首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The food and habitat niches of two nesting species of hawks Accipiter spp were studied in an extensively forested area of the Eastern Deciduous Forest Biome Nesting habitat was quantitated at 19 Cooper s hawk A cooperu nests and 16 northern goshawk A gentilis nests There was no significant trend for Cooper's hawks to nest in less mature forests than northern goshawks as reported previously for western North America Forest habitats did not differ markedly except that shrub cover was greater at Cooper's hawk nest sites, which were also on flatter terrain and closer to roads, forest openings, and human habitation However, these few differences resulted m reducing habitat-niche overlap considerably (0 538), as was calculated using principal components analysis Mean prey weight was significantly larger for the northern goshawk which follows its 2 2-fold body weight advantage over Cooper's hawk Although bird prey was of primary importance to both Accipiter, goshawks took twice the proportion of mammals compared to their smaller congener Food-niche overlap was lowest by prey species overlap (0 470), followed by prey size class overlap (0 529), and highest by vertical foraging zone overlap (0 816) The Cooper's hawk showed the greatest niche breadth for both food and habitat niches indicating it as more of a generalist Overall, niche complementarity of food and habitat dimensions resulted in niche overdispersion along food and habitat dimensions with a total niche overlap (0 504) that was below the competition threshold These results suggested that competition (past and current) was responsible for segregating niches  相似文献   

2.
We examined inter-specific interactions among goshawks (Accipiter gentilis), common buzzards (Buteo buteo) and honey buzzards (Pernis apivorus) in western Finland in 1983–1996. Because goshawks are among the largest birds of prey species in boreal forests they may take over the nest of smaller and less-competitive forest-dwelling raptors when searching for suitable places for breeding. Accordingly, more than half of newly established goshawk territories were found on the territories previously occupied by the common buzzard and the honey buzzard. Otherwise, territory sharing between these species was rare. Fledgling production of honey buzzards was not associated with the presence of goshawks, probably owing to the almost 2 months later onset of breeding. This probably decreases competitive interactions between these two species. An intensive interference competition, instead, seemed to be evident between common buzzards and goshawks, because the fledgling production of common buzzards was decreased by 20% as a result of failures during incubation and nestling period in the vicinity (<1 km) of occupied goshawk nests. Similarly, territory occupancy of common buzzards till the next breeding season was significantly reduced in the presence of goshawks. Relatively high proportions of occupied buzzard territories (17%) in the study area were shared by breeding goshawks on the same territory. This suggests that although their diets are dissimilar they inhabit similar habitats and might compete for the available prime nesting habitats within forest landscapes. In addition, goshawks benefit from taking over the complete nests of other raptors, imposing upon the original owners of the nest, because building a large stick nest is probably energetically costly. As a large raptor, the goshawk apparently has a competitive advantage over smaller ones, and may have an ever-increasing impact on smaller birds of prey, if there is a lack of sheltered forests inducing competition for the available nest sites.  相似文献   

3.
1. Predators impose costs on their prey but may also provide benefits such as protection against other (e.g. nest) predators. The optimal breeding location in relation to the distance from a nesting raptor varies so as to minimize the sum of costs of adult and nest predation. We provide a conceptual model to account for variation in the relative predation risks and derive qualitative predictions for how different prey species should respond to the distance from goshawk Accipiter gentilis nests. 2. We test the model predictions using a comprehensive collection of data from northern Finland and central Norway. First, we carried out a series of experiments with artificial bird nests to test if goshawks may provide protection against nest predation. Second, we conducted standard bird censuses and nest-box experiments to detect how the density or territory occupancy of several prey species varies with distance from the nearest goshawk nest. 3. Nest predation rate increased with distance from goshawk nest indicating that goshawks may provide protection for birds' nests against nest predation. Abundance (or probability of presence) of the main prey species of goshawks peaked at intermediate distances from goshawk nests, reflecting the trade-off. The abundance of small songbird species decreased with distance from goshawk nests. The goshawk poses little risk to small songbirds and they may benefit from goshawk proximity in protection against nest predation. Finally, no pattern with distance in pied flycatcher territory (nest box) occupation rate or the onset of egg-laying was detected. This is expected, as flycatchers neither suffer from marked nest predation risk nor are favoured goshawk prey. 4. Our results suggest that territory location in relation to the nest of a predator is a trade-off situation where adult birds weigh the risk of themselves being predated against the benefits accrued from increased nest survival. Prey species appear able to detect and measure alternative predation risks, and respond adaptively. From the prey perspective, the landscape is a mosaic of habitat patches the quality of which varies according to structural and floristic features, but also to the spatial distribution of predators.  相似文献   

4.
A better understanding of the mechanisms driving superpredation, the killing of smaller mesopredators by larger apex predators, is important because of the crucial role superpredation can play in structuring communities and because it often involves species of conservation concern. Here we document how the extent of superpredation has changed over time, and assessed the impact of such temporal variation on local mesopredator populations using 40 yr of dietary data collected from a recovering population of northern goshawks Accipiter gentilis, an archetypical avian superpredator. We then assessed which mechanisms were driving variation in superpredation, e.g. was it opportunistic, a response to food becoming limited (due to declines in preferred prey) or to reduce competition. Raptors comprised 8% of goshawk diet on average in years when goshawk abundance was high, which is higher than reported elsewhere. Additionally, there was a per capita increase in superpredation as goshawks recovered, with the proportion of goshawk diet comprising raptors increasing from 2 to 8% as the number of goshawk home‐ranges increased from ≤ 14 to ≥ 25. This increase in superpredation coincided with a population decline in the most commonly killed mesopredator, the Eurasian kestrel Falco tinnunculus, which may represent the reversal of the ‘mesopredator release’ process (i.e. mesopredator suppression) which occurred after goshawks and other large raptors declined or were extirpated. Food limitation was the most likely driver of superpredation in this system given: 1) the substantial decline of two main prey groups in goshawk diet, the increase in diet diversity and decrease in goshawk reproductive success are all consistent with the goshawk population becoming food‐limited; 2) it's unlikely to be purely opportunistic as the increase in superpredation did not reflect changes in the availability of mesopredator species; and 3) the majority of mesopredators killed by goshawks do not compete with goshawks for food or nest sites.  相似文献   

5.
Delayed density-dependent mortality induced by delayed numerical response of predators can drive prey populations to fluctuate in high-amplitude cycles. We studied numerical response of goshawks Accipiter gentilis to varying densities of their main prey (forest grouse) in western Finland during 1979–1996. Occupancy rate of goshawk territories tracked grouse numbers with a two year lag. Occupancy rate of goshawk territories and pooled number of adult and young goshawks correlated negatively with a 1–2 year lag to the chick production of grouse. Goshawk to grouse ratio was negatively related to grouse density. This suggests that goshawk predation on grouse is inversely dependent on grouse density. We conclude that in northern Europe with few alternative preys, goshawk predation might contribute to the generation of multiannual cycles of forest grouse. This should be tested experimentally.  相似文献   

6.
Designing monitoring programs to evaluate trends in low-density wildlife species at regional scales is challenging given difficulties detecting uncommon organisms distributed in potential habitats over large spatial extents. The northern goshawk (Accipiter gentilis) has been petitioned for listing under the Endangered Species Act and the review of the petition indicated a need for information on population trend. To evaluate trends in goshawk populations, the U.S. Forest Service developed the Northern Goshawk Bioregional Monitoring Design to estimate goshawk occupancy over broad spatial extents. We adapted and implemented this design to approximately 30,600 km2 of 88,128 km2 of National Forest System lands in the Forest Service Rocky Mountain Region, including portions of Colorado, Wyoming, and South Dakota. We developed a stratified random design to monitor goshawk occupancy in sampling units, defined by primary and secondary habitat quality as well as accessibility. To define habitat quality, we examined a time series for 58 previously located nesting territories. Using logistic regression, we found that the dominant conifer species and status of aspen in postfledging zones best characterized high-quality goshawk nesting habitat. We applied model results to stratify 4,445 sampling units based on habitat quality and further stratified sampling units based on accessibility into easy and difficult access categories. We conducted field sampling during the goshawk breeding season in the summer of 2006 to estimate detection probabilities and occupancy rates. Within our sampling frame, we sampled 51 sampling units and estimated goshawk occupancy of 0.329 (95% CI: 0.213–0.445). Occupancy within primary strata (high quality) sampling units was 0.811 (SE = 0.113), whereas occupancy in secondary strata (lower quality) sampling units was 0.124 (SE = 0.067). Future implementation of this monitoring program can achieve 0.8 power to detect 30–40% declines in with 140 sampling units. Our implementation of a stratified sampling design to monitor occupancy of goshawks at a region-wide scale reduced the number of sampling units in each administrative unit and focused our efforts on those areas most likely to have goshawks. © 2011 The Wildlife Society.  相似文献   

7.
1. Habitat heterogeneity has important repercussions for species abundance, demography and life-history patterns. While habitat effects have been more thoroughly studied in top-down situations (e.g. in association with predation), their role in bottom-up situations (e.g. in association with food abundance) has been less explored and the underlying mechanism(s) behind the ecological patterns have not commonly been identified. 2. With material from 1993 to 2003, we test the hypothesis that the reproduction of Finnish northern goshawks Accipiter gentilis (L.) is bottom-up limited by habitat composition, especially in situations where the density of their main prey (grouse) is low. Special emphasis was placed on identifying the mechanism(s) behind potential habitat effects. 3. While laying date and large-scale variation in the main prey density (but not habitat composition) were related to the number of eggs goshawks laid, small-scale differences in alternative prey density between different territories later influenced how many young were fledged via the mechanism of habitat-dependent partial-brood loss. As a result of this mechanism, a difference in nestling condition also arose between goshawk territories with differing habitat compositions. 4. As the relative proportions of different landscape elements in a given landscape is a function of large-scale differences in geomorphology and land use, this means that the reproductive performance of goshawks as averaged over larger scales can be understood correctly only in respect to the fact that habitat gradients differ across landscapes. 5. In addition to being one of the first papers identifying the mechanism of partial brood loss as being primarily responsible for the habitat-specific differences in the production of young, this study further illustrates the need to identify small-scale mechanisms to correctly understand the large-scale patterns of reproductive performance in territorial species. The repercussions of the observed habitat effect for local population development are discussed.  相似文献   

8.
Orchid Island, 92  km off the southeast coast of Taiwan, has the northernmost tropical forests in East Asia. We assessed effects of habitat management by Orchid Island inhabitants, the Yami people, on spider diversity by comparing assemblages collected from the ground to canopy among four habitats (natural forest, cultivated woodland, second growth forest and grasslands) that receive different degrees of disturbance. Species and guild composition did not differ among replicates of habitat but differed significantly among habitats. Variation in spider diversity was inversely correlated with vegetation density. Cultivated woodland subjected to an intermediate level of disturbances had a lower understory vegetation density than natural forest, but higher spider diversity. Neither insect abundance nor biomass varied significantly among habitats suggesting little room for effects of prey availability on spider diversity. It appears that the Yami people maintain high spider diversity on Orchid Island by generating novel habitat types with different vegetation structures and disturbance regimes.  相似文献   

9.
Although it is recognized that certain environmental factors are important determinants of the expression of melanin‐based traits, their influence in wild populations of animals is poorly known. One of these factors is the availability of amino acids that serve as precursors of melanins. Here we measured eumelanin and pheomelanin content in feathers of northern goshawk Accipiter gentilis nestlings, hypothesizing that, if the availability of melanin precursors is related to food abundance and habitat quality, plumage melanization should be affected by those variables. Although the eumelanin content increased with food abundance as predicted, the levels of this variable were higher in low‐quality habitats (homogeneous coniferous forests) and in nestlings in poor condition, and the pheomelanin content and eumelanin:pheomelanin ratio were lower and higher, respectively, in subpopulations where nestlings were in poorer condition. Therefore, environmental availability of melanin precursors seems to determine plumage melanization in goshawks, but our findings may also be explained by the differential effects of environmental oxidative stress on both forms of melanin, as eumelanin and pheomelanin production are favoured under high and low levels, respectively, of oxidative stress.  相似文献   

10.
Per Widén 《Ecography》1987,10(2):104-109
Predation by goshawks was studied in a central Swedish boreal forest area. Data were collected in winter (January–February) 1977-81 by tracking radio-tagged goshawks, and in the breeding season (April–July) by collecting prey remains at the nest. In the breeding season birds dominated the prey, amounting to 86% of prey number and 91% of prey biomass. Wood pigeon Columba palumbus , black grouse Tetrao tetrix , hooded crow Corvus corone cornix and jay Garrulus glandarius accounted for more than 50% of the prey animals, whereas capercaillie Tetrao urogallus and black grouse accounted for more than 50% of prey biomass. There was no functional response to black grouse density fluctuations. Every year goshawks killed significantly more females than males of both capercaillie and black grouse, due to high vulnerability of the grouse hens while laying and incubating. It was estimated that during spring and early summer goshawk predation removed 25% of the female, and 14% of the male black grouse population. In winter squirrel was the dominating prey, both in terms of number (79%) and weight (56%). The proportion of squirrel in the diet was equally high both in winters of low and high squirrel density. The high proportion of squirrel in the winterdiet, as compared to the breeding season, is believed to be due to squirrels having to accept an increased predation risk in winter, in order to feed efficiently enough.  相似文献   

11.
Bird conservation can be challenging in landscapes with high habitat turnover such as planted forests, especially for species that require large home ranges and juxtaposition of different habitats to complete their life cycle. The eurasian hoopoe (Upupa epops) has declined severely in western Europe but is still abundant in south-western France. We studied habitat selection of hoopoes in pine plantation forests using a multi-scale survey, including point-counts at the landscape level and radio-tracking at the home-range scale. We quantified habitat use by systematically observing bird behaviour and characterized foraging sites according to micro-habitat variables and abundance of the main prey in the study area, the pine processionary moth (Thaumetopoea pityocampa). At the landscape scale, hoopoes selected habitat mosaics of high diversity, including deciduous woods and hedgerows as main nesting sites. At the home-range scale, hoopoes showed strong selection for short grassland vegetation along sand tracks as main foraging habitats. Vegetation was significantly shorter and sparser at foraging sites than random, and foraging intensity appeared to be significantly correlated with moth winter nest abundance. Hoopoe nesting success decreased during the three study years in line with processionary moth abundance. Thus, we suggest that hoopoes need complementation between foraging and breeding habitats to establish successfully in pine plantations. Hoopoe conservation requires the maintenance of adjacent breeding (deciduous woods) and foraging habitats (short swards adjacent to plantation edges), and consequently depends on the maintenance of habitat diversity at the landscape scale.  相似文献   

12.
In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.  相似文献   

13.
The Northern Goshawk (Accipiter gentilis) occurs throughout the Holarctic region in wooded environments. Changes in food supply and breeding habitat, along with human encroachment into otherwise suitable habitat, have negatively impacted the goshawk in some regions. Thus, conservation of the species requires coordinated planning to restore and manage both habitat and human activities in goshawk territories. Using our work in the Sierra Nevada (Lake Tahoe Basin) as a case study, we investigated why territories were abandoned and identified actions needed to reverse conditions negatively impacting goshawks that should lead to more successful goshawk conservation worldwide. We summarized all nesting records available on the goshawk in the Basin, quantified human activity levels within and near frequently and infrequently occupied territories, and described the forest structure and species composition of territories and related these parameters to goshawk territory occupancy. As we hypothesized, reproductive success was higher within frequently occupied territories. Human activity was twice as high within infrequently as compared to frequently occupied territories. There was a greater extent of all types of roads and trails within the infrequently occupied territories. Our findings, along with results from Europe, suggest that goshawk protection has been insufficient in some regions and actions that will reduce anthropogenic disturbance should be initiated, including reducing and re‐routing human activity, and reducing the extent of roads and trails within territories. We provide guidance on how to prioritize territories for restoration.  相似文献   

14.
ABSTRACT Developing comprehensive conservation strategies requires knowledge of factors influencing population growth and persistence. Although variable prey resources are often associated with fluctuations in raptor demographic parameters, the mechanisms of food limitation are poorly understood, especially for a generalist predator like the northern goshawk (Accipiter gentilis). To determine the reproductive responses of goshawks to variable prey populations, we evaluated 823 goshawk breeding opportunities on the Kaibab Plateau, Arizona, USA, during 1994–2002. Concurrently, density was estimated for 4 prey species (2 avian, 2 mammalian). We explored the relationship between goshawk reproduction and prey density at one temporal scale (year) and 2 spatial scales (study area, forest type). Prey density for all 4 species combined accounted for 89% of the variation in goshawk reproduction within the entire study area (P < 0.001), 74% in mixed conifer forest (P = 0.003) and 85% in ponderosa pine (Pinus ponderosa) forest (P < 0.001). We found that an incremental increase in prey density resulted in a greater increase in goshawk reproduction in ponderosa pine forest than in mixed conifer forest, suggesting that the denser structural conditions of mixed conifer forest may have reduced prey availability. Red squirrel (Tamiasciurus hudsonicus) density explained more annual variation in goshawk reproduction within the study area (r2 = 0.87, P < 0.001), mixed conifer forest (r2 = 0.80, P = 0.001), and ponderosa pine forest (r2 = 0.85, P < 0.001) than did any other individual species. Although certain prey species were more strongly correlated with fluctuations in goshawk reproduction than were others, the high model selection uncertainty and the strong relationship between total prey density and number of goshawk fledglings produced indicated that alternate prey species were readily substituted for one another. Therefore, conservation strategies concerned with the status of goshawk populations should incorporate forest management practices that increase the abundance, diversity, and availability of prey resources.  相似文献   

15.
Abstract Orb web spiders face a dilemma: forage in open habitats and risk predation or forage in closed habitats to minimize risk but at reduced foraging profitability. We tested whether Argiope keyserlingi opts for safer habitats at the expense of foraging success by (i) determining habitat selection indices in open and closed habitats; (ii) marking and releasing individual juvenile, subadult and adults over two 4‐week periods to determine if life‐history stage influences habitat selection; and (iii) determining the biotic and abiotic environmental parameters that relate to A. keyserlingi abundance. We found that A. keyserlingi selected closed habitats. Sedge and anthropogenic structures were selected and trees were avoided. Juveniles were never found in open habitats, most likely because of high postdispersal mortality. Subadults and adults may shift from closed to open habitats while juveniles never shifted habitat. Foliage density, plant height, potential prey abundance, and mantid and bird abundance were correlated with A. keyserlingi abundance, with only bird abundance explaining habitat selection. We measured web capture area, spiral distance (distance between spiral threads) and the number of decoration arms (0, 1, 2, 3 or 4) in the field and did laboratory experiments to test the influence of (i) space and vegetation; (ii) prey abundance; and (iii) web damage, on web architecture. Argiope keyserlingi webs exhibited geometric plasticity by having larger prey capture areas and spiral distances in open habitats. Decoration design did not differ between habitats however. Variation in space availability, air temperature, prey abundance and web damage explained the variations in web architecture. Potential prey size and diversity differed between habitats but prey abundance did not. As large prey may be important for spider survivorship, foraging success appears to be compromised by occupying closed habitats.  相似文献   

16.
1. The distribution of the large orb‐weaving spider Argiope trifasciata in old field habitats of North America and the habitat selection process this species used was studied for 2 years. 2. Because web spiders have limited dispersal abilities and an energetically costly prey capture device, they do not have the ability to sample potential foraging sites. Structural complexity of the vegetation to which the web must be attached is relatively easy to assess. The hypothesis that the structural complexity is a primary factor in determining initial web site selection was tested both by relating the natural distribution of the spiders across habitats to vegetational complexity and by manipulating the complexity of the habitats in a series of experiments. 3. Argiope trifasciata was not distributed evenly among three old field vegetation types. Habitat complexity was related to spider density in both years although no measure of insect activity, prey capture, or prey consumption was correlated with spider distribution. 4. Three experimental manipulations were conducted to test the impact of habitat structure on spider establishment: (1) the amount of natural vegetation was reduced, (2) structures were added to a simple habitat, and (3) the complexity of the structures added was varied. In each case, spiders were introduced and establishment of webs was monitored. In all manipulations, spider establishment was related to the complexity of the substrate available. 5. These results are important for understanding the cues that influence foraging site selection and therefore provide insight into the distribution of species with limited dispersal abilities and high site investment requirements.  相似文献   

17.
Structurally complex habitats provide cover and may hinder the movement of animals. In predator–prey relationships, habitat structure can decrease predation risk when it provides refuges for prey or hinders foraging activity of predators. However, it may also provide shelter, supporting structures and perches for sit-and-wait predators and hence increase their predation rates. We tested the effect of habitat structure on prey mortality in aquatic invertebrates in short-term laboratory predation trials that differed in the presence or absence of artificial vegetation. The effect of habitat structure on prey mortality was context dependent as it changed with predator and prey microhabitat use. Specifically, we observed an ‘anti-refuge’ effect of added vegetation: phytophilous predators that perched on the plants imposed higher predation pressure on planktonic prey, while mortality of benthic prey decreased. Predation by benthic and planktonic predators on either type of prey remained unaffected by the presence of vegetation. Our results show that the effects of habitat structure on predator–prey interactions are more complex than simply providing prey refuges or cover for predators. Such context-specific effects of habitat complexity may alter the coupling of different parts of the ecosystem, such as pelagic and benthic habitats, and ultimately affect food web stability through cascading effects on individual life histories and trophic link strengths.  相似文献   

18.
19.
1. Trophic linkages between terrestrial and aquatic ecosystems are common and sensitive to disruption. However, there is little information on what causes variation in the strength and spatial scale of these linkages. 2. In the highly aquatic adults of the headwater salamander Gyrinophilus porphyriticus (family Plethodontidae), use of terrestrial prey decreases along a gradient from early‐ to late‐successional riparian forests. To understand the cause of this relationship, we tested the predictions that (i) terrestrial prey abundance is lower in late‐successional forests, and (ii) G. porphyriticus adults cannot move as far from the stream to forage in late‐successional forests, thus limiting access to terrestrial prey. 3. We established 100‐m long study reaches on six headwater streams in the Hubbard Brook Experimental Forest, New Hampshire. Three reaches were in early‐successional forests and three were in late‐successional forests. We conducted pitfall trapping for invertebrate prey in June and July of 2005, with three traps at 0, 2, 5 and 10 m from the stream at each reach. In June, July and August of 2004 and 2005, nighttime salamander surveys were conducted at each reach along ten, 10‐m long by 2.5‐m wide transects perpendicular to the stream. 4. Abundance of terrestrial prey was consistently lower in late‐successional forests, suggesting that consumption of terrestrial prey by G. porphyriticus is affected by prey abundance. Contrary to our prediction, G. porphyriticus adults moved farther from the stream in late‐successional forests, suggesting that habitat conditions in late‐successional forests do not limit movement away from the stream, and that lower abundances of terrestrial prey in these forests may cause salamanders to move farther from streams. 5. Our results provide novel insight on the extent of terrestrial habitat use by G. porphyriticus. More broadly, these results indicate that major habitat gradients, such as forest succession, can affect the strength and scale of terrestrial‐aquatic linkages. Application of this insight to the design of vegetation buffers along headwater streams would have widespread benefits to freshwater ecosystems.  相似文献   

20.
While sex allocation has been investigated productively at both population and family levels, as yet no general theory has been developed that is capable of linking processes at these two ecological scales, and very few empirical studies have examined cross‐scale patterns. In Finnish northern goshawks (Accipiter gentilis), nestling sex ratio of local subpopulations is related to the spatial and temporal variation in the abundance of their principal avian prey, woodland grouse. Using data from an urban breeding population in Hamburg, Germany, I investigated: (1) whether brood sex ratio of goshawks varies with diet composition at the family level; (2) whether such variation could reflect adaptive adjustment; and (3) how family‐level allocation can drive population‐level patterns, such as those observed in Finland. Feral pigeons (Columba livia) were the most important prey species, with a pooled contribution to total diet of 36%. Brood sex ratio varied significantly with the proportion of pigeons in the breeding‐season diet of pairs (increasing male bias). However, there was no evidence for sex‐differential effects of diet composition, so it remains unclear whether the observed sex‐ratio variation was an adaptive response. As all study pairs inhabited an (urban) environment where pigeons were unusually abundant, family‐level sex‐ratio adjustment caused a marked male bias in offspring sex ratio at the population level (male‐biased nestling sex ratio in four of five years; pooled data: 60% males). This suggests that the large‐scale variation observed in Finnish goshawk populations mirrors sex‐ratio adjustment shown by individual families in response to small‐scale environmental conditions. Apart from linking patterns empirically across ecological scales, this study is, to my knowledge, the first to demonstrate that family‐level brood sex ratio varies with realized resource use (diet composition) in a raptor species. Previous studies either failed to find significant associations or, more commonly, violated theoretical assumptions by measuring environmental prey abundance (often integrated over large areas) rather than realized prey use of individual breeding pairs. I conducted a meta‐analysis of offspring sex‐ratio data from 17 goshawk populations across Europe to put my results into perspective. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 937–951.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号