首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Allotetraploidization is the creation of artificial allotetraploids. Allotetraploidization of maize can be accomplished by concentrating differential pairing affinity (DPA) factors into lines by a recurrent selection breeding system. Selection will be based on changes in genetic ratios which are the result of changes in the relative frequencies of various pairing configurations caused by DPA. Part 1 of this series gave extensive data on gene segregation in trisomic and tetraploid heterozygotes. Some of these tetraploids behaved like segmental allotetraploids. Part 2 presented a model for gene segregation in segmental allotetraploids. This paper presents an analogous model for gene segregation in trisomic heterozygotes. The pairing configurations of trisomes are analyzed by considering pairing in single arms which then are combined to obtain pairing configurations for whole chromosomes. The chromosome disjunction patterns of the various pairing configurations are hypothesized and expected genetic ratios are given that result from different levels of DPA expressed in several hypothetical trisomes. The model analyzes the effect of random pairing in one arm and non-random pairing in the other arms. Also, the effect of crossing over is taken into account. Because crossing over rates are affected by the environment, part of the variability in the data (Part 1) is explained. In addition, an hypothesis is advanced to explain the frequent enhancement of pairing affinity following x-irradiation.Contribution from Agricultural Research/Science and Education Administration, US Department of Agriculture, University of Missouri, Columbia, Missouri, Missouri Agric. Exp. Sta. Jounal Series No. 8 670  相似文献   

2.
Summary Allotetraploidization is the creation of artifical allotetraploids from a normally diploid species. The possible value of allotetraploid maize has been discussed in Section I of this series. Allotetraploidization of maize can be achieved by restructuring a maize genome so that its chromosomes will not pair with those of the standard maize genome. This restructuring can be done by concentrating differential pairing affinity (DPA) factors into a single line by a recurrent selection type of breeding program. Because the divergence of the maize genome is a gradual process, it is necessary to devise a model for chromosome pairing and gene segregation in segmental allotetraploids. This has been done by considering pairing in each arm separately and then combining paired arms to form pairing configurations for whole chromosomes. The chromosome disjunction patterns are hypothesized and genetic ratios in relation to different levels of DPA are suggested.Contribution from the Science and Education Administration, U.S. Department of Agriculture, and the Agronomy Department, University of Missouri, Columbia, Missouri, Agricultural Experiment Station Journal Series No. 8090  相似文献   

3.
Summary Vigorously growing suspension cultures of normal, amylose-extender (ae) and waxy (wx) maize endosperm were established from near isogenic lines of maize inbred A636. The recovery of the ability to produce vigorous cultures of ae and wx endosperm by backcrossing demonstrate the genetic control of endosperm growth in vitro. Phenotypic expression of the endosperm mutants in culture was studied by examining the properties of starch accumulated in endosperm cultures and starch from developing and mature kernels of the same genotype. After 9 months in culture, the amylose contents of the starch in normal callus tissue and normal endosperm tissue were not significantly different, 28.2% and 31.7%, respectively. Starch granules from normal cultures and endosperm stained blue-black with iodine and were round to polygonal in shape. The starches of wx endosperm and callus cultures contained no amylose, and wx starch granules stained brown-orange with iodine. Although, wx starch granules were primarily round, a few granules with jagged edges were observed in starch samples isolated from cultures and kernels. The percent amylose in starch from ae callus was significantly lower than the amylose content of starch from ae endosperm tissue, 39.9% and 67.7%, respectively. Starch granules from ae endosperm and cultures were smaller than normal and wx starch granules. Irregular starch granules which are typical of ae endosperm were present in ae callus tissue, but were less frequently observed. We conclude that specific endosperm mutant phenotypes are expressed in vitro.Supported in part by the United States Department of Agriculture Competitive Grant 85-CRCR-1-1740. Contribution No. 94, Department of Horticulture. The Pennsylvania State University. Authorized for publication as paper No. 7373 in the journal series of the Pennsylvania Agricultural Experiment Station  相似文献   

4.
5.
Summary Allotetraploidization is the creation of artificial allotetraploids. Allotetraploidization of maize can be achieved by restructuring a maize genome so that its chromosomes will not pair with those of the normal maize genome. The restructuring can be done by concentrating induced or naturally occurring visible and cryptic chromosome aberrations and qualitatively different genetic material into a single line by a recurrent selection type of breeding program. The basis of allotetraploidization is the presence of differential pairing affinity between normal and restructured chromosomes. Experiments demonstrate that differential pairing affinity factors occur naturally in exotic races and in standard corn belt inbred lines and that they may be readily induced by X-irradiation and chemical mutagens.Contribution from the Science and Education Administration, U.S. Department of Agriculture, and the Agronomy Department, University of Missouri, Columbia, Missouri, Missouri Agric. Exp. Sta. Journal Series No. 8092  相似文献   

6.
Endosperm cell and starch granule (amyloplast) development of six maize (Zea mays L.) genotypes, normal, amylose-extender (ae), sugary (su), waxy (wx), amylose-extender sugary (ae su), and amylose-extender waxy (ae wx), was compared. Endosperms of all genotypes were indistinguishable at 14 days after pollination. Cells were highly vacuolated and those in the central crown area of the kernel contained small starch granules in close association with the nucleus. Cellular and nuclear enlargement occurred during endosperm development in all genotypes, and major and minor gradients in physiological age of endosperm cells were observed in all kernels. Amyloplast development varied with genotype. Plastid development in normal and wx cells was characterized by an initial starch granule formation followed by granule enlargement to cell maturity. Endosperms homozygous for ae (ae, ae su, and ae wx) developed abnormal plastid-granules. Secondary granule formations preceded development of abnormality in ae and ae su, but not in ae wx endosperms. In contrast to ae and ae su starch granules, ae wx granules were highly birefringent indicating a high degree of crystallinity. In all three ae genotypes, abnormality increased as a function of kernel and physiological cell age. The su mutant had two distinct effects on amyloplast development. First, a mobilization of the initially formed starch, and second a synthesis and accumulation of phytoglycogen and the formation of large rounded plastids. In ae su plastid development, there was a mobilization of the starch initially formed (resulting in irregularly shaped, nonbirefringent granules) but only small amounts of phytoglycogen were produced.  相似文献   

7.
With the use of chromosome interchanges, the waxy (wx) locus on chromosome 9 has been relocated to various positions in the maize genome. Four wx alleles, wx C, wx B, wx 90, and wx H21, were crossed to six chromosome translocation stocks (four with break points proximal to wx and, two distal to wx). Of the 26 possible homozygous translocation heteroallelic combinations, the results of eight are available in this report. In most instances, the frequencies of wx intragenic recombination of the rearranged chromosomes were lower than that of the control. A significant difference in degree of reduction in recombination values is found for different heteroallelic combinations at the same location and in one instance for the same heteroallelic combination at a different chromosome position. The linear order of the 4 wx mutants within the wx cistron is wx C-wx H21-wx 90 (wx B). Additional effects from both genetic background and seasonal factors of the different plantings also are observed.Journal Paper No. J-6906 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 1335.  相似文献   

8.
Summary A study was made of the effects of pre-meiotic x-irradiation on the bronze locus in chromosome 9 of maize. Plants of Sh Bz Wx/Sh Bz Wx constitution were treated with ca. 1000r and pollen from these individuals was applied to silks of sh bz wx tester plants. In the F1 progeny, three Sh Wx kernels having a bz aleurone or showing Bz-bz variegation (the bz-x3, bz-x4 and bz-x5 mutants) were selected as possible mutations at the bz locus. One kernel of sh bz wx phenotype as well as one exhibiting sh, bz and Wx (sh-bz-x3) were also selected for more intensive study. Progeny tests of the sh bz wx individual along with cytological observations indicated that a ring chromosome was the probable cause of the mutant phenotype although an alternative hypothesis is not ruled out. The behavior of sh-bz-x3 can be interpreted as the result of either a minute deficiency involving the Sh and Bz loci or a simultaneous suppression of the two dominant alleles. Progeny of the bz-x mutants exhibited genetic instability of bronze. It is hypothesized that this behavior is due to the activation or alteration by x-rays of gene control mechanisms which affect the bronze gene.Dedicated with appreciation and affection to Dr. M. M. Rhoades on the occasion of his 70th birthday.  相似文献   

9.
Molecular Characterization of the waxy Locus of Rice (Oryza sativa)   总被引:10,自引:0,他引:10  
  相似文献   

10.
Summary Autotriploid Triticum speltoides and T. bicorne (2n=3x=21) were produced by pollinating autotetraploids with pollen from their respective diploids. The autotriploid plants were vigorous, male sterile, and morphologically resembled their diploid parents. At meiosis, T. speltoides (3x) averaged 2.52 univalents, 0.42 rod bivalents, 2.03 ring bivalents, 4.48 trivalents, and 0.03 chain quadrivalents per cell, and T. bicorne (3x) had 2.30 univalents, 0.20 rod bivalents, 2.10 ring bivalents, and 4.70 trivalents. Panhandle trivalents made up 27% of the total trivalents, and involved 18% of the total number of chromosomes observed in T. bicorne (3x), and 26% and 17% in T. speltoides (3x), respectively. The observed chromosome pairing in both triploids was predicted well from the expressions developed by Alonso and Kimber.Contribution from the Missouri Agricultural Experiment Station. Journal Series No. 10932  相似文献   

11.
12.
A direct relationship between a specific gene and a specific enzyme involved in flavonoid biosynthesis is reported for the gene Bz and uridine diphosphoglucose: quercetin glucosyltransferase in maize pollen, seedlings, and seeds. Ratios are presented for specific activities of the glucosyltransferase from pollen, seed, and seedling tissues homozygous and heterozygous for Bz and homozygous for bz.Cooperative Investigations, Agricultural Research Service, United States Department of Agriculture and Missouri Agricultural Experiment Station, Columbia, Missouri 65201. Journal Series No. 7340.  相似文献   

13.
A rice Wx gene encoding a granule-bound starch synthase I (GBSSI) was introduced into the null-mutant waxy (wx) rice, and its effect on endosperm starches was examined. The apparent amylose content was increased from undetectable amounts for the non-transgenic wx cultivars to 21.6-22.2% of starch weight for the transgenic lines. The increase was in part due to a significant amount of extra-long unit chains (ELCs) of amylopectin (7.5-8.4% of amylopectin weight), that were absent in the non-transgenic wx cultivars. Thus, actual amylose content was calculated to be 14.9-16.0% for the transgenic lines. Only slight differences were found in chain-length distribution for the chains other than ELCs, indicating that the major effect of the Wx transgene on amylopectin structure was ELC formation. ELCs isolated from debranched amylopectin exhibited structures distinct from amylose. Structures of amylose from the transgenic lines were slightly different from those of cv. Labelle (Wx(a)) in terms of a higher degree of branching and size distribution. The amylose and ELC content of starches of the transgenic lines resulted in the elevation of pasting temperature, a 50% decrease in peak viscosity, a large decrease in breakdown and an increase in setback. As yet undetermined factors other than the GBSSI activity are thought to be involved in the control of formation and/or the amount of ELCs. Structural analysis of the Wx gene suggested that the presence of a tyrosine residue at position 224 of GBSSI correlates with the formation of large amounts of ELCs in cultivars carrying Wx(a).  相似文献   

14.
Summary Autotetraploid gene segregation was studied in Zea mays L. using a marking system of two very closely linked genes (A 1 and Sh 2) in the repulsion phase. This system makes it possible to identify many euploid and aneuploid genotypes and enables the estimation of some parameters of autotetraploid gene segregation such as double reduction, numerical nondisjunction, and the relative transmission frequencies of monosomic, disomic, and trisomic gametes. It was found that these three types of gametes did not function at the same rates on the male and female sides. Differences in observed segregation ratios between reciprocal testcrosses were explained by this phenomenon. Estimates of the frequency of double reduction were made for loci used after eliminating the effect of numerical non-disjuction on the segregation ratios. The value of double reduction appears to be the same in the male and female tetrasomic tetraploid. Tetraploids which were disomic for chromosome 3 were not isolated although they might be expected to be common in the progeny of self-fertilized or sib-crossed trisomic tetraploids. Their absence may be explained in part by the low rate of transmission of monosomic gametes from the male parent. Autotetraploid populations which are unstable for chromosome number probably achieve an equilibrium between forces which produce aneuploidy and forces which remove aneuploids from the population.This paper is dedicated to Dr. M. M. Rhoades.Cooperative investigations of the Plant Science Research Division, Agricultural Research Service, U.S. Department of Agriculture, and the Agronomy Department, Missouri Agricultural Experiment Station. Journal Series No. 6557.  相似文献   

15.
Summary Experimental evidence is reported in favor of superdominance in over-all vigor inArabidopsis thaliana in connection with two x-ray induced mutants. The tests adopted (outcrossing to unrelated tester, repeated recombination for 15 generations) failed to reveal any additional genetic variation. The genetic and physiolgical mechanism of superdominance is discussed in light of recent information on gene structure and function.Contribution from the Missouri Agricultural Experiment Station. Journal Series Number 2388. Approved by the Director.  相似文献   

16.
Summary The degree of preferential pairing of homologous chromosomes was estimated in a series of tetraploid hybrids of Lolium temulentum x Lolium perenne by means of cytological and genetic analyses. The correlations between the frequency of bivalents at first metaphase of meiosis in the hybrid tetraploids and the degree of preferential pairing calculated from the segregation pattern of isozyme alleles in a test cross was extremely high. The results showed clearly that suppression of heterogenetic pairing in these Lolium tetraploids is achieved by a genetic system involving the A chromosomes as well as the B chromosome system which has been known for some time. Certain similarities with the genetic system controlling pairing in polyploid wheats are discussed.  相似文献   

17.
A new type of plant retroposon, p-SINE1, has been found in the wx locus of rice (Oryza sativa). It has some structural characteristics similar to those of mammalian SINEs, such as members of the Alu or Bl family. In order to estimate the time at which the integration of p-SINE1 into a single locus occurred during rice evolution, we examined the distribution of two members of p-SINE1 in several species of the Oryza genus by the polymerase chain reaction (PCR). We found that one member of p-SINE1 (p-SINE1-r2) in the ninth intron of the wx + gene was present only in two closely related species, O. sativa and O. rufipogon, and was not present in the other species carrying the AA genome within the Oryza genus. This result indicates that p-SINE1-r2 was integrated into the wx locus after O. sativa and O. rufipogon had diverged from other species with the AA genome. In contrast to p-SINE1-r2, another member (p-SINE1-rl) located in the untranslated 5-region of the wx + gene was present not only in all species with the AA genome but also in species with a different genome (CCDD). This result suggests that p-SINE1-rl was integrated into that position prior to the genomic divergence. Thus, it appears that each member of p-SINE1 was retroposed at a specific site at a different time during rice evolution.Correspondence to: Y. Sano  相似文献   

18.
Diploid-like chromosome pairing in polyploid wheat is controlled by several Ph (pairing homoeologous) genes with major and minor effects. Homoeologous pairing occurs in either the absence of these genes or their inhibition by genes from other species (Ph I genes). We transferred Ph I genes from Triticum speltoides (syn Aegilops speltoides) to T. aestivum, and on the basis of further analysis it appears that two duplicate and independent Ph I genes were transferred. Since Ph I genes are epistatic to the Ph genes of wheat, homoeologous pairing between the wheat and alien chromosomes occurs in the F1 hybrids. Using the Ph I gene stock, we could demonstrate homoeologous pairing between the wheat and Haynaldia villosa chromosomes. Since homoeologous pairing occurs in F1 hybrids and no cytogenetic manipulation is needed, the Ph I gene stock may be a versatile tool for effecting rapid and efficient alien genetic transfers to wheat.Contribution no. 93-435-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA  相似文献   

19.
Summary Chromosome pairing and chiasma frequency were studied in bread wheat euhaploids (2n = 3x = 21; ABD genomes) with and without the major pairing regulatorPh1. This constitutes the first report of chromosome pairing relationships among the A, B, and D genomes of wheat without the influence of an alien genome. AllPh1 euhaploids had very little pairing, with 0.62–1.05 rod bivalents per cell; ring bivalents were virtually absent and mean arm-binding frequency (c) values ranged from 0.050 to 0.086. In contrast, theph1b euhaploids had extensive homoeologous pairing, with chiasma frequency 7.5–11.6 times higher than that in thePh1 euhaploids. They had 0.53–1.16 trivalents, 1.53–1.74 ring bivalents, and 2.90–3.57 rod bivalents, withc from 0.580 to 0.629. N-banding of meiotic chromosomes showed strongly preferential pairing between chromosomes of the A and D genomes; 80% of the pairing was between these genomes, especially in the presence of theph1b allele. The application of mathematical models to unmarked chromosomes also supported a 21 genomic structure of theph1b euhaploids. Numerical modeling suggested that about 80% of the metaphase I association was between the two most related genomes in the presence ofph1b, but that pairing under Ph1 was considerably more random. The data demonstrate that the A and D genomes are much more closely related to each other than either is to B. These results may have phylogenetic significance and hence breeding implications.This paper is dedicated to the memory of the late Ernest R. SearsCooperative investigations of the USDA-Agricultural Research Service and the Utah Agricultural Experiment Station, Logan, UT 84322, USA. Approved as Journal Paper No. 3986  相似文献   

20.
A rice minisatellite probe detecting DNA fingerprints was used to assess genetic variation in cultivated rice (Oryza sativa L.). Fifty-seven cultivars of rice, including 40 closely related cultivars released in the US, were studied. Rice DNA fingerprinting revealed high levels of polymorphism among distantly related cultivars. The variability of fingerprinting pattern was reduced in the closely related cultivars. A genetic similarity index (S) was computed based on shared fragments between each pair of cultivars, and genetic distance (D) was used to construct the dendrograms depicting genetic relationships among rice cultivars. Cluster analysis of genetic distance tended to group rice cultivars into different units corresponding with their varietal types and breeding pedigrees. However, by comparison with the coefficients of parentage, the criterion of relatedness based on DNA fingerprints appeared to overestimate the genetic relationships between some of the closely related US cultivars. Although this may reduce the power of fingerprints for genetic analysis, we were able to demonstrate that DNA fingerprinting with minisatellite sequences is simpler and more sensitive than most other types of marker systems in detecting genetic variation in rice.This paper reports the results of research only. Mention of a proprietary product does not consititute an endorsement or a recommendation for its use by the USDA or the University of Missouri. Contribution from the US Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, and the University of Missouri Agricultural Experiment Station Journal Series No. 12178.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号