首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Anthropogenic disturbances can promote establishment and growth of predator populations in areas where secondary prey can then become threatened. In this study, we investigated habitat selection of eastern coyotes (Canis latrans), a relatively new predator in the vicinity of an endangered population of caribou (Rangifer tarandus caribou). We hypothesized that coyotes in the boreal forest depend mainly on disturbed habitat, particularly that of anthropogenic origin, because these habitats provide increased food accessibility. Coyotes would likely take advantage of moose (Alces alces) carcasses, berries, and snowshoe hares (Lepus americanus) found in open habitats created by logging. To test these predictions, we described coyote diet and habitat selection at different spatial and temporal levels and then compared resource availability between habitats. To do so, we installed Global Positioning System radiocollars on 23 individual coyotes in the Gaspésie Peninsula, eastern Québec, Canada. Coyotes selected clear-cuts of 5–20 years and avoided mature coniferous forests both at the landscape and home-range levels. Clear-cuts of 5–20 years were found to contain a high availability of moose carcasses and berries, and vulnerability of snowshoe hares is known to increase in clear-cuts. The importance of these 3 food resources was confirmed by the characteristics of core areas used by coyotes and diet analysis. Moose remains were found at 45% of core areas and coyote diet comprised 51% moose on an annual basis. Anthropogenic disturbances in the boreal forest thus seem to benefit coyotes. Our results indicated that the relationship between coyotes and caribou likely involves spillover predation. This knowledge allows managers to consider spillover predation by coyotes as a possible threat for endangered caribou population when the predator depends mainly on habitat of anthropogenic origin and to suggest methods to alleviate it when developing management plans.  相似文献   

2.
Predation is the dominant source of mortality for white-tailed deer (Odocoileus virginianus) <6 months old throughout North America. Yet, few white-tailed deer fawn survival studies have occurred in areas with 4 predator species or have considered concurrent densities of deer and predator species. We monitored survival and cause-specific mortality from birth to 6 months for 100 neonatal fawns during 2013–2015 in the Upper Peninsula of Michigan, USA, while simultaneously estimating population densities of deer, American black bear (Ursus americanus), coyote (Canis latrans), bobcat (Lynx rufus), and gray wolf (Canis lupus). We estimated fawn predation risk in response to sex, birth mass, and date of birth. Six-month fawn survival pooled among years was 36%, and fawn mortality risk was not related to birth mass, date of birth, or sex. Estimated mean annual deer and predator densities were 334 fawns/100 km2, 25.9 black bear/100 km2, 23.8 coyotes/100 km2, 3.8 bobcat/100 km2, and 2.8 wolves/100 km2. Despite lower estimated per-individual kill rates, coyotes and black bears were the leading sources of fawn mortality because they had greater densities relative to bobcats and wolves. Our results indicate that the presence of more predator species in a system is not entirely additive in its effect on fawn survival. © The Wildlife Society, 2019  相似文献   

3.
Logging negatively affects the threatened forest-dwelling caribou (Rangifer tarandus caribou) through its positive effects on large predator populations. As recruitment is a key component of caribou population growth rate, we assessed calving rates of females and calf survival rates during the most critical period for calf survival, the calving period. We also identified causes of calf mortality and investigated the influence of predation risk, food availability, and human disturbance on habitat selection of females during the calving period at both the home-range and forest stand scales. We hypothesized that caribou should display habitat selection patterns to reduce predation risk at both scales. Using telemetry, we followed 22 females and their calves from 2004 to 2007 in a highly managed study area in Québec, Canada. Most females (78.5 ± 0.05 [SE]) gave birth each year, but only 46.3 ± 8.0% of the calves survived during the first 50 days following birth, and 57.3 ± 14.9% of them died from black bear (Ursus americanus) predation. At the home-range scale, caribou selected calving areas located at upper slope positions and avoided high road density areas. Surprisingly, they also selected the forested habitat type having the lowest lateral cover (mixed and deciduous stands) while avoiding the highest cover (regenerating conifer stands). At the forest stand scale, caribou selected areas located at relatively high elevations and with a lower basal area of black spruce trees. The selection of upper slope positions likely favored spatial segregation between calving females and wolves (Canis lupus) but not black bear. Our results suggest that calving females used areas from which they could visually detect approaching predators. While wolf avoidance appeared to be effective in a highly managed landscape, caribou did not appear to have adjusted their predator avoidance strategy to the recent increase in black bear abundance, who have benefited from increased food abundance. This situation requires focused attention from wildlife managers as logging activities are progressing towards the north within the core of forest-dwelling caribou range. © 2011 The Wildlife Society.  相似文献   

4.
Abstract: In North America, brown bears (Ursus arctos) can be a significant predator on moose (Alces alces) calves. Our study in Sweden is the first in which brown bears are the only predator on moose calves. Bears and moose occurred at densities of about 30/1,000 km2 and 920/1,000 km2, respectively, and bears killed about 26% of the calves. Ninety-two percent of the predation took place when calves were <1 month old. Bear predation was probably additive to other natural mortality, which was about 10% in areas both with and without bears. Females that lost their calves in spring produced more calves the following year (1.54 calves/F) than females that kept their calves (1.11 calves/F), which reduced the net loss of calves due to predation to about 22%.  相似文献   

5.
The rates and causes of juvenile mortality are central features of the dynamics and conservation of large mammals, like woodland caribou (Rangifer tarandus caribou (Gmelin, 1788)), but intrinsic and extrinsic factors may be modified by variations in animal abundance. We tested the influences of population size, climate, calf weight and sex on survival to 6 months of age of 1241 radio-collared caribou calves over three decades, spanning periods of population growth (1979–1997) and decline (2003–2012) in Newfoundland, Canada. Daily survival rates were higher and rose more quickly with calf age during the population growth period compared to the decline. Population size (negatively) and calf weight (positively) affected survival during the decline but neither had a detectable influence during the growth phase. Sex, climate and plant productivity (the latter two derived from the North Atlantic Oscillation and Normalized Difference Vegetation Index, respectively) exerted minimal influence during either phase. Predation was the dominant source of mortality. The mean percentage of calves killed by predators was 30 % higher during the decline compared to the growth phase. Black bears (Ursus americanus) and lynx (Lynx canadensis) were the major predators during the population increase but this changed during the decrease to black bears and coyotes (Canis latrans). Our findings are consistent with the hypothesis that Newfoundland caribou experienced phase-dependent survival mediated proximally by predation and competition for food.  相似文献   

6.
Sympatric black bears (Ursus americanus) and brown bears (Ursus arctos) are common in many boreal systems; however, few predator assemblages are known to coexist on a single seasonally abundant large prey item. In lowland southwestern interior Alaska, black bears and brown bears are considered the primary cause of moose (Alces alces) calf mortality during the first 6 weeks of life. The objective of this study was to document habitat use of global-positioning system (GPS)-collared black bears during peak and non-peak seasons of black bear-induced and brown bear-induced moose calf mortality within southwestern interior Alaska, in spring 2002. We compared habitats of GPS-collared black bears to those of presumably uncollared black bears and brown bears at their moose calf mortality sites. Results from this study suggest that GPS-collared black bears use similar habitat as conspecifics more than expected during the peak period of black bear predation on moose calves, whereas they use habitat in proportion to home range availability during the peak in brown bear predation on moose calves. Sex-specific Ivlev's electivity indices describe greater than expected use of mixed-deciduous forest and needleleaf forest by male GPS-collared black bears during the peak of moose calf predation, whereas females have a tendency to use these habitats less than expected. Juvenile GPS-collared black bears largely use the same habitat as other sympatric predators during the peak of moose calf predation, whereas during the non-peak period juveniles use opposite habitats as adult GPS-collared black bears. The outcome of this study offers possible explanations (e.g., sex, age) for spatial overlap or segregation in one member of a complex predator guild in relation to a seasonal pulse of preferred prey.  相似文献   

7.
Human presence in natural environments is often a source of stress that is perceived by large ungulates as an increased risk of predation. Alternatively, disturbance induced by hikers creates a relatively predator‐free space that may serve as a refuge. We measured the behavioral responses of female caribou to disturbance associated with the presence of hikers during summer in the Gaspésie National Park. We used those data to determine whether caribou responded negatively to human activity (i.e., the predation risk hypothesis) or whether human activity resulted in a decrease in the magnitude of perceived risk (i.e., the refuge hypothesis). Female caribou with a calf spent nearly half of their time feeding, regardless of the presence of a trail or the number of hikers. They also decreased their vigilance near trails when the number of hikers increased. Conversely, lone females fed less frequently and almost doubled the time invested in vigilance under the same circumstances. However, both groups of females moved away from trails during the day, especially in the presence of hikers. We demonstrated that risk avoidance was specific to the maternal state of the individual. Lactating females accommodated the presence of hikers to increase time spent foraging and nutritional intake, providing support for the refuge hypothesis. Alternatively, lone females with lower energetic requirements and no maternal investment in a vulnerable calf appeared less tolerant to risk, consistent with the predation risk hypothesis. Synthesis and applications: Hikers influenced the vigilance–feeding trade‐off in caribou, underlining the importance of appropriate management of linear structures and human activities, especially across the critical habitat of endangered species. Even if some individuals seemed to benefit from human presence, this behavioral adaptation was not sufficient to reduce annual calf mortality associated with predation.  相似文献   

8.
Changes in primary productivity have the potential to substantially alter food webs, with positive outcomes for some species and negative outcomes for others. Understanding the environmental context and species traits that give rise to these divergent outcomes is a major challenge to the generality of both theoretical and applied ecology. In aquatic systems, nutrient-mediated eutrophication has led to major declines in species diversity, motivating us to seek terrestrial analogues using a large-mammal system across 598 000 km2 of the Canadian boreal forest. These forests are undergoing some of the most rapid rates of land-use change on Earth and are home to declining caribou (Rangifer tarandus caribou) populations. Using satellite-derived estimates of primary productivity, coupled with estimates of moose (Alces alces) and wolf (Canis lupus) abundance, we used path analyses to discriminate among hypotheses explaining how habitat alteration can affect caribou population growth. Hypotheses included food limitation, resource dominance by moose over caribou, and apparent competition with predators shared between moose and caribou. Results support apparent competition and yield estimates of wolf densities (1.8 individuals 1000 km−2) above which caribou populations decline. Our multi-trophic analysis provides insight into the cascading effects of habitat alteration from forest cutting that destabilize terrestrial predator–prey dynamics. Finally, the path analysis highlights why conservation actions directed at the proximate cause of caribou decline have been more successful in the near term than those directed further along the trophic chain.  相似文献   

9.
ABSTRACT Population modeling exercises can lead to both expected and unexpected results useful for wildlife research and management, even though inferences must often be qualitative, given underlying assumptions. Our main objective was to use empirical data on wolf (Canis lupus) kill rates and growth of the Western Arctic caribou (Rangifer tarandus) herd (WAH) of Alaska, USA, to assess the potential for predator regulation. We used available data and published literature to construct a deterministic density-dependent population model fitted to trends of the WAH from 1976 through 2003. By increasing wolf densities in the baseline model, we failed to reject the hypothesis that wolves at a density of 6.5 wolves per 1,000 km2 could regulate a caribou herd at a density of 0.4 caribou per km2. In addition, our model may be conservative by underestimating the regulatory potential of wolves. We suggest that this relatively simple predator-preysystem shows signs of a predation—food 2-state model. Elasticities from matrix models may be deceiving. Although herd growth is most sensitive to changes in adult female survival, survival of younger cohorts may be more easily influenced by natural conditions or management action. Management of the WAH near maximum sustained yield may not be attainable if desired, but modeling exercises such as this elucidate options. In conducting this research, we also discovered by Monte Carlo simulation that survival and productivity data from radiocollared females and calves were negatively biased and failed to predict herd growth. Thus, researchers should consider potential effects of neck collars on vital rates of female tundra caribou and concomitant offspring when using sample data to model population dynamics or test hypotheses.  相似文献   

10.
Trophic interactions in multiprey systems can be largely determined by prey distributions. Yet, classic predator–prey models assume spatially homogeneous interactions between predators and prey. We developed a spatially informed theory that predicts how habitat heterogeneity alters the landscape-scale distribution of mortality risk of prey from predation, and hence the nature of predator interactions in multiprey systems. The theoretical model is a spatially explicit, multiprey functional response in which species-specific advection–diffusion models account for the response of individual prey to habitat edges. The model demonstrates that distinct responses of alternative prey species can alter the consequences of conspecific aggregation, from increasing safety to increasing predation risk. Observations of threatened boreal caribou, moose and grey wolf interacting over 378 181 km2 of human-managed boreal forest support this principle. This empirically supported theory demonstrates how distinct responses of apparent competitors to landscape heterogeneity, including to human disturbances, can reverse density dependence in fitness correlates.  相似文献   

11.
We studied moose (Alces alces) survival, physical condition, and abundance in a 3-predator system in western Interior Alaska, USA, during 2001–2007. Our objective was to quantify the effects of predator treatments on moose population dynamics by investigating changes in survival while evaluating the contribution of potentially confounding covariates. In May 2003 and 2004, we reduced black bear (Ursus americanus) and brown bear (U. arctos) numbers by translocating bears ≥240 km from the study area. Aircraft-assisted take reduced wolf (Canis lupus) numbers markedly in the study area during 2004–2007. We estimated black bears were reduced by approximately 96% by June 2004 and recovered to within 27% of untreated numbers by May 2007. Brown bears were reduced approximately 50% by June 2004. Late-winter wolf numbers were reduced by 75% by 2005 and likely remained at these levels through 2007. In addition to predator treatments, moose hunting closures during 2004–2007 reduced harvests of male moose by 60% in the study area. Predator treatments resulted in increased calf survival rates during summer (primarily from reduced black bear predation) and autumn (primarily from reduced wolf predation). Predator treatments had little influence on survival of moose calves during winter; instead, calf survival was influenced by snow depth and possibly temperature. Increased survival of moose calves during summer and autumn combined with relatively constant winter survival in most years led to a corresponding increase in annual survival of calves following predator treatments. Nonpredation mortalities of calves increased following predator treatments; however, this increase provided little compensation to the decrease in predation mortalities resulting from treatments. Thus, predator-induced calf mortality was primarily additive. Summer survival of moose calves was positively related to calf mass (β > 0.07, SE = 0.073) during treated years and lower (β = −0.82, SE = 0.247) for twins than singletons during all years. Following predator treatments, survival of yearling moose increased 8.7% for females and 21.4% for males during summer and 2.2% for females and 15.6% for males during autumn. Annual survival of adult (≥2 yr old) female moose also increased in treated years and was negatively (β = −0.21, SE = 0.078) related to age. Moose density increased 45%, from 0.38 moose/km2 in 2001 to 0.55 moose/km2 in 2007, which resulted from annual increases in overall survival of moose, not increases in reproductive rates. Indices of nutritional status remained constant throughout our study despite increased moose density. This information can be used by wildlife managers and policymakers to better understand the outcomes of predator treatments in Alaska and similar environments. © 2011 The Wildlife Society.  相似文献   

12.
Human-caused habitat change has been implicated in current woodland caribou (Rangifer tarandus caribou) population declines across North America. Increased early seral habitat associated with industrial footprint can result in an increase in ungulate densities and subsequently those of their predator, wolves (Canis lupus). Higher wolf densities can result in increased encounters between wolves and caribou and consequently higher caribou mortality. We contrasted changes in moose (Alces alces) and deer (Odocoileus spp.) densities and assessed their effects on wolf–caribou dynamics in northeastern Alberta, Canada, pre (1994–1997) versus post (2005–2009) major industrial expansion in the region. Observable white-tailed deer (O. virginianus) increased 17.5-fold but moose remained unchanged. Wolf numbers also increased from approximately 6–11.5/1,000 km2. Coincident with these changes, spatial overlap between wolf pack territories and caribou range was high relative to the mid-1990s. The high number of wolf locations in caribou range suggests that forays were not merely exploratory, but rather represented hunting forays and denning locations. Scat analysis indicated that wolf consumption of moose declined substantively during this time period, whereas use of deer increased markedly and deer replaced moose as the primary prey of wolves. Caribou increased 10-fold in the diet of wolves and caribou population trends in the region changed from stable to declining. Wolf use of beaver (Castor canadensis) increased since the mid-1990s. We suggest that recent declines in woodland caribou populations in the southerly extent of their range have occurred because high deer densities resulted in a numeric response by wolves and consequently higher incidental predation on caribou. Our results indicate that management actions to conserve caribou must now include deer in primary prey and wolf reduction programs. © 2010 The Wildlife Society  相似文献   

13.
Laura R. Prugh  Stephen M. Arthur 《Oikos》2015,124(9):1241-1250
Large predators often suppress ungulate population growth, but they may also suppress the abundance of smaller predators that prey on neonatal ungulates. Antagonistic interactions among predators may therefore need to be integrated into predator–prey models to effectively manage ungulate–predator systems. We present a modeling framework that examines the net impact of interacting predators on the population growth rate of shared prey, using interactions among wolves Canis lupus, coyotes Canis latrans and Dall sheep Ovis dalli dalli as a case study. Wolf control is currently employed on approximately 16 million ha in Alaska to increase the abundance of ungulates for human harvest. We hypothesized that the positive effects of wolf control on Dall sheep population growth could be counteracted by increased levels of predation by coyotes. Coyotes and Dall sheep adult females (ewes) and lambs were radiocollared in the Alaska Range from 1999–2005 to estimate fecundity, age‐specific survival rates, and causes of mortality in an area without wolf control. We used stage‐structured population models to simulate the net effect of wolf control on Dall sheep population growth (λ). Our models accounted for stage‐specific predation rates by wolves and coyotes, compensatory mortality, and the potential release of coyote populations due to wolf control. Wolves were the main predators of ewes, coyotes were the main predators of lambs, and wolves were the main source of mortality for coyotes. Population models predicted that wolf control could increase sheep λ by 4% per year in the absence of mesopredator release. However, if wolf control released coyote populations, our models predicted that sheep λ could decrease by up to 3% per year. These results highlight the importance of integrating antagonistic interactions among predators into predator–prey models, because the net effect of predator management on shared prey can depend critically on the strength of mesopredator release.  相似文献   

14.
Nest predation has been identified as the main threat behind the negative population dynamics in chelonian species and in particular in the native Iberian population of the Western Hermann’s tortoise Testudo hermanni hermanni. This endangered subspecies is found within the Albera Nature Reserve, where this study was performed. We selected three formerly high-density tortoise areas to carry out different trials whose aims were to: (1) identify nest predator species, (2) test the success of reducing the shrub cover to reduce nest predation in potential new nesting areas, and (3) assess fencing efficiency to exclude predators. For the first objective, camera-trapping was used to identify nest predators, with sardines and artificial tortoise nests as lures. We obtained 825 pictures of possible predators and demonstrated that the beech marten was the most abundant predator in the study areas, followed by the badger and the wild boar. For the second objective, predation of artificial nests was compared between plots managed for shrub reduction (27 plots of 4, 25, and 100?m2) and a natural nesting area (nine control plots of 100?m2). Predation was strong in the managed plots (43.6% after 48?h and 99.6% after 144?h) but highest in the control area (100% after 48?h). Surprisingly, predation occurred at an even faster pace when we repeated the trial with a single artificial nest (in order to reduce odor intensity). Finally, we compared predation rates between eight fenced and eight unfenced plots of 100?m2. Fencing was partially effective to control nest predation because it excluded all the main predator species except the beech marten, which learned to go through it. Since the nest predation threat to this endangered population is critical, new strategies are needed to control nest predation by taking into account the ability of predators to learn nest location.  相似文献   

15.
ABSTRACT Indirect interactions among species can strongly influence population dynamics and community structure but are often overlooked in management of large mammals. We estimated survival of Dall's sheep (Ovis dalli) in the central Alaska Range, USA, during years of differing snowshoe hare (Lepus americanus) abundance to test whether indirect interactions with a cyclic hare population affect Dall's sheep either negatively, by subsidizing predators (apparent competition), or positively, by diverting predation (apparent commensalism). Annual survival of adult female sheep was consistently high (0.85 for all yr and age classes combined). In contrast, annual estimates of lamb survival ranged from 0.15 to 0.63. The main predators of lambs were coyotes (Canis latrans) and golden eagles (Aquila chrysaetos), which rely on hares as their primary food and prey on lambs secondarily. Coyotes and eagles killed 78% of 65 radiocollared lambs for which cause of death was known. Lamb survival was negatively related to hare abundance during the previous year, and lamb survival rates more than doubled when hare abundance declined, supporting the hypothesis of predator-mediated apparent competition between hares and sheep. However, stage-specific predation and delays in predator responses to changes in hare numbers led to a positive relationship between abundance of adult Dall's sheep and hares. Lacking reliable estimates of survival, a manager might erroneously conclude that hares benefit sheep. Thus, support for different indirect effects can be obtained from different types of data, which demonstrates the need to determine the mechanisms that create indirect interactions. Long-term survey data suggest that predation by coyotes is limiting this sheep population below levels typical when coyotes were rare or absent. Understanding the nature of indirect interactions is necessary to effectively manage complex predator–prey communities.  相似文献   

16.
The quality and availability of resources are known to influence spatial patterns of animal density. In Yellowstone National Park, relationships between the availability of resources and the distribution of grizzly bears (Ursus arctos) have been explored but have yet to be examined in American black bears (Ursus americanus). We conducted non-invasive genetic sampling during 2017–2018 (mid-May to mid-July) and applied spatially explicit capture-recapture models to estimate density of black bears and examine associations with landscape features. In both years, density estimates were higher in forested vegetation communities, which provide food resources and thermal and security cover preferred by black bears, compared with non-forested areas. In 2017, density also varied by sex, with female densities being higher than males. Based on our estimates, the northern range of Yellowstone National Park supports one of the highest densities of black bears (20 black bears/100 km2) in the northern Rocky Mountains (6–12 black bears/100 km2 in other regions). Given these high densities, black bears could influence other wildlife populations more than previously thought, such as through displacement of sympatric predators from kills. Our study provides the first spatially explicit estimates of density for black bears within an ecosystem that contains the majority of North America's large mammal species. Our density estimates provide a baseline that can be used for future research and management decisions of black bears, including efforts to reduce human–bear conflicts.  相似文献   

17.
Ursus americanus(black bear) predation could limit the success of the proposed restoration of Rangifer tarandus (woodland caribou) to Minnesota. The problem was recently identified as a major factor in the failure of a similar restoration effort in Maine. During the summer of 1991 we conducted a survey in the region of the proposed restoration, using bait stations to identify bear presence. Four settings were sampled: islands with campsites, islands without campsites, mainland areas with campsites, and mainland areas without campsites. Results from the survey suggest that black bears use areas with campsites more than those without. Whereas caribou may use islands preferentially for calving to escape predation, islands with campsites may be unfavorable for caribou calf survival due to frequent bear visitation.  相似文献   

18.
The most widely reported threat to boreal and mountain populations of woodland caribou (Rangifer tarandus caribou; caribou) involves habitat- or disturbance-mediated apparent competition (DMAC). With DMAC, natural and anthropogenic disturbances that increase the abundance of deciduous-browsing cervids (e.g., moose [Alces alces], deer [Odocoileus spp.]) are thought to promote predator (especially wolf [Canis lupus]) numbers, which heightens predation risk to caribou. We know most about the effects of DMAC on caribou where the species is under threat by anthropogenic activities in relatively productive southern boreal and mountain systems. Yet, >60% of extant boreal caribou range in North America consists of northern shield and taiga ecoregions of low productivity where caribou may compete with only 1 ungulate species (moose) in the context of DMAC. In this environment, we know very little of how DMAC acts as a limiting factor to caribou. In Saskatchewan, Canada, from 2014–2018, using a combination of vegetation sampling, aerial surveys, and telemetry data (n = 38 wolves), we searched for evidence of DMAC (trends in data consistent with the hypothesis) in an 87,193-km2 section of the Western Boreal Shield, a poorly productive but pristine region (0.18% of land cover classed as an anthropogenic feature) with a historically high fire-return interval (47% of stands aged <40 years). Despite the high levels of disturbance, moose density was relatively low (47 moose/1,000 km2), likely because of the scarcity of deciduous or mixed-wood stands and low abundance of deciduous browse in the young conifer stands that dominated the landscape. In contrast, boreal caribou density was relatively high for the species (37 caribou/1,000 km2). Wolf density (3.1 wolves/1,000 km2) and pack sizes ( = 4.0 wolves/pack) were low and resident (established) territories were large ( = 4,360 km2; 100% minimum convex polygon). The low density of wolves mirrored the low (standardized) ungulate biomass index (UBI; moose + boreal caribou) of the study area (0.36 UBI/km2). We conclude that wolf and hence caribou populations were not responding in accordance with the outcomes generally predicted by DMAC in our study area because the requisite strong, positive response to fire of deciduous-browse and alternate-prey abundance was lacking. As a limiting factor to caribou, DMAC is likely modulated at a macroecological scale by factors such as net primary productivity, a corollary to the general hypothesis that we advance here (i.e., primary productivity hypothesis of DMAC). We caution against managing for caribou based on the presumption of DMAC where the mechanism does not apply, which may include much of boreal caribou range in the north. © 2020 The Wildlife Society.  相似文献   

19.
ABSTRACT We evaluated survival of elk (Cervus elaphus) calves on 2 contrasting study areas in north-central Idaho, USA, from 1997 to 2004. Recruitment was modest (>30 calves:100 F [calves of either sex: F elk 1 yr old]) and stable on the South Fork study area and low (<20 calves:100 F) and declining on the Lochsa study area. The primary proximate cause of calf mortality on both study areas was predation by black bears (Ursus americanus) and mountain lions (Puma concolor). We experimentally manipulated populations of black bears and mountain lions on a portion of each study area. Black bear harvest (harvest density/600km2) initially doubled on the Lochsa treatment after manipulating season bag limits. Mountain lion harvest also increased by 60% but varied widely during the manipulation period. Harvest seasons were closed for black bears and mountain lions on the treatment portion of the South Fork study area. Using the Andersen—Gill formulation (A-G) of the Cox proportional hazards model, we examined effects of landscape structure, predator harvest levels, and biological factors on summer calf survival. We used Akaike's Information Criterion (AICc) and multimodel inference to assess some potentially useful predictive factors relative to calf survival. We generated risk ratios for both the best models and for model-averaged coefficients. Our models predicted that calf survival was influenced by biological factors, landscape surrounding calf locations, and predator harvest levels. The model that best explained mortality risk to calves on the Lochsa included black bear harvest (harvest density/600 km2), estimated birth mass of calves, and percentage of shrub cover surrounding calf locations. Incorporating a shrub X time interaction allowed us to correct for nonproportionality and detect that effect of shrub cover was only influential during the first 14 days of a calf's life. Model-averaging indicated that estimated birth mass of calves and black bear harvest were twice as important as the next variables, but age of calves at capture was also influential in calf survival. The model that best explained mortality risk to calves on the South Fork included black bear harvest, age of calves at capture, and gender of calves. Model-averaging indicated that age at capture and black bear harvest were twice as important as the next variable, forest with 33–66% canopy cover (Canopy 33–66). Risk to calves decreased when calves occupied areas with more of this forest cover type. Model-averaging also indicated that increased mountain lion harvest lowered calf mortality risk 4% for every 1-unit increase in lion harvest (harvest density/600 km2) but was lower (<25%) in importance compared to age at capture and black bear harvest. Our results suggest that levels of predator harvest, and presumably predator density, resource limitations expressed through calf birth mass, and habitat structure had substantial effects on calf survival. Our results can be generalized to other areas where managers are dealing with low calf elk recruitment. However, because factors vary spatially, a single management strategy applied in different areas will probably not have the same effect on calf survival.  相似文献   

20.
Summary The biomass of forage, herbivores (caribou and moose) and predators (wolf) were estimated for four assemblages of large mammals along a latitudinal gradient in the Québec-Labrador peninsula and related to predictions made by two types of multitrophic level models. Wolves were present in three study areas, but they had been extirpated in the last one. Annual production of preferred forage exhibited a clear north-south increase for moose, but not for caribou. Neither the herbivore nor predator biomass increased along the latitudinal gradient: the highest herbivore biomass occurred in the wolf-free area and in the northernmost site, while the greatest predator density was observed in the southernmost site. Consequently, the ratio of the herbivore to forage biomass was the highest in the area devoid of wolves and in the northernmost site occupied by migratory caribou. Availability of forage per herbivore was the greatest in the moose-wolf and the caribou-moose-wolf assemblages. The observed data supported the multitrophic level model incorporating classical predator-prey relationships and producing stepwise accrual of trophic level biomass with increasing food chain length. In the northernmost site, the system was limited to two functional trophic levels and caribou were regulated by summer forage. Three functional trophic levels appeared to exist in the central study area where caribou and moose were preyed upon by wolves. Both herbivores were at very low density, the first one due probably to its poor adaptation to predation and the second because of an unproductive range. In the southernmost site, moose were clearly regulated by predation and kept much below the carrying capacity. With the extirpation of wolves in the last study area, moose were regulated by forage and the density exceeded that in the moose-wolf system by seven times even in a less productive range. Caribou, having primarily evolved under resource limitation, is replaced by a cervid better adapted to predation, the moose, in more productive three-link ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号