首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
ABSTRACT The criticisms of Rominger et al. (2008) of our retrospective analysis of desert bighorn sheep (DBS; Ovis canadensis mexicana) dynamics in the San Andres Mountains of south-central New Mexico, USA, contained many biological errors and analytical oversights. Herein, we show that Rominger et al. (2008) 1) overstated both magnitude and potential effect of predator removal; 2) incorrectly claimed that our total precipitation (TP) model did not fit the data when TP correctly classed ≥66% of subsequent population increases and declines (P ≥0.063); 3) presented a necessary prerequisite of the exponential model (serial correlation between Nt and Nt+1) as the key relationship in the DBS data, when it merely reflected that DBS are strongly K-selected and was irrelevant to our hypothesis tests specific to factors affecting the instantaneous rate of population increase (r); 4) greatly oversimplified relationships among precipitation, arid environments, and DBS; and 5) advocated a time for collection of lamb/female (L/F) ratio data that was unrelated to any meaningful period in the biological year of DBS and consequently presented L/F ratio data unrelated to observed dynamics of DBS. In contrast, the L/F ratios used in Bender and Weisenberger (2005) correctly predicted annual changes and were correlated with long-term population rates of change.  相似文献   

2.
L. P. HUNT 《Austral ecology》2010,35(7):794-805
Atriplex vesicaria Heward ex Benth. (Chenopodiaceae) is a widespread perennial shrub in southern Australia's chenopod rangelands but is sensitive to grazing. A detailed investigation of the demography and population dynamics of A. vesicaria under sheep grazing was conducted over 6.5 years at a range of sites across a typical paddock to assess the long‐term effects of grazing on the species and elucidate the mechanisms of population change under grazing. The effects of rainfall on recruitment and mortality were also examined. Six‐monthly censuses of all A. vesicaria individuals were conducted in permanent grazed and ungrazed plots at sites located across an 1100‐ha paddock. Grazing increased adult shrub mortality close to water and reduced recruitment over a broader area of the paddock, but seedling survival did not appear to be affected by grazing. As a result of these changes, the population declined on grazed plots up to 2200 m from water during the study, but the decline was greatest closer to water. The population was most dynamic at the sites furthest from the water point where it was unaffected by grazing because of the greater recruitment and mortality of young plants, but because these processes balanced out over time, population density was effectively unchanged by the end of the study. Although statistical models indicated that six‐monthly rainfall did not explain temporal variation in recruitment or mortality, rainfall nevertheless has a central role in both processes. In particular, longer periods of favourable rainfall and drought appear to have an important influence on recruitment and mortality, respectively, with heavy grazing during a drought period increasing mortality. Occasional shortages of seed or rains occurring during the warmer months when seed germination is limited possibly explain poor recruitment at sites unaffected by grazing following good rainfall.  相似文献   

3.
This study aimed to evaluate variations in the seed bank within a 3-year temporal series in order to answer the following questions: 1) Does the seed bank's species richness and seed density differ among climatic seasons and between years? 2) Are there differences in the richness and density of seed banks between the litter and mineral soil? 3) Can the seed bank's species richness and seed density be explained by characteristics such as the previous year's precipitation and soil depth (litter or mineral soil)? The samples were collected from litter and mineral soil (0–5 cm), in 210 sub-plots, during the dry and rainy seasons of each year (August 2005 through February 2008). Overall, 79 species were recorded. On average, 1 168, 304 and 302 seeds.m−2 were recorded in the seed bank during years I, II and III, respectively. This study showed that the Caatinga's seed bank is rich in herbaceous species, yet species' density and richness are low in the litter. Furthermore, about 43% of the variation in species richness and density was explained by soil depth (litter and mineral soil) and previous years' rainfall.  相似文献   

4.
Populations of large herbivores are generally considered to be food limited, escaping the regulatory effects of predation through their large body size, migratory behaviour and/or the occurrence of alternate prey species. In the Australian arid and semi‐arid zones, the availability of forage biomass is considered to be the primary driver of fluctuations in kangaroo abundance. However, little is known about the population dynamics of the smaller sympatric macropods. We examined the demographic traits of a large colony of yellow‐footed rock‐wallabies (Petrogale xanthopus celeris), following a 2‐year period of above average rainfall. The population was located within a conservation reserve that was subject to a predator control program around its perimeter and on neighbouring properties. The low predator abundance provided an opportunity to gauge the strength of bottom‐up population processes. During the two years of the study, the population declined in size by 53%, resulting from both the virtual absence of juvenile recruitment and the loss of adult wallabies. Although reproductive output was high, low pouch young and juvenile survival rates resulted in few individuals progressing into the adult population. With minimal recruitment, the rate of population decline (r = 0.77) matched the observed adult survival rate (Φ = 0.76). Despite average rainfall conditions during the study, survival rates across all age‐classes were equivalent to those reported for other rock‐wallaby populations during periods of scarcity. The reduced survival rates were attributed to low levels of forage resources, particularly around the wallabies' refuge sites, suggesting the bottom‐up regulation of the colony at high densities. The data suggest that the colony was at temporarily high abundance, following a rainfall driven pulse of recruitment. Conservation management actions for this species should focus on increasing juvenile survival rates within declining populations, through the control of feral goats (Capra hircus), rabbits (Oryctolagus cuniculus) and red foxes (Vulpes vulpes).  相似文献   

5.
The degree of serotiny (i.e. the proportion of follicles remaining closed in each year's crop of cones since the last fire) was measured in Bank-sia attenuata, B. menziesii and B. prionotes at five sites along a climatic gradient extending 500 km north of Perth, Western Australia. The decrease in annual rainfall and increase in average temperature along the gradient paralleled a decrease in plant height and an increase in the degree of serotiny of all species. Extreme serotiny was recorded in the scrub-heath at the xeric end of the gradient whereas two species were essentially non-serotinous in the low woodland at the most mesic site. It is concluded that degree of serotiny is related to the fire characteristics of the site which depend on plant height. In xeric scrub-heath, the entire canopies of the Banksia spp. are consumed by fire which promotes massive release of seed. This facilitates recruitment in an otherwise unpredictable and unreliable seedbed. In mesic woodland, where cones rarely come into contact With flames, seeds are released spontaneously and site conditions are more conducive to recruitment in the inter-fire period.  相似文献   

6.
This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross‐date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross‐dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration.  相似文献   

7.
Climatic shifts may increase the extinction risk of populations, especially when they are already suffering from other anthropogenic impacts. Our ability to predict the consequences of climate change on endangered species is limited by our scarce knowledge of the effects of climate variability on the population dynamics of most organisms and by the uncertainty of climate projections, which depend strongly on the region of the earth being considered. In this study, we analysed a long‐term monitoring programme (1988–2009) of Hermann's tortoise (Testudo hermanni) aimed at evaluating the consequences of the drastic changes in temperature and precipitation patterns predicted for the Mediterranean region on the demography of a long‐lived species with low dispersal capability and already suffering a large number of threats. Capture–recapture modelling of a population in the Ebro Delta (NE Spain) allowed us to assess the effect of climate variability on the survival of tortoises. Winter rainfall was found to be the major driver of juvenile and immature survival, whereas that of adults remained high and constant across the study. Furthermore, local climate series obtained ad hoc from regional climate simulations, for this and 10 additional Mediterranean locations where tortoises occurred, provided us with reliable future climate forecasts, which were used to simulate the fate of these populations under three precipitation scenarios (mean, wet and dry) using stochastic population modelling. We show that a shift to a more arid climate would have negative consequences for population persistence, enhancing juvenile mortality and increasing quasiextinction risk because of a decrease in recruitment. These processes varied depending on the population and the climate scenario we considered, but our results suggest that unless other human‐induced causes of mortality are suppressed (e.g. poaching, fire, habitat fragmentation), climate variability will increase extinction risk within most of the species’ current range.  相似文献   

8.
During one growing period, 5-year-old spruce trees (Picea abies L., Karst.) were exposed in environmental chambers to elevated concentrations of carbon dioxide (750 cm3 m?3) and ozone (008 cm3 m?3) as single variables or in combination. Control concentrations of the gases were 350cm3 m?3CO2 and 0.02 cm3 m ?3 ozone. To investigate whether an elevated CO2 concentration can prevent adverse ozone effects by reducing oxidative stress, the activities of the protective enzymes superoxide dismutase, catalase and peroxidase were determined. Furthermore, shoot biomass, pigment and protein contents of two needle age classes were investigated. Ozone caused pigment reduction and visible injury in the previous year's needles and growth reduction in the current year's shoots. In the presence of elevated concentrations of ozone and CO2, growth reduction in the current year's shoots was prevented, but emergence of visible damage in the previous year's needles was only delayed and pigment reduction was still found. Elevated concentrations of ozone or CO2 as single variables caused a significant reduction in the activities of superoxide dismutase and catalase in the current year's needles. Minimum activities of superoxide dismutase and catalase and decreased peroxidase activities were found in both needle age classes from spruce trees grown at enhanced concentrations of both CO2 and ozone. These results suggest a reduced tolerance to oxidative stress in spruce trees under conditions of elevated concentrations of both CO2 and ozone.  相似文献   

9.
The North Atlantic Oscillation (NAO) is a large‐scale pattern of climate variability that has been shown to have important ecological effects on a wide spectrum of taxa. Studies on terrestrial invertebrates are, however, lacking. We studied climate‐connected causes of changes in population sizes in island populations of the spittlebug Philaenus spumarius (L.) (Homoptera). Three populations living in meadows on small Baltic Sea islands were investigated during the years 1970–2005 in Tvärminne archipelago, southern Finland. A separate analysis was done on the effects of NAO and local climate variables on spittlebug survival in 1969–1978, for which survival data existed for two islands. We studied survival at two stages of the life cycle: growth rate from females to next year's instars (probably mostly related to overwintering egg survival), and survival from third instar stage to adult. The latter is connected to mortality caused by desiccation of plants and spittle masses. Higher winter NAO values were consistently associated with smaller population sizes on all three islands. Local climate variables entering the most parsimonious autoregressive models of population abundance were April and May mean temperature, May precipitation, an index of May humidity, and mean temperature of the coldest month of the previous winter. High winter NAO values had a clear negative effect on late instar survival in 1969–1978. Even May–June humidity and mean temperature of the coldest month were associated with late instar survival. The climate variables studied (including NAO) had no effect on the growth rate from females to next year's instars. NAO probably affected the populations primarily in late spring. Cold and snowy winters contribute to later snow melt and greater spring humidity in the meadows. We show that winter NAO has a considerable lagged effect on April and May temperature; even this second lagged effect contributes to differences in humidity. The lagged effect of the winter NAO to spring temperatures covers a large area in northern Europe and has been relatively stationary for 100 years at least in the Baltic area.  相似文献   

10.
David Norman  Will J. Peach 《Ibis》2013,155(2):284-296
Long‐term studies can provide powerful insights into the relative importance of different demographic and environmental factors determining avian population dynamics. Here we use 23 years of capture–mark–recapture data (1981–2003) to estimate recruitment and survival rates for a Sand Martin Riparia riparia population in Cheshire, NW England. Inter‐annual variation in recruitment and adult survival was positively related to rainfall in the sub‐Saharan wintering grounds, but unrelated to weather conditions on the breeding grounds. After allowing for the effects of African rainfall, both demographic rates were negatively density‐dependent: adult survival was related to the size of the western European Sand Martin population (probably reflecting competition for resources in the shared wintering grounds) while recruitment was related to the size of the local study population in Cheshire (potentially reflecting competition for nesting sites or food). Local population size was more sensitive to variation in adult survival than to variation in recruitment, and an increase in population size after 1995 was driven mainly by the impact of more favourable conditions in the African wintering grounds on survival rates of adults. Overwinter survival in this long‐distance Palaearctic migrant is determined partly by the amount of suitable wetland foraging habitat in the sub‐Saharan wintering grounds (which is limited by the extent of summer rainfall) and partly by the number of birds exploiting that habitat.  相似文献   

11.
Highly variable patterns in temperature and rainfall events can have pronounced consequences for small mammals in resource-restricted environments. Climatic factors can therefore play a crucial role in determining the fates of small mammal populations. We applied Pradel's temporal symmetry model to a 21-year capture–recapture dataset to study population dynamics of the pinyon mouse (Peromyscus truei) in a semi-arid mixed oak woodland in California, USA. We examined time-, season- and sex-specific variation in realized population growth rate (λ) and its constituent vital rates, apparent survival and recruitment. We also tested the influence of climatic factors on these rates. Overall monthly apparent survival was 0.81 ± 0.004 (estimate ± SE). Survival was generally higher during wetter months (October–May) but varied over time. Monthly recruitment rate was 0.18 ± 0.01, ranging from 0.07 ± 0.01 to 0.63 ± 0.07. Although population growth rate (λ) was highly variable, overall monthly growth rate was close to 1.0, indicating a stable population during the study period (λ ± SE = 0.99 ± 0.01). Average temperature and its variability negatively affected survival, whereas rainfall positively influenced survival and recruitment rates, and thus the population growth rate. Our results suggest that seasonal rainfall and variation in temperature at the local scale, rather than regional climatic patterns, more strongly affected vital rates in this population. Discerning such linkages between species' population dynamics and environmental variability are critical for understanding local and regional impacts of global climate change, and for gauging viability and resilience of populations in resource-restricted environments.  相似文献   

12.
Our understanding of large‐scale climatic phenomena and dynamics of large herbivore populations comes principally from research in northern regions with temperate, seasonal climate and animal communities with relatively low species diversity. To assess the generality of that perspective, we investigated effects of El Niño–Southern Oscillation (ENSO) on population dynamics of African buffalo Syncerus caffer inhabiting a semi‐arid savanna with variable rainfall. We used linear and nonlinear‐threshold models to investigate relationships between population parameters and explanatory variables affecting forage conditions (seasonal rainfall, Southern Oscillation Index [SOI]). El Niño‐related droughts in 1982–1983 and 1991–1992 were associated with strongly negative population change, a pattern expected to coincide with a decrease in normally high and constant adult survival. Consistent with that nonlinear pattern, we detected threshold relationships between wet‐season rainfall and population change. Juvenile recruitment was described best by linear relationships with dry‐season. Because ENSO operates primarily through wet‐season rainfall, whereas population dynamics were also related to dry‐season rainfall, SOI did not have the predictive ability of individual weather components.  相似文献   

13.
Perkins  Steven R.  Keith Owens  M. 《Plant Ecology》2003,168(1):107-120
Anthropogenic emissions contribute to an annual 0.5% increase in atmospheric CO2. As global CO2 levels increase, regional precipitation patterns will likely be altered. Our primary objective was to determine whether a reduction in summer precipitation or an increase in winter/spring precipitation, predicted by global climate change models, will favor the establishment of C4 grasses or C3 shrubs in southern savannas. Our secondary objective was to determine how defoliation and microsite light availability interact with altered precipitation regimes to influence grass and shrub seedling growth and biomass allocation patterns. Seedlings of 3 shrub species (Prosopis glandulosa var. glandulosa, Acacia berlandieri, and A. greggii var. wrightii) and 3 grass species (Aristida purpurea var. wrightii, Setaria texana, and Stipa leucotricha) were watered based on probable changes in precipitation in a CO2 enriched atmosphere (0.6, 0.8, and 1.0 current ambient summer precipitation and 1.0, 1.15, and 1.30 current winter/spring precipitation). Seedlings were defoliated at 3 levels (non-defoliated, single defoliation, and repeated defoliation) within 2 levels of microsite light availability (100 and 50% ambient). Defoliation significantly reduced total shrub and grass seedling biomass. Reducing light availability decreased shrub seedling root:shoot ratio, but total biomass was not significantly affected. Grass seedling biomass and root:shoot ratio decreased when light availability was reduced. Changing the seasonality of precipitation by reducing summer rainfall or increasing winter/spring rainfall did not significantly influence growth or biomass allocation of grass and shrub seedlings in a semiarid savanna. Microsite variations in defoliation intensity and light availability influence seedling growth and biomass allocation more than changing seasonality of precipitation. Shrub and grass seedling establishment and growth on semiarid rangelands are already limited by summer precipitation, so a further reduction as proposed by climate change models will have a limited impact on seedling dynamics.  相似文献   

14.
The defoliation of the eastern white pine (Pinus strobus) across the northeastern United States is an escalating concern threatening the ecological health of northern forests and economic vitality of the region's lumber industry. First documented in the spring of 2010 affecting 24 328 hectares in the state of Maine, white pine needle damage (WPND) has continued to spread and is now well established in all New England states. While causal agents of WPND are known, current research is lacking in both sampling distribution and the specific environmental factor(s) that affect the development and spread of this disease complex. This study aims to construct a more detailed distribution map of the four primary causal agents within the region, as well as utilize long‐term WPND monitoring plots and data collected from land‐based weather stations to develop a climatic model to predict the severity of defoliation events in the proceeding year. Sampling results showed a greater distribution of WPND than previously reported. WPND was generally found in forest stands that compromised >50% eastern white pine by basal area. No single species, nor a specific combination of species had a dominating presence in particular states or regions, thus supporting the disease complex theory that WPND is neither caused by an individual species nor by a specific combination of species. In addition, regional weather data confirmed the trend of increasing temperature and precipitation observed in this region with the previous year's May, June, and July rainfall being the best predictor of defoliation events in the following year. Climatic models were developed to aid land managers in predicting disease severity and accordingly adjust their management decisions. Our results clearly demonstrate the role changing climate patterns have on the health of eastern white pine in the northeastern United States.  相似文献   

15.
ABSTRACT Recently, a conservation strategy developed to restore populations of black-tailed prairie dog (Cynomys ludovicianus) suggested reintroducing animals into the Chihuahuan Desert grasslands of the southwestern United States. Rainfall in desert habitats is lower and more variable compared to rainfall near the center of the prairie dog's range. Additionally, peak rainfall comes months after prairie dogs reproduce in these desert systems. Thus, southwestern populations may be less prolific and fluctuate more than those found in northerly climes. Using mark-recapture and mark-resight techniques, we estimated reproduction and monthly survival from 577 individuals inhabiting 6 reintroduced colonies from 2003 to 2005 in the northern Chihuahuan Desert. During 2003 precipitation was 64% of the long-term average, whereas both 2004 and 2005 had near-average precipitation. Probability that a female became pregnant, number of juvenile prairie dogs emerging from maternity burrows, and date of emergence were all correlated to adult female body mass. Adult monthly survival decreased from >0.95 during spring to 0.70 in summer 2003, following a rapid loss in adult body mass that coincided with low precipitation. In 2003 monthly juvenile survival was near zero on 2 of the 3 largest colonies and growth rates of juveniles were half that of subsequent years. Estimated population size declined by 68% (range = 18–91%) from 2003 to 2004, and 5 of 6 populations declined an average of 75% from their original introduction size. Prairie dog populations in desert environs may have a high risk of extirpation caused by weather patterns indicative of desert climates. Our results are important for those managers involved in the conservation of prairie dogs and we suggest that regional differences should be carefully considered prior to any reintroduction effort.  相似文献   

16.
As the influence of climate change on tropical forests becomes apparent, more studies are needed to understand how changes in climatic variables such as rainfall are likely to affect tree phenology. Using a twelve‐year dataset (2005–2016), we studied the impact of seasonal rainfall patterns on the fruiting phenology of 69 tree species in the rain forest of southeastern Madagascar. We found that average annual rainfall in this region has increased by >800 mm (23%) during this period relative to that recorded for the previous 40 years and was highly variable both within and between years. Higher monthly measures of fruiting richness and the intensity of fruiting in our sample community were associated with significantly higher levels of rainfall. We also found that less rainfall during the dry season, but not the wet season, was associated with a significant shift toward later timing of peak richness and peak intensity of fruiting in the subsequent 12 months; however, this pattern was driven primarily by an extreme drought event that occurred during the study period. Longer time scales of phenology data are needed to see whether this pattern is consistent. Madagascar is expected to experience more extremes in rainfall and drought with increasing climate change. Thus, the linkages between variable precipitation and the fruiting phenology of forest trees will have important consequences for understanding plant reproduction and the ability of Madagascar's wildlife to cope with a changing climate.  相似文献   

17.
Elucidating patterns of adult survival rates is key to understanding population dynamics of large mammals. We used data from 7 separate studies of mountain goats (Oreamnos americanus) conducted from 2002 through 2022 in western Washington, USA, to quantify survival rates in relation to key biotic and abiotic factors using known fate models implemented in program MARK. We monitored 324 (206 females, 118 males) radio-marked mountain goats for 178,339 days. A substantial number of mountain goats in our sample (n = 217) had been translocated from the Olympic Peninsula to the Cascade Mountains on Washington's mainland, providing an added opportunity to examine translocation effects. We adopted a sequential modeling approach, first building a set of models to examine fundamental survival patterns by age, sex, season, study area, and translocated status. We used variables retained from the top model in a second set to investigate relationships between annual survival and local weather covariates hypothesized by previous studies to influence mountain goat behavior, habitat selection, and vital rates. Survival among adult females in spring was slightly lower than other sex and age categories, but seasonal patterns were otherwise not evident. There were significant negative relationships between survival and winter snow depth, an index of the previous year's drought, and mean daily temperature during the previous May, and a positive relationship with previous year's precipitation. Weather effects were similar among resident and translocated animals. By the end of the study period, weather effects had evidently contributed to reductions in mountain goat survival to a level low enough that population stability was unlikely. Because the frequency of droughts and warm spring temperatures are expected to increase with climate change, mountain goat populations in Washington will likely be increasingly challenged as the atmosphere warms.  相似文献   

18.
Concentrations of chlorophyll a/freshweight (Chl a FW) and photosynthetic pigments/chlorophyll a were studied during one growing season in the current year's (CYN) and last year's needles (LYN) from Norway spruce (Picea abies (L.) Karst.) grown under natural or close‐to‐natural climate. Climate regimes differed in photosynthetic active radiation (PAR), temperature (T) and UV‐B radiation. Pigments were not affected by UV‐B but most of the differences between climate regimes, and also seasonal variations within climate regimes, could be related to PAR and T. Generally, two types of response to climate were observed: firstly, pigments reacted primarily to PAR without marked sensitivity to T and exhibited slow response times (> 30 d), and, secondly, pigments were affected by the combined action of PAR and T and responded faster than 20 d. The Chl a FW and chlorophyll b/chloprophyll a ratio exhibited slow‐type response in CYN and fast‐type response in LYN. Higher amplitudes in CYN than in LYN were observed for the latter two parameters, which are known to be associated with levels of pigment–protein complexes. It is suggested that slow response in CYN ensures that the high investments in proteins in these needles occur only in response to longer‐lasting climate episodes.  相似文献   

19.
Effects of temperature and rainfall timing, amount, and duration on the spread of Tomato spotted wilt virus (Bunyaviridae: genus Tospovirus ; TSWV) and population growth of its primary vector, Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), within patches of common chickweed, Stellaria media (L.) Cyrillo (Caryophyllaceae), were examined during the spring of 2004, 2005, and 2006. Elevated temperature treatments were investigated in an attempt to alter the age structure of F. fusca populations and change the effect of precipitation, but an average increase in daily temperature of 1 °C did not increase population size until late spring. Populations of immature F. fusca were immediately and negatively influenced by large amounts of rainfall or by rainfall distributed over three or more consecutive days during late April and early May. However, when precipitation was distributed over 1–3 days during early May, it also delayed senescence of the chickweed and ultimately resulted in a larger F. fusca population late in the season. The majority of TSWV spread within patches of chickweed occurred after mid-April. The fewest TSWV-infected chickweed plants occurred in plots that received high levels of precipitation during April or throughout spring and the amount of spread was directly related to the size of the immature F. fusca population that developed in each plot.  相似文献   

20.
Studies have shown a strong linkage between zooplankton and fisheries' potential in tropical lakes. High zooplankton production provides the basis for fish production, but knowledge of zooplankton production dynamics in African lakes is extremely limited. Crustacean zooplankton production and the biomass of dominant rotifers in Lake Bosumtwi were assessed over a 2‐year period. The crustaceans comprised an endemic and extremely abundant cyclopoid copepod, Mesocyclops bosumtwii and the cladoceran Moina micrura. Mean standing stock of the crustaceans was 429 mg dw m?3, whilst annual production averaged 2.1 g dw m?3 y?1. Production doubled from 1.4 g dw m?3 y?1 in 2005 to 2.8 g dw m?3 y?1 in 2006. Copepods accounted for 98.5% of crustacean production. The biomass of the dominant rotifers Brachionus calyciflorus and Hexarthra intermedia was less than 1% of total zooplankton biomass. Daily turnover rate and turnover time of the crustaceans was 0.19 day?1 and 6.2 days respectively. Crustacean production yielded no statistical relationship with phytoplankton biomass. Production was well within the range of tropical lakes. Peak crustacean production synchronized maximum rainfall, lake mixing and phytoplankton production. Most importantly, no one year's set of dynamics can be used to characterize zooplankton production in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号