首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 101 毫秒
1.
A series of excellent hydrogels were prepared from poly(vinyl alcohol) (PVA) and carboxymethylated chitosan (CM-chitosan) with electron beam irradiation (EB) at room temperature. Electron spectroscopy analysis of the blend hydrogels revealed that good miscibility was sustained between CM-chitosan and PVA. The properties of the prepared hydrogels, such as the mechanical properties, gel fraction and swelling behavior were investigated. The mechanical properties and equilibrium degree of swelling improved obviously after adding CM-chitosan into PVA hydrogels. The gel fraction determined gravimetrically showed that a part of CM-chitosan was immobilized onto PVA hydrogel. The further analyses of FTIR and DSC spectra of the prepared gels after extracting sol manifested that there was a grafting interaction between PVA and CM-chitosan molecules under irradiation. The antibacterial activity of the hydrogels against Escherichia coli was also measured via optical density method. The blend hydrogels exhibited satisfying antibacterial activity against E. coli, even when the CM-chitosan concentration was only 3 wt%.  相似文献   

2.
Molecular dynamics (MD) simulations were employed to study the influence of solvents on the structure and mechanical properties of physically crosslinked poly(vinyl alcohol) (PVA) gels. Firstly, three kinds of PVA precursor gels were made by adding water, dimethyl sulfoxide (DMSO) and a mixture of DMSO and water (4:1 by weight), respectively. The solvents in the precursor gels were then exchanged with water to obtain three kinds of PVA hydrogels. Solvent in the precursor gel with a mixture of DMSO and water was also exchanged with ethanol and DMSO, respectively. It was found that the tensile strength and failure strain of the PVA hydrogel prepared from precursor gel with a mixture of DMSO and water was the highest, and the polymer network was more homogeneous than the other two PVA hydrogels. The polymer network of PVA gel with ethanol or with DMSO was more heterogenous than with water, and the tensile strength and failure strain were much lower. The torsional activity of polymer chains of PVA gel with ethanol was much stronger than PVA gel with water and DMSO.  相似文献   

3.
The aim of this study was to entrap delta-sleep inducing peptide (DSIP) in cross-linked poly(vinyl alcohol)-based hydrogels of different structures and to determine kinetics of the peptide release from these hydrogels using an in vitro model. Isotropic and macroporous hydrogels based on poly(vinyl alcohol) acrylic derivative (Acr-PVA) and also macroporous epoxy groups containing hydrogels synthesized by copolymerization of this macromer and glycidyl methacrylate, have been used in this study. Isotropic hydrogels were prepared at positive temperatures while macroporous ones were obtained by formation in cryo-conditions. The peptide was entrapped into macroporous PVA hydrogels by adding the peptide solution onto preformed matrices, while peptide immobilization on PVA-GMA hydrogels, containing free epoxy groups, was carried out by sorption of peptide from its aqueous solution. In the case of DSIP entrapment into isotropic PVA gel the peptide solution was added into the polymer mixture at hydrogel formation. The kinetics of peptide release from hydrogels was studied by incubating matrices in PBS solution (pH 7.4), in physiological solution (0.9% NaCl) and in water. DSIP concentration in supernatants was determined by reverse-phase HPLC. Incubation of macroporous PVA gels in PBS, 0.9% NaCl, and water for 30 min caused release of 74, 70, and 64% DSIP, respectively, and this processes completed within 3 h. From hydrogel containing epoxy groups the release of neither peptide nor its degradation products was observed even after incubation for 48 h. For freshly prepared isotropic hydrogel the release kinetics was as follows: 27 and 78% DSIP were released within first 30 min and 33 h, relatively. For the lyophilized hydrogel samples the peptide release was 63% after incubation for 30 min, while drying of samples at room temperature for 3 days caused significant peptide loss because of its structure damage.  相似文献   

4.
Tian K  Shao Z  Chen X 《Biomacromolecules》2010,11(12):3638-3643
A natural electroactive protein hydrogel was prepared from soy protein isolate (SPI) solution by cross-linking with epichlorohydrin. Under electrical stimulus, such SPI hydrogel quickly bends toward one electrode, showing a good electroactivity. Because of its amphoteric nature, the SPI hydrogel bends either toward the anode (pH < 6) or cathode (pH > 6), depending on the pH of the electrolyte solution. Other factors, such as electric field strength, ionic strength and gel thickness also influence the electromechanical behavior of the SPI hydrogels. Moreover, this SPI hydrogel exhibits a good electroactive behavior under strong acidic (pH = 2 - 3) or basic (pH = 11 - 12) solutions, which is a significant improvement over two other kinds of natural electroactive hydrogels, i.e., chitosan/carboxymethylcellulose and chitosan/carboxymethylchitosan hydrogel, which we reported previously. The wide pH range and good electroactivity of this natural protein hydrogel suggests its great potential for microsensor and actuator applications, especially in the biomedical field, and also to increase the scope of natural polymer-based electroactive hydrogels.  相似文献   

5.
To develop a gentamicin-loaded wound dressing, cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and dextran using the freezing–thawing method. Their gel properties such as gel fraction, swelling, water vapor transmission test, morphology, tensile strength, and thermal property were investigated. In vitro protein adsorption test, in vivo wound healing test, and histopathology were performed. Dextran decreased the gel fraction, maximum strength, and thermal stability of hydrogels. However, it increased the swelling ability, water vapor transmission rate, elasticity, porosity, and protein adsorption. The drug gave a little positive effect on the gel properties of hydrogels. The gentamicin-loaded wound dressing composed of 2.5% PVA, 1.13% dextran, and 0.1% drug was more swellable, flexible, and elastic than that with only PVA because of its cross-linking interaction with PVA. In particular, it could provide an adequate level of moisture and build up the exudates on the wound area. From the in vivo wound healing and histological results, this gentamicin-loaded wound dressing enhanced the healing effect more compared to conventional product because of the potential healing effect of gentamicin. Thus, this gentamicin-loaded wound dressing would be used as a potential wound dressing with excellent forming and improved healing effect in wound care.  相似文献   

6.
In this work a gel was formed by complexation of two natural polyelectrolytes, chitosan and xanthan. Changes in the hydrogels rheological properties have been studied in terms of hydrogel concentration (7–10% w/w), chemical media used for the hydrogel dispersion, and ‘test lag time’; i.e., the time between hydrogel dispersion in the chemical media and the start of the rheological test (up to 390 min). The viscoelastic properties of this polysaccharide system were characterized by oscillatory shear measurements under small-deformation conditions and the results show that chitosan/xanthan hydrogels behave like weak gels. The shear modulus increased almost linearly with frequency in the range studied (0.1–65 s−1). The effects of hydrogel concentration and dispersion medium have been related to electrostatic equilibrium and by the presence of counter-ions modifying the internal structure of the hydrogel.  相似文献   

7.
An in situ injectable chitosan/gelatin hydrogel was formed under slightly acidic conditions (pH 4.0 ~ 4.5) using an acid-tolerant tyrosinase, tyrosinase-CNK. A homogeneous chitosan/tyrosinase-CNK solution was prepared in one part of a dual-barrel syringe, and highly soluble gelatin in distilled water was prepared in the other part of the syringe without any additional crosslinking materials. Chitosan/gelatin hydrogel was formed in situ by simple injection of the solutions at room temperature followed by curing at 37°C. However, conventional mushroom tyrosinase did not catalyze this permanent gel formation. Tyrosinase- CNK-catalyzed glycol chitosan/gelatin hydrogel was similarly formed by this in situ injection approach. The hydrogels exhibited a high swelling ratio of 20-fold their own weight, interconnected micropores with an average diameter of approximately 260 μm and in vitro biodegradability suitable for tissue engineering and drug delivery applications. These results showed that tyrosinase-CNK-mediated chitosan/gelatin hydrogel formation has remarkable potential for the development of novel formulations for in situ injectable gel-forming systems.  相似文献   

8.
In the present study, carboxymethyl chitosan was prepared from chitosan, crosslinked with glutaraldehyde and evaluated in vitro as a potential carrier for colon targeted drug delivery of ornidazole. Ornidazole was incorporated at the time of crosslinking of carboxymethyl chitosan. The chitosan was evaluated for its degree of deacetylation (DD) and average molecular weight; which were found to be 84.6% and 3.5×10(4) Da, respectively. The degree of substitution on prepared carboxymethyl chitosan was found to be 0.68. All hydrogel formulations showed more than 85% and 74% yield and drug loading, respectively. The swelling behaviour of prepared hydrogels checked in different pH values, 1.2, 6.8 and 7.4, indicated pH responsive swelling characteristic with very less swelling at pH 1.2 and quick swelling at pH 6.8 followed by linear swelling at pH 7.4 with slight increase. In vitro release profile was carried out at the same conditions as in swelling and drug release was found to be dependant on swelling of hydrogels and showed biphasic release pattern with non-fickian diffusion kinetics at higher pH. The carboxymethylation of chitosan, entrapment of drug and its interaction in prepared hydrogels were checked by FTIR, (1)H NMR, DSC and p-XRD studies, which confirmed formation of carboxymethyl chitosan from chitosan and absence of any significant chemical change in ornidazole after being entrapped in crosslinked hydrogel formulations. The surface morphology of formulation S6 checked before and after dissolution, revealed open channel like pores formation after dissolution.  相似文献   

9.
Hydrogel dressings have significant advantages such as absorption of tissue exudate, maintenance of proper moist environment, and promotion of cell proliferation. However, facile preparation method and high-efficient antibacterial hydrogel dressings are still a great challenge. In this study, a facile approach to prepare antibacterial nanocomposite hydrogel dressing to accelerate healing was explored. The hydrogels consisted of quaternized chitosan and chemically cross-linked polyacrylamide, as well as silver nanoparticles (AgNPs) stabilized by chitosan. The synthesis of the hydrogels including the formation of AgNPs and polymerization of acrylamide was accomplished simultaneously under UV irradiation in 1 hour without adding initiator. The hydrogels showed favorable tensile strength of ∼100 kPa with elongation at break over 1000% and shear modulus of ∼104 Pa as well as suitable swelling ratio, which were appropriate for wound dressing. The combination of quaternized chitosan and AgNPs exhibited high-efficient and synergetic antibacterial performance with low cytotoxicity. In vivo animal experiments showed that the hydrogel can effectively prevent wound infection and promote wound healing. This study provides a facile method to produce antibacterial hydrogel wound dressing materials.  相似文献   

10.
In this study, we prepared a polyelectrolyte complex (PEC) hydrogel comprising chitosan as the cationic polyelectrolyte and γ-poly(glutamic acid) (γ-PGA) as the anionic polyelectrolyte. Fourier transform infrared spectroscopy revealed that ionic complex interactions existed in the chitosan-γ-PGA PEC hydrogels. The compressive modulus increased upon increasing the degree of complex formation in the chitosan-γ-PGA PEC hydrogel; the water uptake decreased upon increasing the degree of complex formation. At the same degree of complex formation, the compressive modulus was larger for the chitosan-dominated PEC hydrogels; the water uptake was larger for the γ-PGA-dominated ones. Scanning electron microscopy images revealed the existence of interconnected porous structures (pore size: 30-100 μm) in all of the chitosan-γ-PGA PEC hydrogels. The chitosan-γ-PGA PEC hydrogels also exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, in vitro cell culturing of 3T3 fibroblasts revealed that all the chitosan-γ-PGA PEC hydrogels were effective in promoting cell proliferation, especially the positively charged ones (chitosan-dominated). Therefore, the chitosan-γ-PGA polyelectrolyte hydrogel appears to have potential as a new material for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号