首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown negative associations between wind energy development and breeding birds, including species of conservation concern. However, the magnitude and causes of such associations remain uncertain, pending detailed ‘before‐after‐control‐intervention’ (BACI) studies. We conducted one of the most detailed such studies to date, assessing the impacts of terrestrial wind energy development on the European Golden Plover Pluvialis apricaria, a species with enhanced protection under European environmental law. Disturbance activity during construction had no significant effect on Golden Plover breeding abundance or distribution. In contrast, once turbines were erected, Golden Plover abundance was significantly reduced within the wind farm (?79%) relative to the baseline, with no comparable changes in buffer or control areas. Golden Plovers were significantly displaced by up to 400 m from turbines during operation. Hatching and fledging success were not affected by proximity to turbine locations either during construction or operation. The marked decline in abundance within the wind farm during operation but not construction, together with the lack of evidence for changes in breeding success or habitat, strongly suggests the displacement of breeding adults through behavioural avoidance of turbines, rather than a response to disturbance alone. It is of critical importance that wind farms are appropriately sited to prevent negative wildlife impacts. We demonstrate the importance of detailed BACI designs for quantifying the impacts on birds, and recommend wider application of such studies to improve the evidence base surrounding wind farm impacts on birds.  相似文献   

2.
The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m), bat activity (measured as the probability of a bat "pass" per hour) decreases from 84% (71-91%) to 28% (11-54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m) from operating turbines (activity decreases from 80% (65-89%) to 59% (32-81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat.  相似文献   

3.
Wind farms are steadily growing across Europe, with potentially detrimental effects on wildlife. Indeed, cumulative impacts in addition to local effects should be considered when planning wind farm development at a regional scale, and mapping the potential risk to bats at this scale would help in the large-scale planning of wind turbines and focus field surveys on vulnerable areas. Although modelling offers a powerful approach to tackle this goal, its application has been thus far neglected. We developed a simple regional-scale analysis in an area of central Italy (Molise region) that is undergoing considerable wind farm development. We implemented species distribution models (SDMs) for two bat species vulnerable to wind farm impact, Nyctalus leisleri and Pipistrellus pipistrellus. We developed risk maps by overlaying SDMs for the two species with turbine locations, assessed the alteration of the landscape patterns of foraging habitat patches determined by the wind turbines, and identified highly vulnerable areas where wind farm construction would be particularly risky. SDMs were statistically robust (AUC ≥0.8 for both species) and revealed that 41 % of the region offers suitable foraging habitat for both species. These areas host over 50 % of the existing or planned wind farms, with 21 % of the turbines located within 150 m of forest edges, suggesting an increase in fatality risk. The alterations in suitable foraging patches consisted of a 7.7 % increase in the number of patches, a 10.7 % increase in the shape index, and a 8.1 % decrease in the mean patch area. The region’s western portion, which is most suitable to both species, requires careful consideration with regard to future wind farm planning.  相似文献   

4.
With upcoming global wind-energy build-out estimated in millions of units, cumulative environmental impacts must be considered and understood to promote responsible expansion of this renewable energy source. In June 2009, 30 wildlife scientists convened in Racine, Wisconsin, USA to identify key research priorities concerning wind energy's potential impacts on migratory wildlife (birds and bats). This working group suggested 4 areas where improved science is most needed to evaluate the impacts of wind-energy development on migrating animals more accurately than can be accomplished today: 1) standardized protocols and definitions; 2) new methods and models for assessing and forecasting risk; 3) documenting lethal and sub-lethal effects at existing wind facilities; and 4) improved facility-site access, data access, and data management for researchers. Focused research based on these priorities will both quantify potential risks associated with wind-energy development and help derive science-based, peer-reviewed, best-management practices for existing and future wind projects. © 2011 The Wildlife Society.  相似文献   

5.
ABSTRACT For comparing impacts of bird and bat collisions with wind turbines, investigators estimate fatalities/megawatt (MW) of rated capacity/year, based on periodic carcass searches and trials used to estimate carcasses not found due to scavenger removal and searcher error. However, scavenger trials typically place ≥10 carcasses at once within small areas already supplying scavengers with carcasses deposited by wind turbines, so scavengers may be unable to process and remove all placed carcasses. To avoid scavenger swamping, which might bias fatality estimates low, we placed only 1–5 bird carcasses at a time amongst 52 wind turbines in our 249.7-ha study area, each carcass monitored by a motion-activated camera. Scavengers removed 50 of 63 carcasses, averaging 4.45 days to the first scavenging event. By 15 days, which corresponded with most of our search intervals, scavengers removed 0% and 67% of large-bodied raptors placed in winter and summer, respectively, and 15% and 71% of small birds placed in winter and summer, respectively. By 15 days, scavengers removed 42% of large raptors as compared to 15% removed in conventional trials, and scavengers removed 62% of small birds as compared to 52% removed in conventional trials. Based on our methodology, we estimated mean annual fatalities caused by 21.9 MW of wind turbines in Vasco Caves Regional Preserve (within Altamont Pass Wind Resource Area, California, USA) were 13 red-tailed hawks (Buteo jamaicensis), 12 barn owls (Tyto alba), 18 burrowing owls (Athene cunicularia), 48 total raptors, and 99 total birds. Compared to fatality rates estimated from conventional scavenger trials, our estimates were nearly 3 times higher for red-tailed hawk and barn owl, 68% higher for all raptors, and 67% higher for all birds. We also found that deaths/gigawatt-hour of power generation declined quickly with increasing capacity factor among wind turbines, indicating collision hazard increased with greater intermittency in turbine operations. Fatality monitoring at wind turbines might improve by using scavenger removal trials free of scavenger swamping and by relating fatality rates to power output data in addition to rated capacity (i.e., turbine size). The resulting greater precision in mortality estimates will assist wildlife managers to assess wind farm impacts and to more accurately measure the effects of mitigation measures implemented to lessen those impacts.  相似文献   

6.
Bat fatalities at wind facilities have been reported worldwide, and environmental impact assessments depend on searches for carcasses around wind turbines to quantify impacts. Some of the carcasses may go undetected by search teams or be removed by scavengers during search intervals, so these biases must be evaluated and taken into account in fatality estimation. We investigated the influence of different factors on searcher efficiency and scavenger removal in a dry forest area in northeastern Brazil, one of the regions with the highest density of wind turbines in the Neotropics. We conducted searcher efficiency and scavenger removal trials around 34 wind turbines from January 2017 to January 2018. Searcher efficiency was influenced by cover type, season, and carcass size, ranging between 12% for small bats in shrub vegetation during the rainy season and 96% for large bats in absent or sparse vegetation during the dry season. Carcass type and season affected scavenger removal; carcass persistence time was shorter for chicks (1.2 days) than for bats and mice (2.1 days), and the probability of a carcass persisting for a whole day was higher in the rainy season, while the probability of carcass persistence for 7, 14, and 28 days was higher in the dry season. The scavenger community was composed of canids, birds of prey, and insects, with systematic removal of carcasses by the crab-eating fox (Cerdocyon thous) throughout the year and by dung beetles in the rainy season. Based on our findings, impact assessments of wind facilities on bats should conduct searcher efficiency trials in all seasons and cover types around wind turbines, using bat carcasses or models of different sizes. Scavenger removal trials should cover all seasons as well, and use mouse carcasses (but not chick carcasses) as surrogates for bats.  相似文献   

7.
Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats, considering the large geographical catchment areas of German wind turbines for this species.  相似文献   

8.
Abstract Wind power is one of the fastest growing sectors of the energy industry. Recent studies have reported large numbers of migratory tree-roosting bats being killed at utility-scale wind power facilities, especially in the eastern United States. We used thermal infrared (TIR) cameras to assess the flight behavior of bats at wind turbines because this technology makes it possible to observe the nocturnal behavior of bats and birds independently of supplemental light sources. We conducted this study at the Mountaineer Wind Energy Center in Tucker County, West Virginia, USA, where hundreds of migratory tree bats have been found injured or dead beneath wind turbines. We recorded nightly 9-hour sessions of TIR video of operating turbines from which we assessed altitude, direction, and types of flight maneuvers of bats, birds, and insects. We observed bats actively foraging near operating turbines, rather than simply passing through turbine sites. Our results indicate that bats 1) approached both rotating and nonrotating blades, 2) followed or were trapped in blade-tip vortices, 3) investigated the various parts of the turbine with repeated fly-bys, and 4) were struck directly by rotating blades. Blade rotational speed was a significant negative predictor of collisions with turbine blades, suggesting that bats may be at higher risk of fatality on nights with low wind speeds.  相似文献   

9.
Wind power is a fast-growing energy source for electricity production, and some environmental impacts (e.g. noise and bird collision) are pointed out. Despite extensive land use (2600–6000 m2/MW), it is said that most of these impacts have been resolved by technological development and proper site selection. The results in this paper suggest that: (i) wind farms kill millions of birds yearly around the world, and the high mortality of rare raptors is of particular concern; (ii) wind farms on migration routes are particularly dangerous, and it is difficult to find a wind power site away from migration routes because there is no guarantee that migration routes will not vary; (iii) according to the presented model of collision probability, the rotor speed does not make a significant difference in collision probability; the hub is the most dangerous part, and large birds (e.g. raptors) are at great risk; and, (iv) based on the field observation of squirrels’ vocalisation (i.e. anti-predator behaviour), there are behavioural differences between squirrels at the wind turbine site and those at the control site. Noise from wind turbines (when active) may interfere with the lives of animals beneath the wind turbines.

US Government guidelines and the Bern Convention's report have described adverse impacts of wind energy facilities on wildlife and have put forward recommendations. In addition to these documents, the following points derived from the discussion in this paper should be noted for the purpose of harmonising wind power generation with wildlife conservation: (i) engineers need to develop a turbine form to reduce the collision risk at the hub; (ii) institute long-term monitoring, including a comparison between bird mortality before and after construction; and (iii) further evaluate impacts of turbine noise on anti-predator wildlife vocalisations.  相似文献   


10.
ABSTRACT Our purpose is to provide researchers, consultants, decision-makers, and other stakeholders with guidance to methods and metrics for investigating nocturnally active birds and bats in relation to utility-scale wind-energy development. The primary objectives of such studies are to 1) assess potential impacts on resident and migratory species, 2) quantify fatality rates on resident and migratory populations, 3) determine the causes of bird and bat fatalities, and 4) develop, assess, and implement methods for reducing risks to bird and bat populations and their habitats. We describe methods and tools and their uses, discuss limitations, assumptions, and data interpretation, present case studies and examples, and offer suggestions for improving studies on nocturnally active birds and bats in relation to wind-energy development. We suggest best practices for research and monitoring studies using selected methods and metrics, but this is not intended as cookbook. We caution that each proposed and executed study will be different, and that decisions about which methods and metrics to use will depend upon several considerations, including study objectives, expected and realized risks to bird and bat populations, as well as budgetary and logistical considerations. Developed to complement and extend the existing National Wind Coordinating Committee document “Methods and Metrics for Assessing Impacts of Wind Energy Facilities on Wildlife” (Anderson et al. 1999), we provide information that stakeholders can use to aid in evaluating potential and actual impacts of wind power development on nocturnally active birds and bats. We hope that decision-makers will find these guidelines helpful as they assemble information needed to support the permitting process, and that the public will use this guidance document as they participate in the permitting processes. We further hope that the wind industry will find valuable guidance from this document when 1) complying with data requirements as a part of the permitting process, 2) evaluating sites for potential development, 3) assessing impacts of operational wind-energy facilities, and 4) mitigating local and cumulative impacts on nocturnally active birds and bats.  相似文献   

11.
The interaction between birds and wind turbines is an important factor to consider when a wind farm is constructed. A wind farm and two control areas were studied in Tarifa (Andalusia Province, southern Spain, 30STF590000–30STE610950). Variables were studied along linear transects in each area and observations of flight were also recorded from fixed points in the wind farm. The main purpose of our research was to determine the impact and the degree of flight behavioural change in birds flights resulting from a wind farm. Soaring birds can detect the presence of the turbines because they change their flight direction when they fly near the turbines and their abundance did not seem to be affected. This is also supported by the low amount of dead birds we found in the whole study period in the wind farm area. More studies will be necessary after and before the construction of wind farms to assess changes in passerine populations. Windfarms do not appear to be more detrimental to birds than other man-made structures.  相似文献   

12.
Assessing the impacts of avian collisions with wind turbines requires reliable estimates of avian flight intensities and altitudes, to enable accurate estimation of collision rates, avoidance rates and related effects on populations. At sea, obtaining such estimates visually is limited not only by weather conditions but, more importantly, because a high proportion of birds fly at night and at heights above the range of visual observation. We used vertical radar with automated bird‐tracking software to overcome these limitations and obtain data on the magnitude, timing and altitude of local bird movements and seasonal migration measured continuously at a Dutch offshore wind farm. An estimated 1.6 million radar echoes representing individual birds or flocks were recorded crossing the wind farm annually at altitudes between 25 and 115 m (the rotor‐swept zone). The majority of these fluxes consisted of gull species during the day and migrating passerines at night. We demonstrate daily, monthly and seasonal patterns in fluxes at rotor heights and the influence of wind direction on flight intensity. These data are among the first to show the magnitude and variation of low‐altitude flight activity across the North Sea, and are valuable for assessing the consequences of developments such as offshore wind farms for birds.  相似文献   

13.
The reasons why bats are coming into contact with wind turbines are not yet well understood. One hypothesis is that bats are attracted to wind turbines and this attraction may be because bats perceive or misperceive the turbines to provide a resource, such as a foraging or roosting site. During post-construction fatality searches at a wind energy facility in the southern Great Plains, U.S., we discovered bat feces near the base of a wind turbine tower, which led us to hypothesize that bats were actively roosting and/or foraging at turbines. Thus over 2 consecutive years, we conducted systematic searches for bat feces on turbines at this site. We collected 72 bat fecal samples from turbines and successfully extracted DNA from 56 samples. All 6 bat species known to be in the area were confirmed and the majority (59%) were identified as Lasiurus borealis; a species that also comprised the majority of the fatalities (60%) recorded at the site. The presence of bat feces provides further evidence that bats were conducting activities in close proximity to wind turbines. Moreover, feces found in areas such as turbine door slats indicated that bats were using turbines as night or foraging roosts, and further provided evidence that bats were active near the turbines. Future research should therefore aim to identify those features of wind turbines that bats perceive or misperceive as a resource, which in turn may lead to new minimization strategies that effectively reduce bat fatalities at wind farms.  相似文献   

14.
Wind farming is a relatively new form of obtaining energy that does not cause air pollution or other forms of environmental degradation associated with fossil fuel technologies. However, their use impacts on the environment, and the current rate at which they are being put into operation, combined with poor understanding of their medium- and long-term impact, is a cause of concern. Wind farms represent a new source of impact and disturbance for birds that adds to the long list of disturbance factors caused by human activity, such as power lines, radio and television towers, highways, glass windows, the practice of poisoning, illegal hunting and overexploitation. Due to the precarious situation of several bird species and their decline, any additional cause of mortality may be significant and should give rise to increased attention and research. The aim of the present work is to analyse the effect of the “Sierra de Aguas” wind farm on bird density and abundance, flight behaviour, and bird mortality. Mortality rates did not increase due to the presence of the wind turbines. The results suggest that the presence and operation of the wind turbines did not have a clearly negative effect on passerine birds present in the region where wind farm is located. However, raptors used the space around the wind farm with lower frequency than prior to its existence, which represented a displacement of the home range of these species.  相似文献   

15.
Flight behaviour characteristics such as flight altitude and avoidance behaviour determine the species-specific collision risk of birds with wind turbines. However, traditional observational methods exhibit limited positional accuracy. High-resolution GPS telemetry represents a promising method to overcome this drawback. In this study, we used three-dimensional GPS tracking data including high-accuracy tracks recorded at 3-s intervals to investigate the collision risk of breeding male Montagu's Harriers Circus pygargus in the Dutch–German border region. Avoidance of wind turbines was quantified by a novel approach comparing observed flights to a null model of random flight behaviour. On average, Montagu's Harriers spent as much as 8.2 h per day in flight. Most flights were at low altitude, with only 7.1% within the average rotor height range (RHR; 45–125 m). Montagu's Harriers showed significant avoidance behaviour, approaching turbines less often than expected, particularly when flying within the RHR (avoidance rate of 93.5%). For the present state, with wind farms situated on the fringes of the regional nesting range, collision risk models based on our new insights on flight behaviour indicated 0.6–2.0 yearly collisions of adult males (as compared with a population size of c. 40 pairs). However, the erection of a new wind farm inside the core breeding area could markedly increase mortality (up to 9.7 yearly collisions). If repowering of the wind farms was carried out using low-reaching modern turbines (RHR 36–150 m), mortality would more than double, whereas it would stay approximately constant if higher turbines (RHR 86–200 m) were used. Our study demonstrates the great potential of high-resolution GPS tracking for collision risk assessments. The resulting information on collision-related flight behaviour allows for performing detailed scenario analyses on wind farm siting and turbine design, in contrast to current environmental assessment practices. With regard to Montagu's Harriers, we conclude that although the deployment of higher wind turbines represents an opportunity to reduce collision risk for this species, precluding wind energy developments in core breeding areas remains the most important mitigation measure.  相似文献   

16.
As wind turbine-caused mortality of birds and bats increases with increasing wind energy capacity, accurate fatality estimates are needed to assess effects, identify collision factors, and formulate mitigation. Finding a larger proportion of collision victims reduces the magnitude of adjustment for the proportion not found, thus reducing opportunities for bias. We tested detection dogs in trials of bat and small-bird carcasses placed randomly in routine fatality monitoring at the Buena Vista and Golden Hills Wind Energy projects, California, USA, 2017. Of trial carcasses placed and confirmed available before next-day fatality searches, dogs detected 96% of bats and 90% of small birds, whereas humans at a neighboring wind project detected 6% of bats and 30% of small birds. At Golden Hills dogs found 71 bat fatalities in 55 searches compared to 1 bat found by humans in 69 searches within the same search plots over the same season. Dog detection rates of trial carcasses remained unchanged with distance from turbine, and dogs found more fatalities than did humans at greater distances from turbines. Patterns of fatalities found by dogs within search plots indicated 20% of birds and 4–14% of bats remained undetected outside search plots at Buena Vista and Golden Hills. Dogs also increased estimates of carcass persistence by finding detection trial carcasses that the trial administrator had erroneously concluded were removed. Compared to human searches, dog searches resulted in fatality estimates up to 6.4 and 2.7 times higher for bats and small birds, respectively, along with higher relative precision and >90% lower cost per fatality detection. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

17.
风电作为清洁可再生绿色能源越来越受到世界各国的重视,其建设规模也在不断扩大,导致风电建设与鸟类保护的矛盾进一步凸显,如何协调风电发展与物种保护已成为生态学家和保护生物学家关注的热点主题。为了探究风机对鸟类物种、功能和谱系的影响,本研究于2019年1、3、4、5月,采用样线法对连山风电场的鸟类多样性进行了4次调查。根据样线离风机距离的远近设置4个梯度: 100~300 m有6条样线,300~500 m 有13条样线,500~700 m 有8条样线,>700 m 有5条样线。结果表明: 本次调查中记录了繁殖留鸟76种,隶属于11目31科,目、科中数量最多是雀形目(53种)和画眉科(12种)。鸟类物种丰富度、功能丰富度(FRic)和谱系多样性(Faith PD)随着离风机距离的增加呈增加趋势: 在500 m以内未显著增加,500 m外呈显著增加趋势;鸟类群落水平的扩散能力呈现出增加趋势。鸟类群落的平均成对功能和谱系距离的标准化效应值(SES.MFD和SES.MPD)均小于0,其中显著低于随机值的样线占比约为50%(P<0.05)。风力发电机对鸟类物种、功能和谱系的影响主要在前500 m的距离;本研究的4个梯度中,鸟类群落的功能和谱系结构均表现为聚集特征。研究证实,风机对鸟类的影响是多维度的,在评估风机对鸟类群落的影响时仅考虑物种多样性可能难以提供全面的信息。  相似文献   

18.
Bird and bat fatalities increase with wind energy expansion and the only effective fatality-reduction measure has been operational curtailment, which has been documented for bats but not for birds. We performed opportune before-after, control-impact (BACI) experiments of curtailment effects on bird and bat fatalities and nocturnal passage rates during fall migration at 2 wind projects, where 1 continued operating and the other shut down from peak migration to the study's end (study 1). We also performed BACI experiments during a 3-year study of curtailment and operational effects on bird fatalities among wind turbines of varying operational status (study 2). In study 1, wind turbine curtailment significantly reduced near-misses and rotor-disrupted flights of bats, and it significantly reduced fatalities of bats but not of birds. In study 2, converting wind turbines from inoperable to operable status did not significantly increase bird fatalities, and bird species of hole or sheltered-ledge nesters or roosters on human-made structures died in substantial numbers at vacant towers. Of bird species represented by fatalities in study 2, 79% were found at inoperable wind turbines. Because the migration season is relatively brief, seasonal curtailment would greatly reduce bat fatalities for a slight loss in annual energy generation, but it might not benefit many bird species. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

19.
Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species’ distributions relative to turbine locations, number of suitable habitat types, and species’ conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson’s hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management activity.  相似文献   

20.
The United States is rapidly expanding production of renewable energy to meet increased energy demands and reduce greenhouse gas emissions. Wind energy is at the forefront of this transition. A central challenge is understanding the nexus between wind energy development and its capacity for negative effects on wildlife causing population declines and habitat loss. Collaboration among conservationists and developers, early in the planning process, is crucial for minimizing wind-wildlife conflicts. Such collaborations require data showing where wind and wildlife impacts occur. To meet this challenge and inform decision-making, we provide natural resource agencies and stakeholders information regarding where future wind turbines may occur, and the potential affects on natural resource management, including the conservation of priority species and their habitats. We developed a machine learning model predicting suitability of wind turbine occurrence (hereafter, wind turbine suitability) across an eight-state region in the United States, representing some of the richest areas of wind potential. Our model incorporates predictor variables related to infrastructure, land ownership, meteorology, and topography. We additionally created a constraint layer indicating areas where wind would likely not be developed because of zoning, protected lands, and restricted federal agency proximity guidelines. We demonstrate how the predictive wind turbine suitability model informs conservation planning by incorporating animal movement models, relative abundance models coupled with spatial conservation planning software, and population density models for three exemplar, high priority species often affected by wind energy: whooping cranes (Grus americana), golden eagles (Aquila chrysaetos), and lesser prairie-chickens (Tympanuchus pallidicinctus). By merging the wind turbine and biological models, we identified conservation priority areas (i.e., places sharing high suitability for wind turbines and species use), and places where wind expansion could minimally affect these species. We use our “species-wind turbine occurrence relationships” to demonstrate applications, illustrating how forecasting areas of wind turbine suitability promotes wildlife conservation. These relationships inform wind energy siting to reduce negative ecological impacts while promoting environmental and economic viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号