首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract Roads often negatively affect terrestrial wildlife, via habitat loss or fragmentation, noise, and direct mortality. We studied moose (Alces alces) behavior relative to a road network, in an area with a history of moose-vehicle accidents, to determine when moose were crossing roadways or using areas near roads and to investigate if environmental factors were involved in this behavior. We tracked 47 adult moose with Global Positioning System collars in a study area crossed by highways and forest roads. We hypothesized that moose would avoid crossing roads but would make occasional visits to roadsides to feed on sodium-rich vegetation and avoid biting insects. Further, we expected moose avoidance to be greater for highways than forest roads. We recorded 196,710 movement segments but only observed 328 highway and 1,172 forest-road crossings (16 and 10 times lower than expected by chance). Moose usually avoided road proximity up to ≥500 m on each side but 20% of collared moose made visits to areas within 50 m of highways, which might have resulted from moose searching for sodium in vegetation and roadside salt pools. In fact, vegetation along highways had higher sodium concentrations and was browsed in similar proportions to vegetation in adjacent forest, despite moose avoidance of these zones. Moose, however, did not use areas near roads more during periods of biting insect abundance. Our results supported the hypothesis of scale-dependent selection by moose; avoidance of highways at a coarse scale may confer long-term benefits, whereas selection of highway corridors at finer scales may be part of a strategy to overcome short-term limiting factors such as sodium deficiency. We found a positive relationship between home-range size and the proportion of road axes they contained, suggesting that moose either compensated for habitat loss or made specific movements along highways to gather sodium. The presence of sodium along highways likely increases moose-vehicle accident risks. Removal of salt pools or use of a de-icing salt other than sodium chloride should render highway surroundings less attractive to moose.  相似文献   

2.
ABSTRACT We developed and validated a density-adjusted spatial model to predict moose (Alces alces) highway-crossing probability to see if the model could be used as an index of moose-vehicle collision risk. We installed Global Positioning System telemetry collars on 47 moose in the north of the Laurentides Wildlife Reserve, Québec, for 2–36 months. We recorded only 84 highway crossings in spring (0.29% of 28,967 2-hr steps) and 122 crossings in summer (0.18% of 68,337 2-hr steps), despite a high sampling effort and having captured moose close to highways. Moose movement rates during movement steps crossing a highway were on average 3 times higher than during the steps preceding or following highway crossing. Paths used by moose when crossing a highway were characterized by a high proportion of food stands, low proportion of lakes and rivers, and topography typical of a valley. Highway-crossing sites were located in valleys with brackish pools and forest stands providing coniferous cover but a low proportion of lakes and rivers. We adjusted moose crossing probability for local variation in moose density using aerial survey data and assessed crossing probability along the highways in the entire Laurentides Wildlife Reserve. We tested the model using moose-vehicle accident data from 1990 to 2002. The relationship between the density-adjusted crossing probability and number of accidents was relatively loose at the 1-km scale but improved markedly when using longer highway sections (5–15 km; r > 0.80). Our results demonstrate that roads and their surroundings are perceived as low-quality habitat by moose. We also conclude that road segments installed along secondary valleys could be a highly strategic site to deploy mitigation measures such as fences and that it could be desirable to increase the width of road shoulders to reduce forest cover and to eliminate brackish pools to reduce cervid-vehicle collisions. We suggest using empirical data such as location of vehicle-wildlife collisions to plan mitigation measures at a fine scale.  相似文献   

3.
Mineral licks as a sodium source for Isle Royale moose   总被引:1,自引:0,他引:1  
Summary Natural mineral licks and their use by moose (Alces alces) on Isle Royale National Park, Michigan, were studied during 1982–85. The distribution of known licks suggested that they occurred in association with glacial debris, primarily in the western portions of the island. Moose utilized mineral springs extensively during the spring-summer period, and at least 5 licks were used year-round. During summer, a pronounced diel pattern of moose visitation was apparent, with peak use occurring between 0400–0800 h. Although daytime lick use declined by late June, morning and evening use continued to be relatively high throughout the study period. Peak lick use coincided with leaf-emergence in spring. Moose continued to utilize mineral licks despite the availability of ponds containing aquatic plants. Sodium appeared to be the element attracting moose to licks where they ingest copious amounts of water. Observed sodium ingestion rates (0.35 g/min) at licks indicate that licks provide a more concentrated source of sodium compared to aquatic plants (0.023 g/min). Based on the data presented, we reject the conclusions of earlier workers that aquatic plants constitute the only significant source of sodium for Isle Royale moose.  相似文献   

4.
5.
Understanding animal movements across heterogeneous landscapes is of great interest because it helps explain the dynamic processes influencing the distribution of individuals in space. Research on how animals move relative to short‐range environmental characteristics are scarce. Our objective was to determine the variables influencing movement of a large ungulate, the moose Alces alces, ranging across a boreal landscape, and to link movement behaviour with limiting factors at a fine scale. We assessed 7 candidate models composed of vegetation, solar energy, and topography variables using step selection functions (SSF) for male and female moose across daily and annual periods. We selected and weighted models using the Bayesian Information Criterion. Variables influencing small‐scale movements of moose differed among periods and between sexes, likely in response to corresponding changes in the importance of limiting factors. Best models often combined many types of variables, although simpler models composed of only vegetation or topography variables explained male's movements during rut and early winter. Moose steps were observed in good feeding stands from summer to early winter for females and from spring to early winter for males, supporting other studies of moose habitat selection. From summer to early winter, females alternatively selected and avoided cover stands during day and night, respectively. Solar energy reaching the ground was important, particularly during late winter and spring, likely due to its effect on snow cover, air temperature, or plant phenology. Moose generally moved in gentle slopes and variable elevation, which may have increased their chances of finding high quality forage, or improved their search of suitable calving sites or mates. Our study revealed the great complexity and dynamic aspects of animal movements in a heterogeneous landscape. Analysis of animal movement provides complementary information to more static habitat selection analyses and helps understanding the spatial variations in the distribution of individuals through time.  相似文献   

6.
ABSTRACT Wildlife-vehicle collisions cause numerous human fatalities and injuries, and generate considerable expenses in property damage each year. Certain characteristics of the road and its surroundings are known to have an impact on collision probability. Roadside salt pools increase the risk of collision by attracting moose (Alces alces) to the side of the road. In the Laurentides Wildlife Reserve of Québec, Canada, roadside salt pools were drained and filled with rocks to deter moose from drinking. We surveyed 12 roadside salt pools during 3 consecutive summers (2003–2005) from mid-May to mid-August. Seven salt pools were managed in autumn 2004, and 5 pools were left untreated. We equipped all 12 sites with electronic apparatus that allowed us to detect moose attendance and study their behavior. We also measured physical, chemical, and environmental characteristics of these pools and other unvisited pools in order to correlate moose attendance with specific habitat criteria. We found that moose mostly attended roadside salt pools from mid-June to mid-July, with a decrease in August. Moose attendance was significantly correlated with visual obstruction toward the road and water availability. Management of the pools caused a decrease in mean length of time moose spent at them. Number of visits decreased significantly at night (by 90%), which was when most visits occurred, but not during the day. The proposed management practice prevented all visiting moose from drinking brackish water. These results suggest that moose should eventually lose interest in treated salt pools, therefore decreasing the risk of moose-vehicle collisions on the road.  相似文献   

7.
1. Stream flow is a major vector for zebra mussel spread among inland lakes. Veligers have been found tens to hundreds of km from upstream source lakes in unvegetated stream and river systems. It has been suggested, however, that the downstream transport of zebra mussels is restricted by wetland ecosystems. We hypothesized that vegetated waterways, (i.e. wetland streams) would hinder the downstream dispersal of zebra mussels in connected inland lake systems. 2. Veliger abundance, recruitment and adult mussels were surveyed in four lake‐wetland systems in southeastern Michigan, U.S.A. from May to August 2006. Sampling was conducted downstream of the lakes invaded by zebra mussels, beginning at the upstream edge of aquatic vegetation and continuing downstream through the wetland streams. 3. Veliger abundance decreased rapidly in vegetated waterways compared to previously reported rates of decrease in non‐vegetated streams. Veligers were rarely found more than 1 km downstream from where vegetation began. Newly recruited individuals and adults were extremely rare beyond open water in the wetland systems. 4. Densely vegetated aquatic ecosystems limit the dispersal of zebra mussels downstream from invaded sources. Natural, remediated and constructed wetlands may therefore serve as a protective barrier to help prevent the spread of zebra mussels and other aquatic invasive species to other lakes and ecosystems.  相似文献   

8.
The deer ked, Lipoptena cervi (Diptera: Hippoboscidae), is a common ectoparasite of the moose, Alces alces (Artiodactyla: Cervidae). Salt licks are widely used to manipulate moose movements to prevent damage to saplings and traffic accidents. They may cause moose to gather in small areas, which could create aggregates of deer ked pupae as the parasite is a short‐distance flyer and its dispersion depends on its hosts. We investigated whether the population density of flying deer keds could be influenced by manipulating salt licks and how environmental variables affect parasite density. Densities were estimated in 40 experimental sites with four treatments (no salt licks, introduced salt licks, removed salt licks, permanent salt licks) in September during 2007–2010. Forest edges, mixed forests on mineral soil and coniferous forests on peat soil were the habitats with high numbers of parasites. The manipulation of salt licks seemed to be ineffective in reducing the density of deer keds as the only factor to show statistical significance with parasite numbers in the mixed‐model analysis was year of determination. Annual deer ked densities correlated with the abundance of moose in the region. Moreover, high spring and summer temperatures seemed to increase the numbers of flying imagos.  相似文献   

9.
We observed forage and habitat selection in radio-collared moose at feeding sites in southeast Norway. Use of older forest increased from spring to autumn. Birch Betula spp. and bilberry Vaccinium myrtillus accounted for c. 75% of the diet. Occurrence of important forage plants, height of browse, and difference in phenology between plant species all appeared to play a role in moose selection of feeding sites. Shading influences moose forage by delaying plant phenology and possibly through its effect on leaf content of water and secondary compounds. On single birch trees, feeding was concentrated to the top branches at midsummer; during spring and autumn more leaves from side branches were eaten. Greater discrimination as vegetation matured was also evident from the wider variety of forage species used at midsummer. Selection of feeding sites was not related to density of important browse species. We propose that variations in light/shade conditions may play a role in moose choice of feeding sites and that moose on summer range will benefit from a heterogeneous mixture of plantations and older forest stands.  相似文献   

10.
The aquatic feeding behaviour of moose, and the abundance, species, and chemical composition of aquatic plants, were studied in a small Canadian lake which attracted many animals. Feeding was much more common in June than later in the summer, and somewhat more common during the morning and evening than in (he afternoon. Individual adult moose appeared to use the lake intensively during 1- to 4-day visits. Compared to deciduous browse, the aquatic plants had high levels of sodium and iron, less fat, and similar levels of crude protein, crude fibre, sulphate and other minerals. In the preferred feeding areas, compared to other parts of the lake, plants were more abundant, had a different species composition, and were richer in iron and calcium. Recent flooding, a flow of water through the feeding areas, and a bicarbonate-rich tributary may all have contributed to the lake's attraction for moose.  相似文献   

11.
We hypothesize that foraging stream salmonids move during summer because (1) they monitor habitat conditions at a reach scale (100s of m), and (2) dominant fish move when conditions in their present foraging location become sub-optimal relative to conditions at other locations in the reach. To test these ideas, we quantified temporal variation in foraging habitat quality between late spring and early fall in a reach of a small Rocky Mountain brook charr, Salvelinus fontinalis, stream, predicted optimal-foraging fish distributions within the reach, and experimentally manipulated access to foraging sites and measured fish responses. Our results show that high-quality foraging sites were located at certain places in the reach during one period, but at different places during others, consistent with the hypothesis that fish movement is required if dominant fish are to occupy high-quality foraging sites throughout summer. The optimal foraging model was able to predict foraging locations within study pools, but not the exact location of individual fish within the pools or the reach. However, empirical evidence suggests that fish were distributed in order to maximize energy intake at the reach scale. Finally, dominant fish excluded from their preferred foraging location either left the pools (three of six cases), or began to occupy focal points of the next largest fish which, in turn, exited the pool (two of six cases). If habitat selection was occurring only within habitat units, then large fish, when excluded from their preferred locations, would select the next best locations within the pool. Taken together, these results suggest that charr use summertime movements to both monitor habitat conditions at a large spatial scale, and to gain access to optimal foraging locations even as conditions change temporally.  相似文献   

12.
Omnivores feed on animals with dynamic distributions and on plants with static distributions. The search tactics they adopt will not only define the risk for the targeted prey, but also for other prey that may be consumed when encountered. The potential impact of omnivores on the dynamics of multi‐prey systems thus depends on resource selection and on the tactics used to find their prey. We present an approach that can clarify the foraging decisions of omnivores by combining analyses of habitat selection, local residency time, and interpatch movements. We use this framework to evaluate whether predation by omnivorous black bears on ungulate neonates resulted from an active search or from incidental encounters. We monitored 12 bears, 22 forest‐dwelling caribou, and 36 moose during calving seasons. We estimated the spatial patterns in relative occurrence probability of ungulate neonates using Resource Selection Functions (RSFs). We also mapped plant abundance from vegetation surveys. RSF were then built to assess the link between bear distribution and the distribution of these three food types (vegetation, moose calves, caribou fawns). We further evaluated the search tactic used by bears that led to this spatial dependency by exploring patterns of residency times and interpatch movements. Bears did not select areas with a high probability of encounter with neonates, but selected areas with abundant vegetation. Surprisingly, bears displayed shorter residency times in vegetation‐rich areas. The selection for vegetation‐rich areas was therefore achieved by moving preferentially, but frequently, between areas offering abundant vegetation. Such frequent interpatch movements could result in high rates of fortuitous encounters with neonates, even if bears are not actively searching for them. To mitigate the impacts of forest harvesting on threatened caribou populations, vegetation‐rich areas selected by bears (e.g. roadsides) should be segregated from large patches of mature conifer forest suitable for caribou.  相似文献   

13.
Knowledge about the factors determining habitat use is especially interesting for herbivores living under seasonal climates as they have to deal with food shortage during the drought season. In this context, different-aged individuals are expected to respond differently to seasonal variations because nutritional requirements and predation risk can vary with age. We investigated adult and juvenile European rabbit (Oryctolagus cuniculus) habitat use in a Mediterranean ecosystem of central Spain, during spring, summer and winter. Relationships between adult and juvenile rabbit pellet abundances and 11 environmental variables related to food availability and refuge density were analysed by means of multiple regression, and evaluated using information theory to identify the set of models best supported by the data. Density of warren entrances was the more constant predictor of habitat use for juvenile rabbits in all the seasons. Herbaceous vegetation volume had a negative influence and was the strongest predictor for adult rabbit habitat use in spring and winter. In summer, green vegetation cover became the strongest positive habitat use predictor. These results suggest that adults prefer to forage in low volume swards ensuring a wide sensory range for the detection of approaching predators. However, the arrival of summer and its associated food depletion forces them to shift toward more open productive areas where green vegetation persists, but at the expense of higher predation risk. Seasonal variation induces minor changes in juvenile habitat use due to their strong dependence on warrens. Thus, our results show that rabbit habitat use is influenced by animal age and seasonal variations in resources.  相似文献   

14.
Nannatherina balstoni is found in a few acidic pools (pH 3.9–6.0) in the extreme south-western corner of Australia. Although many of these pools become dry during summer and early autumn, they are recolonized by fish from nearby pools that overflow during winter floods. N. balstoni spawns at the end of its first year of life, when, on average, the males and females have reached 60 and 63 mm t.l ., respectively, and then usually die within the next few months. The largest fish, which was one of only three in its third year of life, measured 90 mm and weighed 7.3 g. The von Bertalanffy growth curve parameters for L0, K and t0 were 71.2 mm, 1.69 and – 0.078 for males and 82.6 mm, 1.31 and – 0.095 for females. Fecundity ranged from 550 to 1600. N. balstoni. spawns during the middle of winter, after heavy flooding and when water temperatures are at, or close to, their annual minima. This enables the larvae and young juveniles to capitalize on those aquatic organisms, especially Cladocera, which are very abundant amongst the flooded riparian vegetation that surrounds the pools in winter and spring. Hence, the fish grow rapidly and attain an appreciable size before summer, when the increases that occur in the densities of the larger carnivorous fish species, as a result of marked declines in water levels, increases the chances of predation. By spring, when most N. balstoni exceed 25 mm t .l ., the diet changes markedly to one that consists almost exclusively of terrestrial fauna. In contrast, three of the six co-occurring native species of teleost feed on aquatic and terrestrial fauna throughout the year, while a further two feed only within the water column and the sixth feeds on benthic invertebrates. The pronounced shift in diet exhibited by N. balstoni as it increases in size, allied to dietary differences amongst the other six co-occurring species, reduces any potential for interspecific competition for food resources during the summer and autumn, when such resources are declining.  相似文献   

15.
In this study, over 100 phytoclimatic indices and other climatic parameters were calculated using the climatic data from 260 meteorological stations in a Mediterranean territory located in the centre of the Iberian Peninsula. The nature of these indices was very different; some of them expressed general climatic features (e.g. continentality), while others were formulated for different Mediterranean territories and included particular limits of those indices that expressed differences in vegetation distribution. We wanted to know whether all of these indices were able to explain changes in vegetation on a spatial scale, and whether their boundaries worked similarly to the original territory. As they were so numerous, we investigated whether any of them were redundant. To relate vegetation to climate parameters we preferred to use its hierarchical nature, in discrete units (characterized by one or more dominant or co-dominant species), although it is known to vary continuously. These units give clearer results in this kind of phytoclimatic study. We have therefore used the main communities that represent natural potential vegetation. Multivariate and estimative analyses were used as statistical methods. The classification showed different levels of correlation among climatic parameters, but all of them were over 0.5. One hundred and eleven parameters were grouped into five larger groups: temperature (T), annual pluviothermic indices (PTY), summer pluviothermic indices (SPT), winter potential evapotranspiration (WPET) and thermal continentality indices (K). The remaining parameters showed low correlations with these five groups; some of them revealed obvious spatial changes in vegetation, such as summer hydric parameters that were zero in most vegetation types but not in high mountain vegetation. Others showed no clear results. For example, the Kerner index, an index of thermal continentality, showed lower values than expected for certain particular types of vegetation. Parameters relating to the water balance turned out to be very discriminative for separating vegetation types according to the season or the month when water begins to be scarce. Thus, water availability in soils is a limiting factor for the development of vegetation in spring or autumn as well as in summer. As expected, precipitation and temperature discriminated the altitudinal levels of vegetation. Finally, these index limits only worked in the territories where they were formulated, or in nearby areas.  相似文献   

16.
Since 2010, several moose (Alces alces) populations have declined across North America. These declines are believed to be broadly related to climate and landscape change. At the western reaches of moose continental range, in the interior of British Columbia, Canada, wildlife managers have reported widespread declines of moose populations. Disturbances to forests from a mountain pine beetle (Dendroctonum ponderosae) outbreak and associated salvage logging infrastructure in British Columbia are suspected as a mechanism manifested in moose behavior and habitat selection. We examined seasonal differences in moose habitat selection in response to landscape change from mountain pine beetle salvage logging infrastructure: dense road networks and large intensive forest harvest cutblocks. We used 157,447 global positioning system locations from 83 adult female moose from 2012 to 2016 on the Bonaparte Plateau at the southern edge of the Interior Plateau of central British Columbia to test whether increased forage availability, landscape features associated with increased mortality risk, or the cumulative effects of salvage logging best explain female moose distribution using resource selection functions in an information-theoretic framework. We tested these hypotheses across biological seasons, defined using a cluster analysis framework. The cumulative effects of forage availability and risk best predicted resource selection of female moose in all seasons; however, the covariates included in the cumulative models varied between seasons. The top forage availability model better explained moose habitat use than the top risk model in all seasons, except for the calving and fall seasons where the top risk model (distance to road) better predicted moose space use. Selection of habitat that provides forage in winter, spring, and summer suggests that moose seasonally trade predation risk for the benefits of foraging in early seral vegetation communities in highly disturbed landscapes. Our results identified the need for intensive landscape-scale management to stem moose population declines. Additional research is needed on predator densities, space use, and calf survival in relation to salvage logging infrastructure. © 2020 The Wildlife Society.  相似文献   

17.
Sympatric black bears (Ursus americanus) and brown bears (Ursus arctos) are common in many boreal systems; however, few predator assemblages are known to coexist on a single seasonally abundant large prey item. In lowland southwestern interior Alaska, black bears and brown bears are considered the primary cause of moose (Alces alces) calf mortality during the first 6 weeks of life. The objective of this study was to document habitat use of global-positioning system (GPS)-collared black bears during peak and non-peak seasons of black bear-induced and brown bear-induced moose calf mortality within southwestern interior Alaska, in spring 2002. We compared habitats of GPS-collared black bears to those of presumably uncollared black bears and brown bears at their moose calf mortality sites. Results from this study suggest that GPS-collared black bears use similar habitat as conspecifics more than expected during the peak period of black bear predation on moose calves, whereas they use habitat in proportion to home range availability during the peak in brown bear predation on moose calves. Sex-specific Ivlev's electivity indices describe greater than expected use of mixed-deciduous forest and needleleaf forest by male GPS-collared black bears during the peak of moose calf predation, whereas females have a tendency to use these habitats less than expected. Juvenile GPS-collared black bears largely use the same habitat as other sympatric predators during the peak of moose calf predation, whereas during the non-peak period juveniles use opposite habitats as adult GPS-collared black bears. The outcome of this study offers possible explanations (e.g., sex, age) for spatial overlap or segregation in one member of a complex predator guild in relation to a seasonal pulse of preferred prey.  相似文献   

18.
Many shallow softwater lakes are being affected by eutrophication and acidification. In these small lakes decaying organic material usually accumulates and characteristic plant and animal species disappear. In many degraded lakes organic matter and macrophytes are being removed in order to restore the lakes to their original state. To assess the effects of restoration management in softwater lakes on aquatic macroinvertebrates, changes in the species assemblages were studied in four degraded lakes in the Netherlands undergoing restoration measures. The degraded lakes still harboured species characteristic of pristine softwaters. However, most of these species were not recorded after restoration measures were taken. Species’ densities declined dramatically during the execution of restoration measures. Swimming and abundant species were more likely to survive the restoration measures than other species. The first years after restoration, the lakes did not meet the habitat requirements for a number of species. Species requiring vegetation for ovipositioning, animal food sources and swards of vegetation as habitat declined. Because recolonization is expected to be restricted, it is recommended to ensure the survival of relict populations when taking measures to restore degraded softwater lakes. This may be achieved by phasing restoration measures in space and time, hereby minimizing mortality during the execution of restoration measures and by preserving habitat conditions required by characteristic species.  相似文献   

19.
Diet optimization in a generalist herbivore: The moose   总被引:1,自引:0,他引:1  
In an attempt to understand the foraging of a generalist herbivore, a linear programming optimization model was constructed to describe moose feeding in summer. The model attempts to predict the amounts of aquatic vegetation, deciduous leaves, and forbs a moose should consume each day; and to determine whether or not its feeding is constrained by the maximum feeding time available each day, its daily rumen processing capacity, its sodium requirements, and its energy metabolism. The model can be solved for two alternative strategies: time minimization and energy maximization. The energy-maximizing strategy appears to predict the observed diet chosen by an average moose very well. Also, the diets selected by moose of each sex and various reproductive states appear to fit the energy-maximizing strategy. In addition, it is demonstrated that a moose's body size at weaning, size at first reproduction, and maximum size are related to foraging efficiency. Furthermore, there appears to exist an optimum adult body size for feeding. The general conclusion arrived at is that the foraging of a generalist herbivore can be predicted in a quantitative manner, at least in this case, as has been shown for other types of consumers (carnivores and granivores).  相似文献   

20.
Mikael Ohlson  Hans Staaland 《Oikos》2001,94(3):442-454
We studied the mineral nutrition ecology of moose, Alces alces , by a comprehensive examination of concentration levels of 18 elements in browsing plants, and in rumen and distal colon contents, respectively. The plants, in total 14 species, included deciduous and evergreen trees, shrubs, herbs, grasses and aquatic macrophytes. Our study was done in four sites in southern Norway and the plants were sampled in spring, summer, autumn and winter to document seasonal trends. The plants were generally characterized by low concentrations of major elements, very low phosphorus: calcium ratios, and the willow Salix aurita – a preferred browse – had high cadmium concentrations, up to 9 ppm (dry mass). Sodium concentrations in terrestrial plants were significantly under the dietary requirement, while levels were sufficient in aquatic plants, which, however, had high concentrations of toxic heavy metals. We suggest that the moose experience a nutritional dilemma as a strong physiological need for sodium results in an overintake of heavy metals. A selective intake of plants rich in heavy metals was corroborated by high heavy metal concentrations in rumen and distal colon. Over all, the plants were characterized by a marked mineral diversity due to element concentration levels that were highly variable between species and sites. Thus, there is a strong link between plant species diversity and mineral diversity, which has a pivotal role for herbivores. It is concluded that a diversity of plant species is a prerequisite for the mineral diversity that the moose needs to obtain essential minerals, not only in sufficient amounts, but also in physiologically balanced proportions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号