首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The community structure of rhodoliths beds in the central Brazilian continental shelf was studied under the hypothesis that nongeniculate coralline algae are the major contributors of the individual rhodoliths. Samples were collected from five localities within a single area at 17–18 m depth. At each locality, rhodoliths were collected in 10 random quadrat samples along a 20-m transect. Our results show that dead cores of rhodoliths were significantly composed by nongeniculate coralline red algae rather than bryozoans, corals, or inorganic material. The live outer layers of the rhodoliths are composed mainly of 7 species of nongeniculate red coralline algae (Lithophyllum coralline, L. johansenii, L. depressum, L. stictaeformis, Neogoniolithon brassica-florida, Spongites fruticosus, and Lithothamnion muellerii) associated with other encrusting organisms such as bryozoans, sponges, corals, barnacles, and Peyssonnelia red algae. Significant differences were found in the proportion of Lithophyllum species in relation to other red coralline algae found in this study. Our results show that on the Brazilian continental shelf, the rhodolith-forming species are quite higher in size than in any other studied areas in the world. There was no difference in the proportion of live-to-dead rhodolith materials, suggesting an old bed deposit. Also, the amount of calcium carbonate material in the specimens is relevant to take in account in terms of the CO2 balance worldwide.  相似文献   

2.
3.
Rhodolith beds are an important source of marine calcium carbonate worldwide. Dense aggregations are found in deep water in the tropical southwestern Atlantic. In order to understand the distribution of coralline algae that build rhodoliths, algae responses were measured in light levels over their depth range. Qualitative samples were obtained by dredging at 90–100 m depth 80 km offshore of Cabo Frio Island, southeastern Brazil. Histological sections indicate that Mesophyllum engelhartii (Foslie) Adey was the most frequent coralline algae in 22 sampling stations. Its lumpy and thin thallus is characterized by raised multiporate sporangial conceptacles, with cells of similar size and shape around the pore canal. Accretion growth rates were below detectable levels for two rhodolith species. Photosynthetic peak was reached at 0.5–1.5 % of the maximum surface irradiance (10–30 μmol photons m?2 s?1) showing an extremely narrow P–I curve of net primary production. Readings of primary production at irradiance close to saturation and lower light levels (5 μmol photons m?2 s?1) showed no significant difference, suggesting that rhodoliths are acclimated to restricted light ranges in deep water.  相似文献   

4.
This is a preliminary interdisciplinary study on the enrichment of heterozoan carbonates on Dirk Hartog Island, Shark Bay, Western Australia, with particular reference to rhodolith (free-living non-geniculate) coralline algae. The current study aims to investigate the geological impact of shallow-water rhodoliths in Shark Bay, as well as fill critical information gaps on the biogeographical distribution of rhodoliths in Australia. We analyzed the composition of sand from eight sites (totaling 21 beach and sand dune samples) on the eastern (windward) shore of the island, and investigated the origin of the coralline algal grains. Heterozoan carbonates (shell, geniculate coralline algae grains, and rhodolith grains) together comprised 3–84% of the carbonate-enriched beach and dune sand samples. While shell fragments often comprised the highest percentage (up to 73%), rhodolith grains (up to 27%) were found in 12 of 21 samples, with rhodolith grains also occurring in two dune samples. Geologically, the study has shown that rhodoliths and rhodolith beds are important shallow-marine habitats in Shark Bay, with a proven capacity to enrich beach/dune sands in Shark Bay and potentially other areas along the Australian coast. Biogeographically, the study confirmed the presence of a previously undescribed shallow rhodolith bed in Shark Bay (the first bed documented on the Western shore) with the possibility of a third bed near Sandy Point on Dirk Hartog Island. It also confirmed the presence of rhodolith forming Neogoniolithon brassica-florida and Lithophyllum sp. in Shark Bay, and is the first record of Hydrolithon reinboldii rhodoliths in Australia.  相似文献   

5.
Carbonate deposits from Zrin in the Mt. Zrinska Gora were deposited in the SW part of the Central Paratethys Sea during the Middle Badenian (Middle Miocene). The studied section contains a rich fossil community of non-geniculate coralline red algae (Subfamily Melobesioideae), bryozoans, benthic and planktonic foraminifera, echinoderms, ostracods, molluscs, and calcareous nannoplankton. Based on lithological variations and changes in the biogenic components, four facies associations (FA) are distinguished. Their distribution points to skeletal production and sedimentation on a middle to proximal outer carbonate ramp. The main lithological feature of the section is an alternation of two lithofacies: fully lithified grainstone–rudstone and packstone, and semi-lithified rudstone–floatstone with a carbonate sandy matrix. Depositional environments on the ramp were periodically influenced by minor high-frequency sea-level changes and/or changes of hydrodynamic conditions, which are suggested as the driving mechanisms causing the alternation of the two lithofacies. Vertically in the succession, the two lithofacies alternate to give three thinning- and fining-upward units. The lower part of each unit is formed of a rhodolith and coralline algal FA, which passes upwards into a bryozoan-coralline algal FA and/or FA of bioclastic packstone-grainstone. Based on the vertical upward change in FAs, each unit can be interpreted as a deepening-upward sequence. Patterns in the relative abundance of bryozoan colony growth form (vinculariiform, cellariiform, adeoniform, membraniporiform, celleporiform, and reteporiform), size and abundance of rhodoliths and coralline branches, and benthic foraminifera are interpreted by comparison with data from modern and fossil environments. Based on these data, a water depth range for each FA is interpreted, providing evidence of low-frequency relative sea-level changes. It is hypothesized that relative sea-level fluctuated in the water depth range from 30 to 80 m, and in the uppermost part of the section, rich in planktonic foraminifera and calcareous nannoplankton, possibly deeper. Causes of the low-frequency relative sea-level fluctuations and the general deepening trend observed within the succession cannot be interpreted based on one section; however, they may be related to the subsidence of the depositional basin. The benthic biotic communities are a vertical alternation of rhodalgal and bryorhodalgal associations, and this is attributed to relative sea-level fluctuations. These biotic associations gave rise to warm-temperate carbonates of the Middle Badenian N9 planktonic Zone (Orbulina suturalis, O. universa) and NN4–NN5 nannoplankton Zones (Sphenolithus heteromorphus).  相似文献   

6.
Rhodolith beds are built by the aggregation of free living marine benthic coralline algae. Herein, we described phytobenthic communities associated with subtidal rhodolith beds in northeastern Brazil and tested the hypothesis that depth affects their structure. We compared macroalgal assemblages from depths of 10, 15 and 20 m. The genus Lithothamnion was dominant in these beds. Rhodolith density was similar at different depths, but volume decreases as depth increases. Sixty-seven species of fleshy algae were collected. The red algal order Ceramiales was dominant. A distinct community corresponds to each sampled depth. The shallower depth presented higher values for biomass, number of species, Shannon-Wiener diversity, and Pielou's evenness. When depth and water transparency increased, the number of species and the abundance of macroalgae decreased.  相似文献   

7.
Many sedimentary processes can lead to the formation of mixed carbonate–siliciclastic sediments in shallow shelf environments. The Miocene Saint-Florent Basin (Corsica), and in particular the Monte S. Angelo Formation, offers the possibility to analyze coarse mixed sediments produced by erosion of a rocky coast, ephemeral stream input, and shallow-water carbonate production dominated by red algae. The Monte S. Angelo Formation was deposited during the Burdigalian to Langhian interval. During this interval, the island of Corsica experienced increased subsidence related to the development of the Ligurian-Provençal Basin and associated Sardinia-Corsica block rotation. Four main rhodolith-rich subfacies have been recognized: conglomerate with rhodoliths, massive rhodolith rudstone, well-bedded rhodolith rudstone, and rhodolith floatstone. The four facies have been interpreted as having been deposited in different environments of a gravel-dominated, nearshore to offshore prograding wedge. Deep-water melobesioids dominate the red algal assemblage from shoreface to offshore. Shallow-water subfamilies of lithophylloids and mastophoroids occur in only accessory amounts. Poor illumination is believed to be due to terrigenous input by ephemeral streams and wave- and current-resuspension. Resuspension processes are favored by the limited occurrence of seagrasses. Two types of siliciclastic–carbonate mixing processes characterize the investigated rhodolith-rich deposits: (1) punctuated mixing, produced by the re-deposition of terrigenous sediments by debris-flow processes during flooding events onto carbonate sediments together with rhodoliths of the shoreface environments, and (2) in situ mixing, produced by growth of coralline algae on siliciclastic pebbles to form the rhodoliths.  相似文献   

8.
Dr. Davide Bassi 《Facies》1998,39(1):179-201
Summary The Calcare di Nago is a carbonate unit of Middle-Late Eocene (Bartonian and Priabonian) age which is well exposed at the north-eastern end of Lake Garda, on the western margin of the Lessini Shelf (Southern Alps). This unit is highly fossiliferous as far as the coralline red algae and large foraminifera are concerned. Corals, bryozoans, echinoderms, and molluscs are also present. The present study deals with the relationships among the coralline taxa, the coralline growth-forms, and their facies development in the Priabonian part of the type section of the Calcare di Nago. The taxonomic investigation led to the identification of 15 coralline red algal species belonging to 7 non-geniculate and 2 geniculate genera. One species of Peyssonneliacean (red alga) and one of Halimedacean (green alga) were also recognized. The quantitative and qualitative analyses based on coralline red algae and large foraminifera enabled five facies to be distinguished: Algal crust-branch rudstone, Algal/Discocyclina packstone, Coralalgal boundstone, Rhodolith mound wacke/packstone, and Rhodolith pavement. According to the coralline assemblages, coralline growth-forms, and large foraminiferal associations, the five facies reflect solid and soft substrate types. Some of these facies are dominated byin situ rhodoliths, others by reworked algal debris. In the architecture of an interpreted prograding carbonate ramp, shallow water facies are dominated by members of the subfamily Mastophoroideae, while deeper water facies are dominated by those of the subfamily Melobesioideae and family Sporolithaceae. There is a significant increase both in size and in constructional voids of the rhodoliths with depth. A concomitant decrease in algal species diversity with depth has been also recognized. LargeDiscocyclina assemblages are localized across the inner and mid ramp boundary.Pellatispira andBiplanispira are present only in the uppermost mid-ramp.Nummulites, Assilina, andSpiroclypeus are dominant together with small orthophragminids both in the mid- and uppermost outer ramp facies.  相似文献   

9.
Summary Late Eocene sediments of the Upper Austrian Alpine Foreland Basin discordantly overlie Mesozoic and crystalline rocks, which are deeply eroded and form a distinct pre-Eocene relief. Late Eocene deposits contain red algal limestones with a remarkable lateral extent and a high diversity of sedimentary facies. Towards the south the algal limestones change into more clastic sediments, which are characterized by larger foraminifera and bryozoans. Main components are coralline algal branches and detritus, coralline crusts, rhodoliths, peyssonneliacean aggregates and crusts, nummulitid and orthophragminid foraminifera, corals, bryozoans, as well as terrigenous components. Rank correlation and factor analysis were calculated in order to obtain informations about relations between components. Hierarchical cluster analysis allowed the designation of 17 facies, most of them are dominated by coralline algae. Actualistic comparisons and correlations obtained from statistical analyses allowed the reconstruction of the depositional environments. Main features of the northern area are huge accumulations of unattached coralline algae (branches, rhodoliths, detritus), which are comparable to the present-day “Maerl”-facies. They formed loose frameworks cut by sand channels. The frequency of coralline detritus decreases upsection. Peyssonneliacean algae in higher parts of the profiles show growth-forms that are comparable to peyssonneliaceans of the Mediterranean circalittoral soft bottoms. This succession can be interpreted by an increasing relative sea level. Besides, crustose coralline algal frameworks were growing on morphological highs which are partially comparable to the present-day “Coralligéne de Plateau” of the Mediterranean Sea. In contrast to the northern area, sedimentation rate of the southern area is too low to keep up with rising sea level. The typical succession from nummulitid- to orthophragminid-and bryozoan-dominated facies can be interpreted by an increasing water depth from shallowest subtidal to the deeper photic zone and finally to the aphotic zone.  相似文献   

10.
During the Late Miocene, the marginal areas of the Mediterranean Basin were characterized by the development of mixed siliciclastic-carbonate ramps. This paper deals with a temperate siliciclastic-carbonate ramp (late Tortonian–early Messinian in age) which crops out in the Capo Vaticano area, Southern Apennines (Italy). Carbonate components are mainly represented by calcitic skeletal fragments of coralline red algae, bryozoans, bivalves, and larger foraminifera, whereas corals, brachiopods, echinoderms, and planktonic foraminifera are subordinate. In the studied ramp, the depositional geometries of the main unit, the ‘Sabbie gialle ad Heterostegina’, show a gradual steepening from low/middle (dip about 2–5°) to steep slope settings (up to 25°). The microfacies observations, the quantitative analyses of the main biogenic components as well as the rhodolith shapes and growth forms allowed the differentiation between the middle and the outer ramp depositional setting and the refining of the stratigraphic framework. The middle ramp is characterized by coralline red algal debris packstone facies often associated with larger foraminiferal floatstone/packstone facies, while the outer ramp is characterized by rhodolith floatstone/rudstone facies. These facies pass basinward into typical open-marine deposits (planktonic foraminiferal facies). The taxonomic composition of the coralline red algal assemblage points to a temperate paleoclimate and emphasizes the Miocene Mediterranean phytogeographic patterns. The absence of non-skeletal grains (ooids and green algae), the paucity of Porites patch reefs, the rare occurrence of primary marine cementation, all confirm that the studied ramp was poorly lithified within a warm–temperate setting. The flat depositional profile of the ramp can be related to the absence or paucity of primary marine carbonate cements.  相似文献   

11.
Along the northwestern margin of Safaga Island (Northern Bay of Safaga, Red Sea, Egypt) a small fringing reef (several hundred meters long, up to 2 m high) and small patch reefs are developed due to the local current regime which is favorable for coral growth. Corals and reef rock are encrusted by coralline algae, predominantly by branchedLithophyllum kotschyanum. Owing to destructional processes dominated by sea urchin activities, fragmentation of (1) corals, (2) reef rock, and (3) coralline algae takes place resulting in the formation of almost mono-specific, branchedLithophyllum kotschyanum rhodoliths. Rhodolith formation takes place in various reef environments: (1) in depressions on the reef flat where ellipsoidal rhodoliths develop, with interlocking and fusing branches leading to a coralline algal framework; (2) in discharge channels where smaller elongated rhodoliths occur; (3) in leeward positions between reef flat and seagrass meadows, where a dense belt of spheroidal to ellipsoidal rhodoliths is formed; scattered rhodoliths occur in adjacent seagrass beds. The formation and preservation of rhodoliths requires a complex interplay of destruction, growth, transportation, movement, and stabilization.  相似文献   

12.
Although the ecological importance of rhodolith (maerl, free-living coralline algae) beds is well-known, rhodolith-forming species have been neglected in molecular phylogenetic studies. This is the first molecular systematic study aimed at understanding whether the rhodolith habit is a fixed feature in lineages and determining the relationship (phylogenetic vs. environmental) between rhodolith and crustose habits. Phylogenetic relationships of rhodolith-forming species and encrusting coralline algae at generic and species levels were analysed using SSU rDNA and psbA sequences. Extensive sampling in the European North Atlantic, Pacific and Caribbean Mexico of Phymatolithon, Lithothamnion, Lithophyllum and Neogoniolithon taxa forming rhodoliths and crusts was accompanied by examination of type or topotype material. Phylogenetic reconstruction showed that Neogoniolithon contained a monophyletic group of rhodolith-forming species whereas other rhodolith-formers were closely related to encrusting forms in the genera Phymatolithon, Lithothamnion, Mesophyllum, Hydrolithon, Spongites and Sporolithon. DNA analysis showed that the crust-forming Lithophyllum cf. incrustans/dentatum also forms rhodoliths with a stone nucleus that occur on rocky shores. In contrast, species that form beds of non-nucleate rhodoliths (e.g. Neogoniolithon spectabile, N. strictum, Lithophyllum cf. incrustans/dentatum or sp. 1 and Phymatolithon calcareum) rarely form crusts. The rhodolith habit cannot be used to delimit species for taxonomic or identification purposes. Extensive taxonomic revision will be required to deal with problems such as the position of specimens identified as Lithophyllum margaritae in two unrelated lineages.  相似文献   

13.
Rhodoliths are free‐living, coralline algae that create heterogeneous structure over sedimentary habitats. These fragile ecosystems are threatened by anthropogenic disturbances that reduce their size and three‐dimensional structural complexity. We investigated how physical disturbance from boat moorings affects photosynthetic performance in the rhodolith Lithothamnion australe. Photosynthetic parameters were measured for intact rhodoliths and crushed rhodolith fragments of two sizes (ca. 1 and 2 cm diameter), while chlorophyll fluorescence was measured at the surface of rhodoliths of these two sizes, between the interior branches of the larger rhodoliths, and at the surface of 52 various sized (0.4–3.5 cm diameter) rhodoliths. Gross productivity and net productivity were 15% and 36% higher, respectively, in the smaller L. australe, while respiration was 10% higher in the larger individuals. Thallus crushing reduced gross productivity by 20% and 41%, and net productivity by 9% and 14% in the smaller and larger rhodoliths, respectively. It also reduced respiration by 33% and 60% in the smaller and larger rhodoliths, respectively. Fluorescence parameters were all greater at the surface of the larger L. australe than the smaller individuals, and greater at the surface than in the interior parts of the larger individuals. Across a range of rhodolith sizes, surface fluorescence parameters were at their maxima in 1.54 to 2.32 cm diameter individuals. These results show that L. australe’s complex structure creates heterogeneity in photosynthesis and respiration between their surface and interior parts and among rhodolith sizes. This information can help predict how rhodoliths may respond to disturbance and environmental stressors.  相似文献   

14.
Coralline algal nodules off Fraser Island, eastern Australia   总被引:1,自引:0,他引:1  
Summary Calcareous red algal nodules growing on mobile substrates have been sampled from 28 to 117m off Fraser Island in southern Queensland, eastern Australia. This is a subtropical, transitional area between the tropical Great Barrier Reef to the north and temperate, cooler waters to the south. Red algal nodules are the most common components in bioclastic gravels that extend from about 50 to 110 m and locally cover 40–50% of the seafloor. Variations in the overall character and floristic composition of the nodules with depth can be observed. Algal nodules comprise algal covered pebbles/cobbles and rhodoliths in depths shallower than 60 m whereas only rhodoliths occur in deeper settings. No changes in nodule shape occur but shallower algal nodules have larger mean size with higher standard deviation than the deeper ones (39.2 vs. 30.5 mm and 20.5 vs. 6.3 mm s.d.). Living and subrecent red algae in nodules shallower than 60 m are mainly Melobesioideae and peyssonneliaceans with minor Lithophylloideae and Mastophoroideae. Most plants belong to a few species of the generaPhymatolithon andLithothamnion. Below 68 m, rhodoliths are dominated by the family Sporolithaceae, melobesioids and peyssonneliaceans.Sporolithon is the main component below 80 m. Algal growth forms are mostly smooth encrusting to warty with no depth variation. Maximum plant thickness, however, decreases with increasing depth. Thallus thickness in the deeper water samples is more than three times smaller than in those from shallower waters. These data are important for understanding the paleoenvironmental context of deposition of the abundant coralline algal limestones with similar algal nodules found in the geological record.  相似文献   

15.
Rhodoliths are nodules of non-geniculate coralline algae that occur in shallow waters (<150 m depth) subjected to episodic disturbance. Rhodolith beds stand with kelp beds, seagrass meadows, and coralline algal reefs as one of the world's four largest macrophyte-dominated benthic communities. Geographic distribution of rhodolith beds is discontinuous, with large concentrations off Japan, Australia and the Gulf of California, as well as in the Mediterranean, North Atlantic, eastern Caribbean and Brazil. Although there are major gaps in terms of seabed habitat mapping, the largest rhodolith beds are purported to occur off Brazil, where these communities are recorded across a wide latitudinal range (2°N-27°S). To quantify their extent, we carried out an inter-reefal seabed habitat survey on the Abrolhos Shelf (16°50'-19°45'S) off eastern Brazil, and confirmed the most expansive and contiguous rhodolith bed in the world, covering about 20,900 km(2). Distribution, extent, composition and structure of this bed were assessed with side scan sonar, remotely operated vehicles, and SCUBA. The mean rate of CaCO(3) production was estimated from in situ growth assays at 1.07 kg m(-2) yr(-1), with a total production rate of 0.025 Gt yr(-1), comparable to those of the world's largest biogenic CaCO(3) deposits. These gigantic rhodolith beds, of areal extent equivalent to the Great Barrier Reef, Australia, are a critical, yet poorly understood component of the tropical South Atlantic Ocean. Based on the relatively high vulnerability of coralline algae to ocean acidification, these beds are likely to experience a profound restructuring in the coming decades.  相似文献   

16.
Lower Oligocene, shallow-water carbonates of the Calcareniti di Castelgomberto formation (Monti Berici, Italy, Southern Alps) are studied in detail with respect to fabric and component distributions in order to trace paleoecological changes along a monotonous sedimentary stacking pattern. The carbonates are dominated by coralline algal rudstones with a packstone to wackestone matrix. Non-geniculate coralline algae include six genera: Lithoporella melobesioides, Mesophyllum, Neogoniolithon, Spongites, Sporolithon, and Subterraniphyllum. The algae are found in the form of encrusting thalli, rhodoliths, and coralline debris. Non-algal components include larger, small benthic, and planktonic foraminifera associated with bryozoans, zooxanthellate corals, and echinoderms. Four carbonate facies are distinguished: (1) coralline algal facies, (2) coralline algal-coral facies, (3) coralline algal-larger foraminiferal facies, and (4) coralline algal debris facies. Marly horizons also occur in the section. The facies and coralline algal content are interpreted with respect to light intensity, hydrodynamic energy, biotic interactions, and substrate stability. Facies development along the studied section shows systematic variations, suggesting asymmetric sea-level changes with rapid regressions and gradual transgressions.  相似文献   

17.
Settlement specificity can regulate recruitment but remains poorly understood for coral larvae. We studied larvae of the corals, Acropora palmata and Montastraea faveolata, to determine their rates of settlement and metamorphosis in the presence of ten species of red algae, including eight species of crustose coralline algae, one geniculated coralline and one encrusting peyssonnelid. Twenty to forty percent of larvae of A. palmata settled on coralline surfaces of Hydrolithon boergesenii, Lithoporella atlantica, Neogoniolithon affine, and Titanoderma prototypum, whereas none settled and metamorphosed on Neogoniolithon mamillare. Larvae of M. faveolata had 13–25 % settlement onto the surface of Amphiroa tribulus, H. boergesenii, N. affine, N. munitum, and T. prototypum, but had no settlement on the surface of N. mamillare, Porolithon pachydermum, and a noncoralline crust Peyssonnelia sp. Some of these algal species were common on Belizean reefs, but the species that induced the highest rates of larval settlement and metamorphosis tended to be rare and primarily found in low-light environments. The shallow coral, A. palmata, and the deeper coral, M. faveolata, both had increased larval settlement rates in the presence of only a few species of red algae found at deeper depths suggesting that patterns of coral distribution can only sometimes be related to the distribution of red algae species.  相似文献   

18.
19.
This study provides the first quantitative measures of deep-water (i.e., below scuba depths) rhodolith development, distribution, abundance, and primary productivity at sites of both active formation and breakdown. The 1.27-km2 upper platform surface of San Salvador Seamount, Bahamas, ranges in depth from 67 to 91 m and averages 95.8% cover of rhodoliths that contribute an estimated 391 t organic C·yr−1 to deep-sea productivity. The predominant nongeniculate coralline alga of the slope environment has an extremely narrow PI curve (photosynthesis vs. irradiance) of net primary production (0.005) to slightly beyond 0.24 μmol·m−2·−1 PAR) suggesting that some deep-water benthic algae may be acclimated to restricted light ranges. Platform areas contain up to fice-deep accumulations (≈45 cm thick) of rhodoliths with their visible, planar (2-D), crustose algal cover (68.5%) composed of 41% Lithophyllum sp., 14.9% average nongeniculate corallines, and 12.6% Peyssonnelia sp. Platform rhodoliths also contain ≈25% average planar cover of the foraminiferan Gypsina sp. overlying the rock-penetrating chlorophyte Ostreobium sp.

On the steep slopes of the seamount, to a depth of 290 m, rhodoliths that have spilled down from the relatively flat platform average 17.4% cover. These nodules tend to be concentrated in fan-shaped deposits that are most prevalent (33.3% cover) on the west side (leeward) of the mount where they are more abundant near the top of the slope than on the other three sides. Cover of living crustose algae on the deeper slope rhodoliths averages only 22.8% and is made up of 14.8% unidentified nongeniculate corallines, 6% Lithophyllum sp., and 2% Peyssonnelia. Gypsina sp. is not an important component of the slope nodules. Biotic overstory on the seamout slopes is greatly reduced relative to the platform, restricted mainly to bedrock, and consists mostly of Halimeda, gorgonians, and sponges along with scattered patches of small frondose algae.

Over platform depths from 67 to 91 m, rhodoliths are fairly uniform in composition and abundance. Ranging from 4 to 15 cm in diameter, with an average of ≈ 9 cm, they are roughly spherical with smooth living surfaces. The rhodoliths spilling down the steep slopes of the seamount to depths below 200 m are characteristically smaller (mean of ≈5 cm diameter), much rougher, and pittend by boring organisms. As shown by cross sections through the centers of the platform nodules, outer, relatively thin (1–3 cm thick), well-preserved envelopes overlie dead laminated crustose layerse. These layers surround much thicker cores of biotically altered carbonate (mostly coralline, foraminiferan, and coral) that have been extensively reworked by boring sponges, algae, polychaetes, and pelecypods. Borings have been infilled with carbonate detritus and are lithified to various degrees ranging from porous to dense and stony.

Radiocarbon dates indicate that the outermost unaltered envelopes that underlie actively growing crusts are 112–880 yr old ( ), while the innermost unaltered layers average 731 ybp (range = 200–1100 ybp). The consistently abrupt transitions from the intact underlying layers of living.  相似文献   


20.
Rhodoliths are free-living coralline algae (Rhodophyta, Corallinales) that are ecologically important for the functioning of marine environments. They form extensive beds distributed worldwide, providing a habitat and nursery for benthic organisms and space for fisheries, and are an important source of calcium carbonate. The Abrolhos Bank, off eastern Brazil, harbors the world''s largest continuous rhodolith bed (of ∼21 000 km2) and has one of the largest marine CaCO3 deposits (producing 25 megatons of CaCO3 per year). Nevertheless, there is a lack of information about the microbial diversity, photosynthetic potential and ecological interactions within the rhodolith holobiont. Herein, we performed an ecophysiologic and metagenomic analysis of the Abrolhos rhodoliths to understand their microbial composition and functional components. Rhodoliths contained a specific microbiome that displayed a significant enrichment in aerobic ammonia-oxidizing betaproteobacteria and dissimilative sulfate-reducing deltaproteobacteria. We also observed a significant contribution of bacterial guilds (that is, photolithoautotrophs, anaerobic heterotrophs, sulfide oxidizers, anoxygenic phototrophs and methanogens) in the rhodolith metagenome, suggested to have important roles in biomineralization. The increased hits in aromatic compounds, fatty acid and secondary metabolism subsystems hint at an important chemically mediated interaction in which a functional job partition among eukaryal, archaeal and bacterial groups allows the rhodolith holobiont to thrive in the global ocean. High rates of photosynthesis were measured for Abrolhos rhodoliths (52.16 μmol carbon m−2 s−1), allowing the entire Abrolhos rhodolith bed to produce 5.65 × 105 tons C per day. This estimate illustrates the great importance of the Abrolhos rhodolith beds for dissolved carbon production in the South Atlantic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号