首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
ABSTRACT Bobcat (Lynx rufus) populations in the Midwestern United States experienced historic declines due to habitat loss and exploitation but have rebounded in recent decades. We investigated natal dispersal of juvenile bobcats from a population in south-central Indiana, USA, from 1999 to 2006. We radiocollared 16 juvenile bobcats (11 M, 5 F) and monitored them for 237–1,014 days (x̄ = 506). One female (20%) and 11 males (100%) dispersed from natal home ranges that averaged 14.6 km2 in size. Most juveniles (70%) initiated dispersal from mid-February through March, late in their first year. Only 5 bobcats (42%) ultimately established a final home range 63 ± 35 km2 in size 13–92 km (x̄ = 44) from their natal range 140 ± 45 days after initiating dispersal. Survival did not differ (P = 0.93) between dispersing (S = 0.73) and philopatric (S = 0.75) individuals, although 4 bobcats (3 M, 1 F) were killed in collisions with vehicles. We found dispersal of bobcats in fragmented landscapes is prolonged and often unsuccessful; the ability of dispersers to locate suitable vacant habitat patches may be vital to the continued growth of bobcat populations recolonizing the agricultural Midwest.  相似文献   

2.
Abstract: We captured and radiocollared 57 pronghorn (Antilocapra americana) fawns in western South Dakota, USA, during May 2002–2003 and radiotracked them through 15 months of age, by which time all surviving individuals had established a permanent home range. We classified 56% (n = 19) of fawns as dispersers and 44% (n = 15) as residents. Eighty-four percent (n = 16) of dispersers departed natal home ranges in late October and occupied winter home ranges for 102–209 days before dispersing to permanent home ranges during April 2003 and 2004. Dispersal distances from natal ranges to permanent home ranges varied from 6.2–267.0 km. Winter home-range sizes for all individual pronghorns varied from 39.4–509.6 km. Permanent home-range size for all individuals varied from 15.5–166.1 km2. Mean 95% permanent home-range size differed (P = 0.06) between residents (x̄ = 97.3 ± 15.1 km2) and dispersers (x̄ = 48.6 ± 16.0 km2), but was similar (P = 0.97) among sexes. Mean dispersal distance from natal to permanent home ranges was similar (P = 0.35) for males (x̄ = 54.2 ± 21.0 km) and females (x̄ = 26.3 ± 19.9 km). We suggest that habitat quality (i.e., patchiness) and pronghorn density, in part, stimulated dispersal. We hypothesize that as habitat patch size decreases, home range sizes and distance traveled during predispersal and dispersal movements by pronghorns will increase.  相似文献   

3.
Abstract Canada lynx (Lynx canadensis) were listed as a federally threatened species in 14 states at the southern extent of their geographic range in March 2000, with Maine being the only state in the northeastern United States known to support a resident population. Relatively little information is known about the ecology of lynx living at the southern edge of their range, including range requirements, movements, and spatial organization. Basic knowledge of lynx ecology is needed for federal recovery planning efforts. Between 1999 and 2004, we trapped and radiocollared 43 lynx (21 M, 22 F) in northern Maine in an intensively managed and predominantly early successional forested landscape. We estimated diurnal annual and seasonal home-range size for male and female lynx using the 85% fixed-kernel home-range estimator. Annual home ranges of adult male lynx (x̄ = 53.6 km2) were more than twice the size of adult female home ranges (x̄ = 25.7 km2). Home ranges of adult females during snow periods (x̄ = 38.3 km2) were nearly 3 times larger than their snow-free-period ranges (x̄ = 14.3 km2), whereas, snow-free ranges of adult males (x̄ = 58.8 km2) were slightly larger than their snow-period ranges (x̄ = 45.2 km2). We observed a limited amount of home-range overlap among lynx of the same sex (F: x̄ = 17.2%; M: x̄ = 11.8%). Lynx of opposite sex showed more extensive overlap (x̄ = 24.3%). Most home-range shifts of resident lynx were typically not extensive. Based on territory mapping, we estimated a minimum lynx density of 9.2–13.0 lynx/100 km2. We observed lynx spatial ecology and densities that were more similar to northern lynx populations when hares were abundant than to other southern lynx populations, suggesting that region-specific studies under varying habitat conditions and hare densities are needed to ensure realistic recovery goals and effective management of lynx at the southern extent of their range.  相似文献   

4.
Abstract Understanding interactions among bobcats (Lynx rufus) may lend insight into less understood life history traits of the bobcat and improve management of the species. Moreover, data from manipulative experiments pertaining to bobcat ecology are largely absent from the scientific literature. Therefore, we investigated bobcat spatial organization and habitat use after an experimental population reduction on an 11,735-ha study site in southwestern Georgia, USA. In response to an approximate 50% population reduction, male bobcats shifted their space use (26.4 ± 1.7% more shift relative to baseline) more (F1,3 = 138.08, P=0.001) than males where no bobcat removal occurred (28.1 ± 5.5% less shift relative to baseline). Dispersion of radio locations for all female bobcats increased following the population reduction; however, females that were exposed to the removal of a potentially interacting male remained more (F1,14 = 6.78, P = 0.021) static (increase in dispersion = 7.8 ± 7.3%) than females that were not exposed to removed males (increase in dispersion 41.2 ± 11.1%). Male bobcats likely shifted their central tendency to increase breeding opportunities, whereas the difference in dispersion of female radio locations may be the result of decreased intraspecific competition. Alternatively, reduced dispersion of females following harvest of neighboring males may increase the likelihood that remaining males will interact with females for breeding purposes. Neither habitat use nor habitat selection differed as a function of removal, suggesting that density-dependent habitat selection was not occurring on our study site. Although it is generally accepted that male bobcats use space to increase breeding opportunities, our study suggests that male bobcats may also influence space use of females, but in counterintuitive ways. Because bobcat movements are altered by harvest of neighbors, we suggest that inferring habitat quality for bobcats based on their space use patterns should be avoided unless researchers incorporate knowledge of both short- and long-term population perturbations.  相似文献   

5.
6.
We studied factors affecting density and spacing patterns in the pine marten Martes martes population inhabiting temperate forests of Bia?owieza National Park, eastern Poland. From 1985/1986 to 1995/1996 marten densities ranged from 3.63 to 7.57 individuals 10 km?2 (mean 5.4) and were positively correlated with abundance of forest rodents in the previous year. The rate of marten population growth was inversely density‐dependent and positively related to rodent density. Annual mortality rate averaged 0.384 and tended to be negatively related to marten densities. Mean annual home range of males (2.58 km2, SE=0.24) was larger than that of females (1.41 km2, SE=0.20). Seasonal home ranges also differed significantly between males and females. Both sexes held the smallest ranges in December–January. Female ranges increased in April–May, whereas those of males increased in June–September when they were mating. Fidelity of pine martens to their home ranges was very high. The mean shift between arithmetic centres of seasonal ranges was 0.25 km, and the ranges recorded in two consecutive seasons overlapped, on average, by 87–90%. We observed very little home range overlap between neighbouring male (mean 4–6%) or female (mean 6%) marten. Year round the neighbouring individuals of the same sex neither avoided nor attracted each other. Females attracted males only during the spring‐summer mating season. A review of other studies has documented that winter severity and seasonal variation in ecosystem productivity were essential factors shaping the biogeographic variation in pine marten densities between 41o and 68oN. The density of marten populations increased in areas with mild winters and lower seasonality. Maximum population densities (indicative of habitat carrying capacity) were correlated with mean winter temperature. In Europe, male home ranges increased with decreasing forest cover in a study area, whereas female ranges varied positively with rodent abundance.  相似文献   

7.
We examined vervet monkey (Chlorocebus pygerythrus) space use using GPS/UHF telemetry data from 10 vervet monkeys across six troops over 9 months within a 420 ha suburban eco‐estate. We documented a mean home range of 0.99 km2 (95% MCP) and 1.07 km2 (95% KDE) for females (n = 6), 1 km2 (95% MCP) and 1.50 km2 (95% KDE) for males (n = 4) and 0.87 km2 (95% MCP) and 1.12 km2 (95% KDE) for troops (n = 6), respectively, indicating that males and larger troops had larger home ranges. These relatively small home ranges included shared territorial boundaries and high home range overlap. Vervet monkey movements indicated higher morning activity levels, and habitat selection indicated significantly more use of golf course, urban residential and forest, thicket and woodland areas, and avoidance of wetland, grassland and shrub, and urban built‐up areas. Our results suggest that modified habitat use by vervet monkeys is a consequence of behavioural facilitation to access highly available food resources, thereby facilitating their persistence in green spaces in urban areas of South Africa. Conflict management is dependent on the conservation of sufficient natural habitats and food resources, to minimise their dependence on anthropogenic supplementary food resources and consequently reduce human–monkey conflict.  相似文献   

8.
Predation is the dominant source of mortality for white-tailed deer (Odocoileus virginianus) <6 months old throughout North America. Yet, few white-tailed deer fawn survival studies have occurred in areas with 4 predator species or have considered concurrent densities of deer and predator species. We monitored survival and cause-specific mortality from birth to 6 months for 100 neonatal fawns during 2013–2015 in the Upper Peninsula of Michigan, USA, while simultaneously estimating population densities of deer, American black bear (Ursus americanus), coyote (Canis latrans), bobcat (Lynx rufus), and gray wolf (Canis lupus). We estimated fawn predation risk in response to sex, birth mass, and date of birth. Six-month fawn survival pooled among years was 36%, and fawn mortality risk was not related to birth mass, date of birth, or sex. Estimated mean annual deer and predator densities were 334 fawns/100 km2, 25.9 black bear/100 km2, 23.8 coyotes/100 km2, 3.8 bobcat/100 km2, and 2.8 wolves/100 km2. Despite lower estimated per-individual kill rates, coyotes and black bears were the leading sources of fawn mortality because they had greater densities relative to bobcats and wolves. Our results indicate that the presence of more predator species in a system is not entirely additive in its effect on fawn survival. © The Wildlife Society, 2019  相似文献   

9.
We combined observations of bobcats (Lynx rufus) from bowhunters with remotely-sensed data to build models that describe habitat and relative abundance of this species in the agricultural landscape of Iowa, USA. We calculated landscape composition and configuration from publicly available land cover, census, road, hydrologic, and elevation data. We used multiple regression models to examine county-level associations between several explanatory variables and relative abundance of bobcats reported by surveyed bowhunters in each county. The most influential explanatory variables in the models were metrics associated with the presence of grassland, including Conservation Reserve, along with configuration of this perennial habitat with forests, although human population density and abundance of eastern cottontails (Sylvilagus floridanus) also correlated with abundance of bobcats. Validation of predictions against 3 years of independent data provided confidence in the models, with 66% of predictions within 1 bobcat/1,000 hunter-hours and 95% within 5 bobcats/1,000 hunter-hours of observed values. Once we accounted for landscape differences, no residual spatial trend was evident, despite relatively recent bobcat recolonization of Iowa. Models suggested that future range expansion of the bobcat population may be possible in some northern Iowa counties where habitat composition is similar to counties in southern Iowa where bobcats are abundant. Results from the county-level model have been useful to the Iowa Department of Natural Resources in evaluating the expansion of this once rare species and for delineating harvest opportunities. © 2011 The Wildlife Society.  相似文献   

10.
Acquiring demographic data for moose (Alces alces) can be difficult because they are solitary in nature, they prefer densely vegetated and mountainous habitats, and they often occur at low density. Such data, however, are essential for long-term population monitoring, evaluating management practices, and effective conservation. Winter aerial surveys are the standard method for estimating moose population parameters, but they can be logistically challenging, expensive, and subject to sightability correction, which necessitates the capture of study animals for initial model development. Herein, we demonstrate a noninvasive alternative approach for estimating population parameters of moose in northern Yellowstone National Park, where aerial surveys were attempted but proved ineffective. We determined individual moose genotype and sex using microsatellite polymerase chain reaction amplification of DNA extracted from fecal pellets, integrated ancillary pellet sample data (i.e., metadata) in genotype analysis to aid in the identification of matching genotypes, and used spatially explicit capture-recapture (SECR) modeling to estimate sex-specific density and abundance. We collected 616 samples over 3 consecutive winters (Dec 2013–Apr 2016) and within 2 sampling occasions each winter. We recorded 514 captures of 142 individual moose (69 males, 73 females). Overall density ranged between 0.062 moose/km2 and 0.076 moose/km2 and averaged 0.034/km2 for females and 0.033/km2 for males. Abundance estimates were 150 moose in 2013 (female = 76, 95% CI = 55–105; male = 74, 95% CI = 54–103), 186 in 2014 (female = 95, 95% CI = 63–142; male = 91, 95% CI = 60–138), and 160 in 2015 (female = 79, 95% CI = 58–108; male = 81, 95% CI = 59–110). Average population sex ratio was 0.99 males/female. We demonstrate that SECR analysis of fecal DNA genotypes, using metadata in genotype analysis to help identify matching moose genotypes, is a promising alternative method for estimating sex-specific density and abundance of a low-density moose population in a mountainous and forested landscape.  相似文献   

11.
Urbanization can result in the fragmentation of once contiguous natural landscapes into a patchy habitat interspersed within a growing urban matrix. Animals living in fragmented landscapes often have reduced movement among habitat patches because of avoidance of intervening human development, which potentially leads to both reduced gene flow and pathogen transmission between patches. Mammalian carnivores with large home ranges, such as bobcats (Lynx rufus), may be particularly sensitive to habitat fragmentation. We performed genetic analyses on bobcats and their directly transmitted viral pathogen, feline immunodeficiency virus (FIV), to investigate the effects of urbanization on bobcat movement. We predicted that urban development, including major freeways, would limit bobcat movement and result in genetically structured host and pathogen populations. We analysed molecular markers from 106 bobcats and 19 FIV isolates from seropositive animals in urban southern California. Our findings indicate that reduced gene flow between two primary habitat patches has resulted in genetically distinct bobcat subpopulations separated by urban development including a major highway. However, the distribution of genetic diversity among FIV isolates determined through phylogenetic analyses indicates that pathogen genotypes are less spatially structured-exhibiting a more even distribution between habitat fragments. We conclude that the types of movement and contact sufficient for disease transmission occur with enough frequency to preclude structuring among the viral population, but that the bobcat population is structured owing to low levels of effective bobcat migration resulting in gene flow. We illustrate the utility in using multiple molecular markers that differentially detect movement and gene flow between subpopulations when assessing connectivity.  相似文献   

12.
ABSTRACT Controversy over bobcat (Lynx rufus) management in the northern Lower Peninsula of Michigan (NLP), USA, stimulated a need for information on the distribution of Michigan bobcats. From March 2003 to October 2004, we conducted a radiotelemetry and scentstation survey study of bobcats in the NLP. We developed a spatial model to predict bobcat distribution throughout the NLP based on bobcat area requirements, habitat and landscape variables derived from remotely sensed land-cover data, and a multivariate distance statistic. Bobcat 50% minimum convex polygon core areas were comprised of more lowland forest (51%), nonforested wetlands (9%), and streams (3%) than the surrounding NLP. The NLP was comprised primarily of upland forest (44%) and field (32%). Habitat in the northeast and central regions of the NLP was most similar to the habitat composition of bobcat core areas. This model will be useful in aiding Michigan wildlife management agencies with assessing the status and distribution of the NLP bobcat population by identifying areas important to bobcats and supporting the development of regional strategies for carnivore conservation.  相似文献   

13.
ABSTRACT We estimated carrying capacity for sea otters (Enhydra lutris) in the coastal waters of British Columbia, Canada, by characterizing habitat according to the complexity of nearshore intertidal and sub-tidal contours. We modeled the total area of complex habitat on the west coast of Vancouver Island by first calculating the complexity of the Checleset Bay-Kyuquot Sound (CB-KS) region, where sea otters have been at equilibrium since the mid-1990s. We then identified similarly complex areas on the west coast of Vancouver Island (WCVI model), and adapted the model to identify areas of similar complexity along the entire British Columbia coast (BC model). Using survey data from the CB-KS region, we calculated otter densities for the habitat predicted by the 2 models. The density estimates for CB-KS were 3.93 otters/km2 and 2.53 otters/km2 for the WCVI and BC models, respectively, and the resulting 2 estimates of west coast of Vancouver Island complex habitat carrying capacity were not significantly different (WCVI model: 5,123, 95% CI = 3,337–7,104; BC model: 4,883, 95% CI = 3,223–6,832). The BC model identified the region presently occupied by otters on the central British Columbia coast, but the amount of coast-wide habitat it predicted (5,862 km2) was relatively small, and the associated carrying capacity estimate (14,831, 95% CI = 9,790–20,751) was low compared to historical accounts. We suggest that our model captured a type of high-quality or optimum habitat prevalent on the west coast of Vancouver Island, typified by the CB-KS region, and that suitable sea otter habitat elsewhere on the coast must include other habitat characteristics. We therefore calculated a linear, coast-wide carrying capacity of 52,459 sea otters (95% CI = 34,264–73,489)—a more realistic upper limit to sea otters in British Columbia. Our carrying capacity estimates are helping set population recovery targets for sea otters in Canada, and our habitat predictions represent a first step in Critical Habitat identification. This habitat-based approach to estimating carrying capacity is likely suitable for other nonmigratory, density-dependent species.  相似文献   

14.
Abstract: Fishers (Martes pennanti) were almost extirpated in Ontario, Canada, south of the French and Mattawa rivers by the 1940s but have recolonized much of their former range over the past several decades. We assessed the effect of the current harvest quota on a fisher population in eastern Ontario by estimating home range size and population density from a sample of radiocollared animals. Mean (± SD) adult home ranges (based on annual 95% min. convex polygons) were consistently smaller than those reported in the literature (M: 11 ± 4.4 km2; F: 2.1 ± 0.8 km2), with up to 71% overlap of adjacent intrasexual home ranges. This yielded an estimated adult fisher population density of 32.7/100 km2 of suitable habitat, as defined by the habitat composition within observed home ranges. We further estimated that between 2003 and 2005, trappers harvested 17.8-42.3% of the pretrapping population. These results suggest that although current fisher population density is high in our study area compared to reported densities in other areas, harvest rate is also high and an increase in quota is unwarranted.  相似文献   

15.
Abstract: Despite its importance for wildlife, most forests in the Pacific Northwest contain low volumes of large downed wood compared to fine woody debris (FWD). We used a replicated experiment to compare short-term responses of deer mice (Peromyscus maniculatus) and western red-backed voles (Clethrionomys californicus) among 3 arrangements of FWD: piled, lopped and scattered, and pile burning, a commonly used method of fuel reduction in commercial Douglas fir (Pseudotsuga menziesii) forests in southwest Oregon, USA. We assessed habitat use, density, and survival of mice and voles during 2 consecutive summers (Jun—Aug 1999 and 2000). Both mice and voles used FWD cover disproportionately from its availability, and they differed in their responses to specific FWD arrangements. Mice used piled FWD (proportional use = 37.0%, 90% CI = 33.0–44.0) 43% more than expected (26.0). Number of mice captured (x̄ = 1.9 mice, 90% CI = 1.5–2.5) and index of home range size (x̄ = 4.8 m, 90% CI = 0.7–8.9) at individual FWD piles decreased up to 16% and increased up to 50%, respectively, for each 1-m increase in distance from piles. Voles used all FWD cover classes in proportion to availability, but number of voles captured increased slightly (x̄ = 0.016 voles/m, 90% CI = 0.001–0.031) for each 1-m increase in distance from piles. Piled FWD had no discernable effect on population density and apparent survival of mice, but analyses had low power (0.25, 0.67). Our results suggest that piling FWD would benefit deer mice, whereas lopped and scattered FWD might benefit voles. Thus, a combination of methods to reduce fire risk should be considered to accommodate multiple small mammal species. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):625–632; 2008)  相似文献   

16.
Abstract: Knowledge of factors that influence habitat selection by wildlife leads to better understanding of habitat ecology and management. Therefore, we compared microclimate and predation risk as factors influencing the selection of stopping points (mid-day coverts, nocturnal roosts) by northern bobwhites (Colinus virginianus). Stopping points were located using radiomarked bobwhites in the Texas Panhandle, USA, during 2002–2003. We obtained blackbody temperatures of microclimates and assessed predation risk (angles of obstruction for aerial predators, vegetation profiles for terrestrial predators) at stopping points and paired random points. Summer coverts showed fewer degree-minutes of hyperthermic exposure (blackbody temperatures >39°C; = 655.0, SE = 4.1 for coverts, = 2,255.5, SE = 4.9 for random; 1200–1600 hr) and a lower risk to predators (e.g., 95% confidence intervals [CIs] of angles of obstruction = 87.8–90.8° for coverts, 55.9–70.6° for random). Summer roost temperatures were similar to paired random sites ( = −13.9°C, SE = 0.6 for roost, = 13.9°C, SE = 0.7 for random) as were winter roost temperatures ( = −1.3°C, SE = 0.7 for roosts, = −1.4°C, SE = 0.8 for random). There were minor issues of habitat selection of winter or summer roosts based on predation risk (e.g., 95% CIs of vegetation profiles of summer roosts and random sites did not overlap at lower strata). We concluded other selection factors likely exist for winter roosts because microclimate and predation risk assessments between winter roosts and random sites showed no difference. Similarly, other selection factors may exist for summer roosts, as they showed only a weak difference in terrestrial predation risk and no difference in microclimate in comparison to random sites. We concluded microclimate was the primary selection factor for coverts because prevention of hyperthermia necessitated that bobwhites select cooler microclimates within the study area.  相似文献   

17.
Territorial activity was studied using satellite tracking of four brown bears (Ursus arctos) in Kamchatka in 2005–2006 and three brown bears on Sakhalin in 2011–2012. The size of annual home ranges was 6.09–27.58 km2 for females and 153.12 km2 for males. The size of the nuclear zone of the annual home ranges did not exceed 1.68 km2. Seasonal home ranges were largest in August-September and smallest in May. The home ranges of two females in Kamchatka were significantly overlapped, the lesser degree of overlap was noted for two females on Sakhalin. The nature of the use of the study area by bears, essentially depends on the seasonal distribution of food, in particular salmon.  相似文献   

18.
Bobcats are opportunistic felids occurring in a diverse range of habitats and with a widespread distribution from southern Canada to southern Mexico. To explore why the bobcat's distribution stops at the Isthmus of Tehuantepec, we modelled the ecological niches, projected as potential distributions, of the felid community (bobcat Lynx rufus, puma Puma concolor, jaguar Panthera onca, margay Leopardus wiedii, jaguarundi Herpailurus yagouaroundi, and ocelot Leopardus pardalis) in southern Mexico, using occurrence data, environmental maps, the computer algorithm GARP, and a GIS platform. The resulting geographical projection of the ecological niche of bobcats extends south of the Isthmus of Tehuantepec, suggesting that ecological conditions exist for the establishment of populations. The overlap of the modelled distribution of the bobcat was large with that of the puma (97%), but low with that of the ocelot (44%), margay (46%), jaguar (49%), and jaguarundi (52%), the latter three having relatively similar size and feeding habits to bobcats. Moreover, an independent analysis computing a geographic co‐occurrence index showed a similar trend of geographic avoidance (values 0.15), while all felids, except bobcats, showed a geographic co‐occurrence in southern Mexico (values ranging from ?1.91 to 4.71). The Isthmus of Tehuantepec, a lowland region with subtropical habitat, is unlikely to serve as a geographic and ecological barrier to bobcats. As mammal inventories have been conducted for over a century in this region with no records of bobcats, it is unlikely that bobcats are present but have just not been seen. Fossil records also provide no support for the presence of bobcats in that region in the past. Thus, competitive interactions with other felid species appear important in limiting the southern distribution of bobcats, preventing dispersal to a suitable but geographically reduced area south of the Isthmus of Tehuantepec.  相似文献   

19.
ABSTRACT The abundance and distribution of carnivores and their habitat are key information needed for status assessment, conservation planning, population management, and assessment of the effects of human development on their habitat and populations. We developed a habitat quality rating system, using existing wolverine (Gulo gulo) distribution, wolverine food, ecosystem mapping, and human development data. We used this and empirically derived estimates of wolverine density to predict wolverine distribution and abundance at a provincial scale. Density estimates for wolverines in high-quality habitat averaged 6.2 wolverines/1,000 km2 (95% CI = 4.2–9.5). We predicted mean densities ranging from 0.3/1,000 km2 in rare-quality habitat to 4.1/1,000 km2 in moderate-quality habitat. Our predicted population estimate for wolverines in British Columbia was 3,530 (95% CI = 2,700-4,760). We predicted highest densities of wolverines in interior mountainous regions, moderate densities in interior plateau and boreal forest regions, and low densities in mainland coastal regions and drier interior plateaus. We predicted that wolverines would be rare on Vancouver Island, along the outer mainland coast, and in the dry interior forests, and absent from the Queen Charlotte Islands, interior grassland environments, and areas of intensive urban development.  相似文献   

20.
Abstract: Wildlife researchers often test whether animals use resources disproportionately relative to availability (i.e., selectively). However, the traditional estimate of availability at the landscape scale (resource proportions on the landscape) may be inaccurate and lead to false conclusions. We calculated the chance of falsely finding selection (type I error rate) when the traditional estimate of availability is used. True availability was estimated by Monte Carlo simulations with randomly located home ranges and compared to the traditional estimate to calculate type I error rates. Tests were conducted with α = 0.05 for different home-range sizes (1 to 1,000 km2) and 4 habitat patterns. Landscape proportions did not equal proportions of habitats in random home ranges (traditional estimate ≠ true availability). Type I error rates were ≥0.24 and increased with number of animals tested and decreased with home-range size and number of habitats. Therefore, researchers should use randomly located home ranges instead of landscape proportions to estimate availability at the landscape scale. We evaluated a goodness-of-fit test for comparing habitat proportions between randomly located home ranges and observed home ranges. Type I error rates for this method were ≤0.08, regardless of number of animals, home-range size, and number of habitats tested. We evaluated this method for 2 species with different home-range sizes and predicted habitat selection patterns: mountain lions (Puma concolor, ∼ 700 km2, relatively nonselective) and mule deer (Odocoileus hemionus, ∼ 16 km2, relatively selective). This method yielded results consistent with predictions, whereas the traditional method using landscape proportions to estimate availability did not. Randomly located, simulated home ranges are superior to landscape proportions for estimating availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号