (BDS); white clover silage (WCS); red clover silage (RCS), intensive English ryegrass silage (IRS) and crushed linseed and maize silage (MSL). Besides the silages, animals received organic wheat and barley and the MSL group additionally received bicarbonate (15 g/day). Silages were sampled when the bales were opened and analysed for fatty acid (FA) content and chemical composition. At slaughter, ruminal contents were sampled and 24 h after slaughter, longissimus muscle and subcutaneous (SC) fat were sampled. All samples were analysed for FA composition. The MSL group ingested the highest amount of FA (35.8 g/day v. 13.5, 19.4, 17.2 and 30.4 g/day for MSL v. BDS, WCS, RCS and IRS, respectively) and the sum of the major polyunsaturated FA, C18:2 n-6 and C18:3 n-3, was similar for groups BDS, WCS, RCS and MSL (61.3 g/100 g, 62.3 g/100 g, 62.3 g/100 g, 63.7 g/100 g of FA methylesters (FAME), respectively), while group IRS ingested higher proportions of these FA (74.5 g/100 g of FAME). Rumen data showed that animals fed BDS presented higher proportions of biohydrogenation intermediates, particularly C18:1 t11 and CLA c9t11, suggesting partial inhibition of rumen biohydrogenation. In the MSL group, the content of C18:3 n-3 in the rumen was highest, most probably due to reduced lipolysis and hence biohydrogenation through the combined effect of esterified C18:3 n-3 and seed protection. Additionally, C18:3 n-3 proportions were higher in rumen contents of RCS animals compared with WCS animals, which could be due to the activity of the polyphenol oxidase enzyme in the RC silages. Proportions of C18:3 n-3 were similar between treatments both for SC and intramuscular (IM) fat, whereas CLA c9t11 content was higher in the SC fat of BDS animals and lower in the IM fat of IRS animals compared with the other forage groups. No differences were found for C20:4 n-6, C20:5 n-3, C22:5 n-3 and C22:6 n-3 in the IM fat of the animals. Nevertheless, indices for desaturation and elongation activity in muscle of BDS animals suggest some stimulation of the first three steps of desaturation and elongation (Δ6-desaturase, elongase and Δ5-desaturase) of long-chain FA.  相似文献   

2.
The effect of botanical diversity on supply of polyunsaturated fatty acids (PUFA) to ruminants in vitro, and the fatty acid (FA) composition of muscle in lambs was investigated. Six plant species, commonly grown as part of UK herbal ley mixtures (Trifolium pratense, Lotus corniculatus, Achillea millefolium, Centaurea nigra, Plantago lanceolata and Prunella vulgaris), were assessed for FA profile, and in vitro biohydrogenation of constituent PUFA, to estimate intestinal supply of PUFA available for absorption by ruminants. Modelling the in vitro data suggested that L. corniculatus and P. vulgaris had the greatest potential to increase 18:3n-3 supply to ruminants, having the highest amounts escaping in vitro biohydrogenation. Biodiverse pastures were established using the six selected species, under-sown in a perennial ryegrass-based sward. Lambs were grazed (~50 days) on biodiverse or control pastures and the effects on the FA composition of musculus longissimus thoracis (lean and subcutaneous fat) and musculus semimembranosus (lean) were determined. Biodiverse pasture increased 18:2n-6 and 18:3n-3 contents of m. semimembranosus (+14.8 and +7.2 mg/100 g tissue, respectively) and the subcutaneous fat of m. longissimus thoracis (+158 and +166 mg/100 g tissue, respectively) relative to feeding a perennial ryegrass pasture. However, there was no effect on total concentrations of saturated FA in the tissues studied. It was concluded that enhancing biodiversity had a positive impact on muscle FA profile reflected by increased levels of total PUFA.  相似文献   

3.
The objective of this work was to examine the effect of different levels of grazing on muscle nutritional fatty acid (FA) profile, including the beneficial n-3 polyunsaturated fatty acids (PUFA) and cis-9, trans-11 (cis-9, trans-11) 18:2 conjugated linoleic acid (CLA). Thirty male Galician Blond (GB) breed calves were randomly assigned to the following three grazing treatments: (1) continuous pasture grazing for 250 days (P); (2) 197-day grazing followed by a 50-day short period of concentrate-based finishing (PC) and (3) 57-day grazing followed by a 165-day long period of concentrate-based finishing (C). Calves kept sucking their mothers up to the time of slaughter. The slaughter weight was similar for all treatments (about 330 kg). Samples of the longissimus thoracis muscle were used for assessment of chemical composition by near infrared reflectance spectroscopy and FA profiles by gas chromatography. Muscle from C calves was fatter and had higher content in total FA, monounsaturated FA (MUFA), cis-9 18:1 than muscle from P calves, whereas PC muscle had generally intermediate values. No significant treatment difference for total saturated FAs (SFA) was found. Content of potentially beneficial n-3 PUFA (18:3n-3, 20:3n-3, 20:5n-3 and 22:6n-3), cis-9, trans-11 CLA and n-6:n-3 ratio were lower and PUFA : SFA ratio were higher in P than in both C and PC calves. Calves fed exclusively on pasture synthesised higher amounts of beneficial FA than calves finished on concentrate. A 50-day period of concentrate-based finishing was sufficient to offset the synthesis of beneficial FA from pasture grazing.  相似文献   

4.
Capric acid (C10:0), a medium chain fatty acid, was evaluated for its anti-methanogenic activity and its potential to modify the rumen biohydrogenation of linoleic (C18:2n-6) and α-linolenic acids (C18:3n-3). A standard dairy concentrate (0.5 g), supplemented with sunflower oil (10 mg) and linseed oil (10 mg) and increasing doses of capric acid (0, 10, 20 and 30 mg), was incubated with mixed rumen contents and buffer (1 : 4 v/v) for 24 h. The methane inhibitory effect of capric acid was more pronounced at the highest (30 mg) dose compared to the medium (20 mg) (-85% v. -34%), whereas the lower dose (10 mg) did not reduce rumen methanogenesis. A 23% decrease in total short-chain fatty acid (SCFA) production was observed, accompanied by shifts towards increased butyrate at 20 mg and increased propionate at 30 mg of capric acid (P < 0.001). Capric acid linearly decreased the extent of biohydrogenation of C18:2n-6 and C18:3n-3, by up to 60% and 86%, respectively. This reduction was partially due to a lower extent of lipolysis when capric acid was supplemented. Capric acid at 20 and 30 mg completely inhibited the production of C18:0 (P < 0.001), resulting in an accumulation of biohydrogenation intermediates, mainly C18:1t10 + t11 and C18:2t11c15. In contrast to effects on rumen fermentation (methane production and proportions of SCFA), 30 mg of capric acid did not induce major changes in rumen biohydrogenation as compared to the medium (20 mg) dose. This study revealed the dual action of capric acid, being inhibitory to both methane production and biohydrogenation of C18:2n-6 and C18:3n-3.  相似文献   

5.
From the simultaneous accumulation of hydrogenation intermediates and the disappearance of Isotricha prostoma after algae supplementation, we suggested a role of this ciliate and/or its associated bacteria in rumen biohydrogenation of unsaturated fatty acids. The experiments described here evaluated the role of I. prostoma and/or its associated endogenous and exogenous bacteria in rumen biohydrogenation of C18:2n-6 and its main intermediates CLA c9t11 and C18:1t11. Fractions of I. prostoma and associated bacteria, obtained by sedimentation of rumen fluid sampled from a monofaunated sheep, were used untreated, treated with antibiotics or sonicated to discriminate between the activity of I. prostoma and its associated bacteria, the protozoan or the bacteria, respectively. Incubations were performed in triplicate during 6 h with unesterified C18:2n-6, CLA c9t11 or C18:1t11 (400 μg/ml) and 0.1 g glucose/cellobiose (1/1, w/w). I. prostoma did not hydrogenate C18:2n-6 or its intermediates whereas bacteria associated with I. prostoma converted a limited amount of C18:2n-6 and CLA c9t11 to trans monoenes. C18:1t11 was not hydrogenated by either I. prostoma or its associated bacteria but was isomerized to C18:1c9. A phylogenetic analysis of clones originating from Butyrivibrio-specific PCR product was performed. This indicated that 71% of the clones from the endogenous and exogenous community clustered in close relationship with Lachnospira pectinoschiza. Additionally, the biohydrogenation activity of solid-associated bacteria (SAB) and liquid-associated bacteria (LAB) was examined and compared with the activity of the non-fractioned I. prostoma monofaunated rumen fluid (LAB + SAB). Both SAB and LAB were involved in rumen biohydrogenation of C18:2n-6. SAB fractions performed the full hydrogenation reaction to C18:0 while C18:1 fatty acids, predominantly C18:1t10 and C18:1t11, accumulated in the LAB fractions. SAB and LAB sequence analyses were mainly related to the genera Butyrivibrio and Pseudobutyrivibrio with 12% of the SAB clones closely related to the C18:0 producing B. proteoclasticus branch. In conclusion, this work suggests that I. prostoma and its associated bacteria play no role in C18:2n-6 biohydrogenation, while LAB convert C18:2n-6 to a wide range of C18:1 fatty acids and SAB produce C18:0, the end product of rumen lipid metabolism.  相似文献   

6.
This study evaluated the effects of season and spatial distribution on the fatty acid composition of Patella depressa gonads and Patella spp. soft body tissue. The results show that the quantitatively most important fatty acids were the saturated fatty acids (SFA) 16:0, 14:0 and 18:0; the monounsaturated fatty acids (MUFA) 18:1(n-7), 18:1(n-9), 16:1(n-7) and 20:1(n-9) and the polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA 20:5(n-3)), and arachidonic acid (ARA 20:4(n-6)). P. depressa and P. ulyssiponensis soft body fatty acid profiles revealed significant differences between sexes; males showed significantly higher percentages of PUFA, highly unsaturated fatty acids (HUFA), (n-3) fatty acids and ARA, while in females significantly higher proportions of MUFA were found. Analysis of variance on the fatty acid composition of P. depressa gonads revealed significant differences between sexes, which were more marked than when the whole body was analysed. Males showed a significantly higher percentage of PUFA, HUFA, fatty acids from the (n-3) and (n-6) series, ARA and EPA, while females were seen to have higher proportions of SFA, MUFA and total fatty acid methyl esters (FAME). Some variability was seen to occur due to shore location and seasons, but these effects were not so obvious.  相似文献   

7.
Red clover and fish oil (FO) are known to alter ruminal lipid biohydrogenation leading to an increase in the polyunsaturated fatty acid (PUFA) and conjugated linoleic acid (CLA) content of ruminant-derived foods, respectively. The potential to exploit these beneficial effects were examined using eight Hereford × Friesian steers fitted with rumen and duodenal cannulae. Treatments consisted of grass silage or red clover silage fed at 90% of ad libitum intake and FO supplementation at 0, 10, 20 or 30 g/kg diet dry matter (DM). The experiment was conducted with two animals per FO level and treatments formed extra-period Latin squares. Flows of fatty acids at the duodenum were assessed using ytterbium acetate and chromium ethylene diamine tetra-acetic acid as indigestible markers. Intakes of DM were higher (P < 0.001) for red clover silage than grass silage (5.98 v. 5.09 kg/day). There was a linear interaction effect (P = 0.004) to FO with a reduction in DM intake in steers fed red clover silage supplemented with 30 g FO/kg diet DM. Apparent ruminal biohydrogenation of C18:2n-6 and C18:3n-3 were lower (P < 0.001) for red clover silage than grass silage (0.83 and 0.79 v. 0.87 and 0.87, respectively), whilst FO increased the extent of biohydrogenation on both diets. Ruminal biohydrogenation of C20:5n-3 and C22:6n-3 was extensive on both silage diets, averaging 0.94 and 0.97, respectively. Inclusion of FO in the diet enhanced the flow of total CLA leaving the rumen with an average across silages of 0.22, 0.31, 0.41 and 0.44 g/day for 0, 10, 20 or 30 g FO/kg, respectively, with a linear interaction effect between the two silages (P = 0.03). FO also showed a dose-dependent increase in the flow of trans-C18:1 intermediates at the duodenum from 4.6 to 15.0 g/day on grass silage and from 9.4 to 22.5 g/day for red clover silage. Concentrations of trans-C18:1 with double bonds from Δ4-16 in duodenal digesta were all elevated in response to FO in both diets, with trans-11 being the predominant isomer. FO inhibited the complete biohydrogenation of dietary PUFA on both diets, whilst red clover increased the flow of C18:2n-6 and C18:3n-3 compared with grass silage. In conclusion, supplementing red clover silage-based diets with FO represents a novel nutritional strategy for enhancing the concentrations of beneficial fatty acids in ruminant milk and meat.  相似文献   

8.
Data from a previous study about the effects of pH and of linolenic acid (C18:3n-3) and linoleic acid (C18:2n-6) concentrations on C18:2n-6 biohydrogenation in ruminal cultures were used to calculate the rates and efficiencies of the three reactions of C18:2n-6 biohydrogenation (isomerisation of C18:2n-6 to CLA; reduction of CLA to trans-octadecenoic acids; reduction of trans-octadecenoic acids to stearic acid). First, low pH was confirmed to inhibit isomerisation and was shown to inhibit the second reduction, leading to an accumulation of vaccenic acid. This later effect had only been observed in some in vivo studies using high concentrate diets, because in in vitro experiments, the very low pH frequently used depresses isomerisation which consequently generates very low amount of substrates for reductions whose variations become difficult to ascertain. Second, C18:2n-6 at high concentration was confirmed to saturate its own isomerisation and the increase of CLA production due to high initial C18:2n-6 was shown to inhibit the two subsequent reductions. Third, C18:3n-3 at high concentrations was confirmed to inhibit C18:2n-6 isomerisation. Moreover, the second reduction was shown to be saturated, probably by all trans-octadecenoic acids intermediates of C18:2n-6 and C18:3n-3 biohydrogenation, leading to an accumulation of trans-octadecenoic acids, especially vaccenic acid. This fatty acid is partly desaturated into CLA in the mammary gland, which explains the synergy between C18:2n-6 and C18:3n-3 for milk CLA noticed by others in vivo. This approach helped explain the actions of pH and of C18:2n-6 and C18:3n-3 concentrations on C18:2n-6 biohydrogenation and allows some explanations about differences noticed between studies.  相似文献   

9.
《Small Ruminant Research》2010,89(2-3):135-144
The potential to modify milk fatty acid composition and milk production by dietary administration of marine oils rich in n-3 PUFAs in goats diets is reviewed. Moreover animal and human health implications are considered. Role of nutrition in dairy goats for enhancing content of CLA in milk fat is also discussed. At last, rumen protected choline supplementation is evaluated to improve productive performance and metabolic health. While the effects of n-3 PUFAs administration on goat productive performance seem to depend on many factors, fish oil administration has been extensively shown to lower average concentration of C18:0 and saturated fatty acids, with a relative increase of C16:1, C18:3 n-3 and very long-chain n-3 PUFAs. Positive results have been evidenced in animals health following administration of EPA and DHA from fish oil, leading to increased phagocytic activity with no effects on extracellular ROS production in incubated goats cells. The nutritional and health properties of goat's milk could be further improved by increasing the content of CLA in milk fat. Provision of PUFAs from fresh pasture and plant lipids, mainly C18:2 n-6 and C18-3 n3 which serve as precursor for trans C18:1 formation in the rumen, have proved to enhance content of CLA in goat milk fat. Marine oils rich in n-3 PUFAs have been shown to be very effective at increasing CLA content in bovine milk, but very scarce data are available on dairy goats.Rumen protected choline has been show to increase productive performance, particularly milk production, fat percentage, and fat and protein yield without detrimental effects on methyl groups, thus reducing BHBA plasma content and hepatocellular lipid accumulation around transition.However the magnitude of the production response seems to be affected by the composition of the diet, and other factors as already reported for n-3 PUFAs administration.  相似文献   

10.
Sulla (Sulla coronarium L.) forage is valued for its positive impact on ruminant production, in part due to its moderate content of condensed tannin (CT). The duration of daily grazing is a factor affecting the feed intake and milk production of ewes. In this study, the effects of grazing sulla pasture compared with annual ryegrass, and the extension of grazing from 8 to 22 h/day, were evaluated with regard to ewe forage intake and milk production, as well as the physicochemical properties and fatty acid (FA) composition of cheese. During 42 days in the spring, 28 ewes of the Comisana breed were divided into four groups (S8, S22, R8 and R22) that grazed sulla (S) or ryegrass (R) for 8 (0800 to 1600 h) or 22 h/day, and received no feeding supplement. In six cheese-making sessions, cheeses were manufactured from the 48 h bulk milk of each group. Compared with ewes grazing ryegrass, those grazing sulla had higher dry matter (DM) intake, intake rate and milk yield, and produced milk that was lower in fat and higher in casein. Ewes grazing for 22 h spent more time eating, which reduced the intake rate, increased DM and nutrient intake and milk yield, and reduced milk fat. Due to the ability of CT to inhibit the complete ruminal biohydrogenation of polyunsaturated fatty acids (PUFA), the FA composition of sulla cheese was more beneficial for consumer health compared with ryegrass cheese, having lower levels of saturated fatty acids and higher levels of PUFA and n-3 FA. The FA profile of S8 cheese was better than that of S22 cheese, as it was higher in branched-chain FA, monounsaturated FA, PUFA, rumenic acid (c9,t11-C18:2), and had a greater health-promoting index. The effect of short grazing time on sulla was attributed to major inhibition of PUFA biohydrogenating ruminal bacteria, presumably stimulated by the higher accumulation of sulla CT in the rumen, which is related to a higher intake rate over a shorter eating time. Thus, grazing sulla improved the performance of ewes, thereby increasing, especially with short grazing time, the nutritional properties of cheese fat.  相似文献   

11.
Fat supplementation plays an important role in defining milk fatty acids (FA) composition of ruminant products. The use of sources rich in linoleic and α-linolenic acid favors the accumulation of conjugated linoleic acids isomers, increasing the healthy properties of milk. Ruminal microbiota plays a pivotal role in defining milk FA composition, and its profile is affected by diet composition. The aim of this study was to investigate the responses of rumen FA production and microbial structure to hemp or linseed supplementation in diets of dairy goats. Ruminal microbiota composition was determined by 16S amplicon sequencing, whereas FA composition was obtained by gas-chromatography technique. In all, 18 pluriparous Alpine goats fed the same pre-treatment diet for 40±7 days were, then, arranged to three dietary treatments consisting of control, linseed and hemp seeds supplemented diets. Independently from sampling time and diets, bacterial community of ruminal fluid was dominated by Bacteroidetes (about 61.2%) and Firmicutes (24.2%) with a high abundance of Prevotellaceae (41.0%) and Veillonellaceae (9.4%) and a low presence of Ruminococcaceae (5.0%) and Lachnospiraceae (4.3%). Linseed supplementation affected ruminal bacteria population, with a significant reduction of biodiversity; in particular, relative abundance of Prevotella was reduced (−12.0%), whereas that of Succinivibrio and Fibrobacter was increased (+50.0% and +75.0%, respectively). No statistically significant differences were found among the average relative abundance of archaeal genera between each dietary group. Moreover, the addition of linseed and hemp seed induced significant changes in FA concentration in the rumen, as a consequence of shift from C18 : 2n-6 to C18 : 3n-3 biohydrogenation pathway. Furthermore, dimethylacetal composition was affected by fat supplementation, as consequence of ruminal bacteria population modification. Finally, the association study between the rumen FA profile and the bacterial microbiome revealed that Fibrobacteriaceae is the bacterial family showing the highest and significant correlation with FA involved in the biohydrogenation pathway of C18 : 3n-3.  相似文献   

12.
Sheep rearing on mountain pastures is an ancestral tradition in northwestern Slovenia. The indigenous Bovec sheep are widespread there and are well adapted to the rough Alpine rearing conditions. Every year, after weaning, the sheep start grazing in the lowlands (L) and then gradually move to mountain pastures, and finally, to the highland (H) pastures of the Alps. Grazing positively affects the fatty acid (FA) composition in sheep milk fat with increased availability of polyunsaturated FA (PUFA) in grass, and subsequently, in milk. Consequently, the objective of this work was to study the FA profile in sheep milk during grazing in four geographical areas in the Alps. A total of 15 ewes of the Bovec sheep breed were randomly selected and milk samples from these ewes were taken at four different pasture locations that differed with regard to altitude: the L pasture location at an altitude of 480 m, the mountain pastures (M1 and M2) at altitudes of 1100 to 1300 m and 1600 to 1900 m, respectively, and the H pastures at altitudes of 2100 to 2200 m. Milk samples from the ewes were taken during the grazing season from April to September. The chemical and FA composition of the milk samples from each pasture location were determined. There were significant differences in the concentrations of FA among the L, M1, M2 and H milk samples. We observed decreases of the concentrations of saturated FA (SFA) in milk from L to H pastures. The concentration of α-linolenic FA, monounsaturated FA (MUFA), PUFA and n-3 PUFA in milk were increased significantly with pasture altitude. The n-6/n-3 PUFA ratio was reduced by the change of pasture altitude with the lowest value at the M1 pasture (1.5). The concentrations of total SFA decreased significantly and was lowest at the L pasture. Our results underline the importance of the effect of grazing in the Alpine region associated with pasture altitude on the FA profile of sheep milk. The first variation in FA concentration in sheep milk occurred between L and M1, although it was more evident on H pastures in the Alpine mountains. Changes of the FA profile in sheep milk due to pasture altitude were related to variation in FA concentration in the pasture and the botanical composition of the pasture location.  相似文献   

13.
AIMS: To identify a ruminal isolate which transforms oleic, linoleic and linolenic acids to stearic acid and to identify transient intermediates formed during biohydrogenation. METHODS AND RESULTS: The stearic acid-forming bacterium, isolated from the rumen of a grazing cow, was a Gram-negative motile rod which utilized a range of growth substrates including starch and pectin but not cellulose or xylan. From its 16S rRNA gene sequence, the isolate was identified as a strain of Butyrivibrio hungatei. During conversion of linoleic acid, 9,11-conjugated linoleic acid formed as a transient intermediate before trans-vaccenic acid accumulated together with stearic acid. Unlike previously studied ruminal biohydrogenating bacteria, B. hungatei Su6 was able to convert alpha-linolenic acid to stearic acid. Linolenic acid was converted to stearic via conjugated linolenic acid, linoleic acid and trans-vaccenic acid as intermediates. Oleic acid and cis-vaccenic acid were converted to a series of trans monounsaturated isomers as well as stearic acid. An investigation of these isomers indicated that mixed trans positional isomers are intermediate in the biohydrogenation of cis monounsaturated fatty acids to stearic acid. CONCLUSION: This, the first rigorous identification and characterization of a ruminal bacterium which forms stearic acid, shows that B. hungatei plays an important role in unsaturated fatty acid transformations in the rumen. SIGNIFICANCE AND IMPACT OF THE STUDY: Biohydrogenating bacteria which convert C18 unsaturated fatty acids to stearic acid have not been available for study for many years. Access to B. hungatei Su6 now provides a fresh opportunity for understanding biohydrogenation mechanisms and rumen processes which lead to saturated fat in ruminant products.  相似文献   

14.
Double bond position in natural fatty acids is critical to biochemical properties, however, common instrument-based methods cannot locate double bonds in fatty acid methyl esters (FAME), the predominant analysis form of fatty acids. A recently described mass spectrometry (MS) method for locating double bonds in FAME is reported here for the analysis of minor (<1%) components of real FAME mixtures derived from three natural sources; golden algae (Schizochytrium sp.), primate brain white matter, and transgenic mouse liver. Acetonitrile chemical ionization tandem MS was used to determine double bond positions in 39 FAME, most at concentrations well below 1% of all fatty acid methyl esters. FAME identified in golden algae are 14:1n-6, 14:3n-3, 16:1n-7, 16:2n-6, 16:3n-6, 16:3n-3, 16:4n-3, 18:2n-7, 18:3n-7, 18:3n-8, 18:4n-3, 18:4n-5, 20:3n-7, 20:4n-3, 20:4n-5, 20:4n-7, 20:5n-3, and 22:4n-9. Additional FAME identified in primate brain white matter are 20:1n-7, 20:1n-9, 20:2n-7, 20:2n-9, 22:1n-7, 22:1n-9, 22:1n-13, 22:2n-6, 22:2n-7, 22:2n-9, 22:3n-6, 22:3n-7, 22:3n-9, 22:4n-6, 24:1n-7, 24:1n-9, and 24:4n-6. Additional FAME identified in mouse liver are 26:5n-6, 26:6n-3, 28:5n-6, and 28:6n-3. The primate brain 22:3n-7 and algae 18:4n-5 are novel fatty acids. These results demonstrate the usefulness of the technique for analysis of real samples. Tables are presented to aid in interpretation of acetonitrile CIMS/MS spectra.  相似文献   

15.
Concentrates-fed lamb meat is often associated with an unfavourable lipid profile (high levels of saturated and/or n-6 polyunsaturated fatty acids; SFA and PUFA). For this reason, Spanish sheep producers from Mediterranean areas are turning to traditional grazing by ewes to obtain healthier lamb meat. The objective of this research was to determine the effects of maternal grazing on the fatty acid (FA) composition of weaned lamb meat. The ewes (Segureña breed) were allocated to two different rearing systems during pregnancy (5 months) and lactation (45 days): (i) feeding indoors on barley grain and lucerne pellets; (ii) grazing on cereal stubble, fallow land and seasonal pastures consisting of Mediterranean shrubs, herbs and trees. Two groups of 20 autumn and spring lambs were sampled. The lambs were weaned at 13.1±0.9 kg and 45.0±4.1 days age and fed on grain-based concentrates until they reached 24.8±2.1 kg live weight (light lambs slaughtered at 98.3±3.6 days of age). The FA content was determined in the intramuscular loin fat by gas chromatography using a flame ionization detector. The ewe diet did not affect the levels of the main lamb FAs (C18:1c+t, C16:0 and C18:2c), and so did not provide any additional reduction in fat saturation. Saturated fatty acids represented around 40% of total FAs determined in the meat. Ewe grazing acted as an n-3 PUFA-promoting diet, providing a lamb meat with a lower n-6/n-3 ratio. Spring lamb meat had higher proportions of n-3 PUFA (C18:3n-3, C20:5, C22:5 and C22:6) and conjugated linoleic acid (C18:2c9t11+c11t9) to the detriment of the n-6 PUFAs (C20:4, C20:2 and C22:4), while autumn lamb meat also had higher levels of C18:3n-3 and C18:3n-6, and lower level of C20:4, which points to little seasonal differences. The n-6/n-3 ratio achieved by ewe grazing fell from 8.2 to 4.1 (Spring) and from 7.6 to 5.5 (Autumn), values which are close to those recommended in human diet for good cardiovascular health. These n-6/n-3 reductions were associated with lower levels of total PUFA and C20:4n-6. Our research concluded that grazing on stubble and Mediterranean shrubland by ewes, a sustainable rearing practice involving local agro resources, contributed to obtaining weaned lamb meat with a more favourable lipid profile and so can be recommended to sheep farmers.  相似文献   

16.
The current study compared beef production, quality and fatty acid (FA) profiles of yearling steers fed a control diet containing 70 : 30 red clover silage (RCS) : barley-based concentrate, a diet containing 11% sunflower seed (SS) substituted for barley, and diets containing SS with15% or 30% wheat dried distillers’ grain with solubles (DDGS). Additions of DDGS were balanced by reductions in RCS and SS to maintain crude fat levels in diets. A total of two pens of eight animals were fed per diet for an average period of 208 days. Relative to the control diet, feeding the SS diet increased (P<0.05) average daily gain, final live weight and proportions of total n-6 FA, non-conjugated 18:2 biohydrogenation products (i.e. atypical dienes) with the first double bond at carbon 8 or 9 from the carboxyl end, conjugated linoleic acid isomers with the first double bond from carbon 7 to 10 from the carboxyl end, t-18:1 isomers, and reduced (P<0.05) the proportions of total n-3 FA, conjugated linolenic acids, branched-chain FA, odd-chain FA and 16:0. Feeding DDGS-15 and DDGS-30 diets v. the SS diet further increased (P<0.05) average daily gains, final live weight, carcass weight, hot dressing percentage, fat thickness, rib-eye muscle area, and improved instrumental and sensory panel meat tenderness. However, in general feeding DGGS-15 or DDGS-30 diets did not change FA proportions relative to feeding the SS diet. Overall, adding SS to a RCS-based diet enhanced muscle proportions of 18:2n-6 biohydrogenation products, and further substitutions of DDGS in the diet improved beef production, and quality while maintaining proportions of potentially functional bioactive FA including vaccenic and rumenic acids.  相似文献   

17.
The aim of this work was to investigate the variations of milk fatty acid (FA) composition because of changing paddocks in two different rotational grazing systems. A total of nine Holstein and nine Montbéliarde cows were divided into two equivalent groups according to milk yield, fat and protein contents and calving date, and were allocated to the following two grazing systems: a long duration (LD; 17 days) of paddock utilisation on a heterogeneous pasture and a medium duration (MD) of paddock utilisation (7 to 10 days) on a more intensively managed pasture. The MD cows were supplemented with 4 kg of concentrate/cow per day. Grazing selection was characterised through direct observations and simulated bites, collected at the beginning and at the end of the utilisation of two subsequent MD paddocks, and at the same dates for the LD system. Individual milks were sampled the first 3 days and the last 2 days of grazing on each MD paddock, and simultaneously also for the LD system. Changes in milk FA composition at the beginning of each paddock utilisation were highly affected by the herbage characteristics. Abrupt changes in MD milk FA composition were observed 1 day after the cows were moved to a new paddock. The MD cows grazed by layers from the bottom layers of the previous paddock to the top layers of the subsequent new paddock, resulting in bites with high organic matter digestibility (OMD) value and CP content and a low fibre content at the beginning of each paddock utilisation. These changes could induce significant day-to-day variations of the milk FA composition. The milk fat proportions of 16:0, saturated FA and branched-chain FA decreased, whereas proportions of de novo-synthesised FA, 18:0, c9-18:1 and 18:2n-6 increased at paddock change. During LD plot utilisation, the heterogeneity of the vegetation allowed the cows to select vegetative patches with higher proportion of leaves, CP content, OMD value and the lowest fibre content. These small changes in CP, NDF and ADF contents of LD herbage and in OMD values, from the beginning to the end of the experiment, could minimally modify the ruminal ecosystem, production of precursors of de novo-synthesised FA and ruminal biohydrogenation, and could induce only small day-to-day variations in the milk FA composition.  相似文献   

18.
Most often, farmers consider red clover an unattractive forage because of its low ensilability. Nevertheless, several in vivo and in vitro experiments also showed advantages of red clover silages such as decreased rumen biohydrogenation of polyunsaturated fatty acids. This has been attributed to a possible protective role of protein-bound phenols, with polyphenol oxidase playing a key role in their formation. This enzyme is active in red clover, but not in other green forages, such as, for example, perennial ryegrass. Therefore, the aim was to study the lipid metabolism within red clover/ryegrass mixtures in lab scale silages and during in vitro rumen batch incubations. Ensilability of red clover increased with higher proportions of ryegrass in the silage mixture. However, the lipid-protecting mechanism of red clover does not seem to occur in the co-ensiled ryegrass as lipolysis of polar lipids linearly increased with increasing proportions of ryegrass (86.0%, 91.6%, 89.9%, 93.1% and 95.6% in 60-day-old silages with 100/0, 75/25, 50/50, 25/75 and 0/100 red clover/ryegrass, respectively). Rumen lipolysis and biohydrogenation of C18:3n-3 and C18:2n-6 were negatively related to red clover proportions in the silage mixtures. The lipid-protective mechanism in red clover silages is confirmed, but it seems not to be transferred to lipids in co-ensiled forages.  相似文献   

19.
Emulsions of the fatty acids linoleic (C18:2 n-6), alpha-linolenic (C18:3 n-3) and arachidonic acid (C20:4 n-6) were incubated for 4 h under anaerobic conditions with human faecal suspensions. Linoleic acid was significantly decreased (P < 0.001) and there was a significant rise (P < 0.05) in its hydrogenation product, stearic acid. Linolenic acid was also significantly decreased (P < 0.01), and significant increases in C18:3 cis-trans isomers (P < 0.01) and linoleic acid (P < 0.05) were seen. With each acid, there were non-significant increases in acids considered to be intermediates in biohydrogenation. The study provides evidence that bacteria from the human colon can hydrogenate C18 essential polyunsaturated fatty acids. However, with arachidonic acid there was no evidence of hydrogenation.  相似文献   

20.
1. Surgically prepared lactating goats were used to obtain quantitative information on the biohydrogenation and absorption of dietary fat, and on the mammary uptake and transfer into milk fat of the complex mixture of cis- and trans-isomers of octadecenoate that arise during ruminal biohydrogenation. 2. About 90% of dietary linolenate, linoleate and oleate was hydrogenated in the rumen, and the availability to the animals of the essential fatty acid, linoleate, represented only 0.5-1.5% of the total dietary energy. 3. The intra-ruminal administration of (14)C-labelled linolenate and linoleate showed that these acids were not absorbed from the rumen, in agreement with previous work. 4. No selectivity was observed in the metabolism of the geometrical and positional isomers of octadecenoate: their rates of absorption from the small intestine, transfer into lymph, uptake by the mammary gland and appearance in milk fat were similar. 5. The desaturase activity of intestinal epithelium was demonstrated by the appearance in lymph of [1-(14)C]oleate after the addition of [1-(14)C]stearate to the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号