首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
1. A substantial amount of research on host‐plant selection by insect herbivores is focused around the preference–performance hypothesis (PPH). To date, the majority of studies have primarily considered insects with aboveground life cycles, overlooking insect herbivores that have both aboveground and belowground life stages, for which the PPH could be equally applicable. 2. This study investigated the factors influencing the performance of the root‐feeding vine weevil (Otiorhynchus sulcatus) larvae and whether this was linked to the oviposition behaviour of the maternal adult living aboveground. 3. Maternal insects feeding aboveground reduced root biomass by 34% and increased root carbon by 4%. Larvae feeding on plants subjected to aboveground herbivory had reduced mass. Irrespective of the presence of maternal herbivory, larval mass was positively correlated with root biomass. 4. Larval mass was also reduced by conspecific larvae, previously feeding on roots (19% reduction). However, the mechanism underpinning this effect remains unclear, as in contrast to maternal herbivory aboveground, prior larval feeding did not significantly affect root biomass or root carbon concentrations. 5. Maternal insects did not distinguish between plants infested with larvae and those that were free of larvae, in terms of their egg‐laying behaviour. Conversely, maternal insects tended to lay eggs on plants with smaller root systems, a behaviour that is likely to negatively affect offspring performance. 6. The PPH is not supported by our findings for the polyphagous vine weevil feeding on the host plant raspberry (Rubus idaeus), and in fact our results suggest that there is the potential for strong parent–offspring conflict in this system.  相似文献   

2.
Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen‐fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co‐occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant‐associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free‐living nitrogen‐fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two‐spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co‐occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground–aboveground research by providing first insights into the fitness implications of plant‐mediated interactions between interrelated belowground fungi–bacteria and aboveground herbivores.  相似文献   

3.
Abstract 1. Several studies have shown that above‐ and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host‐plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was carried out to determine if root‐feeding insects can influence feeding and oviposition preferences and decisions of naturally colonising foliar‐feeding insects. 2. Using the wild cruciferous plant Brassica nigra and larvae of the cabbage root fly Delia radicum as the belowground root‐feeding insect, naturally colonising populations of foliar‐feeding insects were monitored over the course of a summer season. 3. Groups of root‐infested and root‐uninfested B. nigra plants were placed in a meadow during June, July, and August of 2006 for periods of 3 days. The root‐infested and the root‐uninfested plants were either dispersed evenly or placed in clusters. Once daily, all leaves of each plant were carefully inspected and insects were removed and collected for identification. 4. The flea beetles Phyllotreta spp. and the aphid Brevicoryne brassicae were significantly more abundant on root‐uninfested (control) than on root‐infested plants. However, for B. brassicae this was only apparent when the plants were placed in clusters. Host‐plant selection by the generalist aphid M. persicae and oviposition preference by the specialist butterfly P. rapae, however, were not significantly influenced by root herbivory. 5. The results of this study show that the presence of root‐feeding insects can affect feeding and oviposition preferences of foliar‐feeding insects, even under natural conditions where many other interactions occur simultaneously. The results suggest that root‐feeding insects play a role in the structuring of aboveground communities of insects, but these effects depend on the insect species as well as on the spatial distribution of the root‐feeding insects.  相似文献   

4.
Laird RA  Addicott JF 《Oecologia》2007,152(3):541-551
Arbuscular mycorrhizal fungi (AMF) can alter the physiology and morphology of their host plant, and therefore may have indirect effects on insect herbivores and pollinators. We conducted this study to test the hypothesis that AMF can also affect insects involved in protection-for-food mutualisms. We examined the constitutive and inducible production of food rewards [extrafloral (EF) nectaries] in Vicia faba plants by manipulating the presence/absence of AMF and by simulating various levels of herbivory. Plants inoculated with AMF produced significantly fewer EF nectaries than uninoculated plants, even after accounting for differences in plant growth. In contrast to earlier studies, EF nectaries were not inducible: damaged plants produced significantly fewer EF nectaries than undamaged plants. Moreover, the effects of mycorrhizal and damage status on EF nectary production were additive. The reduction in EF nectaries in mycorrhizal plants potentially represents a mechanism for indirect effects of AMF on the protective insects that exploit EF nectaries as a food source (e.g., ants). Reduced reward size should result in reduced protection by ants, and could therefore be a previously unappreciated cost of the mycorrhizal symbiosis to host plants. However, the overall effect of AMF will depend upon the extent to which the reduction of EF nectaries affects the number and activity of ants and the extent to which AMF alter other aspects of host plant physiology. Our results emphasize the complexity of multitrophic interactions, particularly those that span belowground and aboveground ecology.  相似文献   

5.
Root herbivory can greatly affect the performance of aboveground insects via changes in plant chemistry. These interactions have been studied extensively in experiments where aboveground and belowground insects were feeding on the same plant. However, little is known about how aboveground and belowground organisms interact when they feed on plant individuals that grow after each other in the same soil. We show that feeding by aboveground and belowground insect herbivores on ragwort (Jacobaea vulgaris) plants exert unique soil legacy effects, via herbivore-induced changes in the composition of soil fungi. These changes in the soil biota induced by aboveground and belowground herbivores of preceding plants greatly influenced the pyrrolizidine alkaloid content, biomass and aboveground multitrophic interactions of succeeding plants. We conclude that plant-mediated interactions between aboveground and belowground insects are also important when they do not feed simultaneously on the same plant.  相似文献   

6.
  1. Accumulating evidence indicates that plant resistance against above‐ground herbivores can be affected by the presence of arbuscular mycorrhizal fungi (AMF) in association with the host plant. Little is known, however, about how AMF composition can influence herbivore choice to feed on a particular plant.
  2. Unravelling the preference–performance hypothesis in a multitrophic context is needed to expand our knowledge of complex multitrophic interactions in natural systems. If given mycorrhizal fungal genotypes increase attractiveness for a herbivore (reduced plant resistance), then the benefits of increased unpalatability provided by the mycorrhizal fungi (increased plant resistance) might be outweighed by the increased herbivore recruitment.
  3. This was addressed by designing three experiments to test the effects of different AMF genotypes, inoculated either alone or in combination, to measure intraspecific AMF effects on plant resistance and insect herbivore preference. Using strawberry (Fragaria vesca L.) plants that were colonised by eight different combinations of Rhizophagus irregularis isolates, we measured effects on plant growth, insect growth and survival, as well as feeding preferences of a generalist herbivore caterpillar (Spodoptera littoralis Boisduval).
  4. Overall, it was found that: (i) AMF influenced plant resistance in an AMF genotype‐specific manner; (ii) some AMF inoculations decreased insect performance; (iii) insects preferentially chose to feed more on leaves originating from non‐mycorrhizal plants; but also that (iv) in a whole plant bioassay, insects preferentially chose the biggest plant, regardless of their mycorrhizal status.
  5. Therefore, AMF‐mediated trade‐offs between growth and resistance against herbivores have been shown. Such trade‐offs, particularly driven by plant attractiveness to herbivores, buffer the positive effects of the mycorrhizal symbiosis on enhanced plant growth.
  相似文献   

7.
Abstract.  1. Few entomological studies include soil-dwelling insects in mainstream ecological theory, for example the preference–performance debate. The preference–performance hypothesis predicts that when insect herbivores have offspring with limited capacity to relocate in relation to a host plant, there is a strong selection pressure for the adult to oviposit on plants that will maximise offspring performance.
2. This paper discusses the proposition that insect herbivores that live above ground, but have soil-dwelling offspring, should be included in the preference–performance debate. Twelve relevant studies were reviewed to assess the potential for including soil insects in this framework, before presenting a preliminary case study using the clover root weevil ( Sitona lepidus ) and its host plant, white clover ( Trifolium repens ).
3. Maternal S. lepidus preferentially oviposited on T. repens plants that had rhizobial root nodules (which enhance offspring performance) rather than T. repens plants without nodules, despite plants having similar foliar nutritional quality. This suggests that adult behaviour above ground was influenced by below-ground host-plant quality.
4. A conceptual model is presented to describe how information about the suitability for offspring below ground could underpin oviposition behaviour of parental insects living above ground, via plant- and soil-mediated semiochemicals. These interactions between genetically related, but spatially separated, insect herbivores raise important evolutionary questions such as how induced plant responses above ground affect offspring living below ground and vice versa.  相似文献   

8.
In recent years, studies on arbuscular mycorrhizal fungi (AMF) have been revealing that the belowground symbiosis can influence the performance of aboveground herbivores and their natural enemies through its effects on the host plant. In this study, we tested whether the colonization of tomato plants by the arbuscular mycorrhizal fungus Rhizophagus irregularis (Syn. Glomus intraradices Schenk and Smith) (Glomeromycota: Glomeraceae) affects the performance of the zoophytophagous mirid bug Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Mycorrhizal colonization in tomato plants positively influenced the predator host-plant acceptance for feeding and oviposition, as well as nymphal survival and female weight. We hypothesize that AMF can modify mirid bug foraging behavior and performance.  相似文献   

9.
Effects of a belowground mutualism on an aboveground mutualism   总被引:3,自引:1,他引:2  
Studies of multitrophic interactions between below‐ and aboveground communities have generally focused on soil organisms and antagonists of plant shoots and leaves (herbivores). Despite the widespread occurrence of plant mutualists below‐ and aboveground which can occur on the same host plant, the potential for interactions between them has not been considered. Here we demonstrate that aboveground plant mutualists, insect pollinators, are strongly influenced by belowground plant mutualists, arbuscular mycorrhizal fungi. The presence of arbuscular mycorrhizal fungi in the roots of Chamerion angustifolium increased pollinator visitation and per cent seed set of this plant in the field by up to two times compared with non‐mycorrhizal plants. We propose that interactions between belowground and aboveground mutualisms are widespread and may play important functional roles in populations and communities.  相似文献   

10.
The rice water weevil, Lissorhoptrus oryzophilus Kuschel, is the most destructive insect pest of rice in the United States. As part of an effort to develop strategies to manage this pest, the ovipositional and feeding habits of L. oryzophilus on rice plants subjected to different flooding treatments were characterized in greenhouse studies. Presence and depth of flood had a direct influence on the ovipositional behavior of weevils in no-choice studies. More eggs were found in flooded plants than in unflooded plants. Moreover, plants flooded to a depth of 5.1 cm received more eggs than plants flooded to depths of 1.3 or 10.2 cm. Presence and depth of flood influenced both the proportion of females that oviposited in plants and the number of eggs laid by those females that did oviposit. In choice studies, female weevils showed a marked ovipositional preference for plants flooded to a depth of 10.2 cm over unflooded plants and plants flooded to a depth of 1.3 cm. In separate choice experiments, adult rice water weevils fed more on flooded plants than on unflooded plants. In a third set of experiments, flooded plants were taller and had higher concentrations of 10 of 13 plant nutrients than unflooded plants. Thus, flooding may influence rice water weevil behavior both directly, by acting as a stimulus for feeding or oviposition, and indirectly, by inducing changes in the suitability of rice plants for feeding or oviposition. These data suggest that it may be possible to manipulate populations of weevils in rice by changing water management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号